Experts in the News

To request a media interview, please reach out to School of Physics experts using our faculty directory, or contact Jess Hunt-Ralston, College of Sciences communications director. A list of faculty experts and research areas across the College of Sciences at Georgia Tech is also available to journalists upon request.

Odd things can happen when a wave meets a boundary. In the ocean, tsunami waves that are hardly noticeable in deep water can become quite large at the continental shelf and shore, as the waves slow and their mass moves upward. In a recent study led by School of Physics Dunn Family Professor Daniel Goldman and published in the journal Physical Review Letters, scientists have shown that a floating, symmetric oscillating robot will experience forces when it comes close to a boundary. These forces can be used for self-propulsion without the need for more typical mechanisms such as a propeller.

Tech Xplore 2024-03-09T00:00:00-05:00

The way muscles work changes when a person goes from slow, even movements to rapid, unsteady movements. Anyone who’s pulled a muscle after a sudden motion knows that. What we don’t know is exactly how muscle function changes when dynamic movement is introduced. A new NSF-funded project co-led by Simon Sponberg, Dunn Family Associate Professor in the School of Physics and School of Biological Sciences, will examine dynamic muscle function of humans and animals with the goal of creating improved physical therapy and rehabilitation programs and mobility assistance devices. That translates to more humans who can move with less pain. 

Northern Arizona University 2024-03-04T00:00:00-05:00

Are our bodies solid or liquid? This question begins the exploration of a study led by Zeb Rocklin, an assistant professor in the School of Physics at Georgia Tech, that blurs the lines between solid and liquid states by examining materials that exhibit properties of both. The study, titled 'Rigidity percolation in a random tensegrity via analytic graph theory,' published in the Proceedings of the National Academy of Sciences (PNAS), introduces a novel approach to understanding the behavior of deformable solids through the incorporation of cable-like elements, offering insights with significant implications for biology, engineering, and nanotechnology.

BNN 2024-02-29T00:00:00-05:00

Researchers at the Georgia Institute of Technology, working with a team from China’s Tianjin University, claim to have developed the first functional semiconductor from graphene, a single-layer carbon structure renowned for its robust bonds. Led by Walter De Heer, Regents' Professor in the School of Physics, the study published in Nature details a graphene semiconductor compatible with standard microelectronic processing methods, a fundamental requirement for any viable alternative to silicon.

Electronic Engineer Times Europe 2024-02-28T00:00:00-05:00

When Intel co-founder Gordon Moore made the observation that came to be known as Moore's Law, he projected that transistor density would continue doubling in density every two years... for another ten years. Working with Tianjin University in China, though, researchers at Georgia Tech have made a breakthrough in this department by growing graphene on doped silicon carbide wafers, introducing impurities into the graphene that give it a usable band gap, enabling the researchers to create graphene transistors the size of a carbon atom. In research led by School of Physics Regents' Professor Walter De Heer, these switches can reach into the teraHertz range and run cooler than silicon transistors, potentially breathing new life into the aging Moore's Law.

RedShark News 2024-02-27T00:00:00-05:00

A recent publication from the group of Prof. Dan Goldman made it to the Cover of Physical Review Letters vol. 132, issue 8 (https://journals.aps.org/prl/covers/132/8). The research article “Probing Hydrodynamic Fluctuation-Induced Forces with an Oscillating Robot”, by Steven W. Tarr, Joseph S. Brunner, Daniel Soto, and Daniel I. Goldman, Phys. Rev. Lett. 132, 084001 was published on 20 February 2024, and was also selected as an Editor’s Suggestion (https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.084001).

Physical Review Letters 2024-02-23T00:00:00-05:00

Scientists have been trying to build snakelike, limbless robots for decades. These robots could come in handy in search-and-rescue situations, where they could navigate collapsed buildings to find and assist survivors. Georgia Tech researchers Tianyu Wang, a robotics Ph.D. student, and Christopher Pierce, a postdoctoral scholar in the School of Physics, recently shared how they go about building these robots, drawing inspiration from creatures like worms and snakes. Wang and Pierce work with Daniel Goldman, Dunn Family Professor in the School of Physics. This story has been republished in Know Techie, IOT World Today and The Good Men Project.

The Conversation 2024-02-14T00:00:00-05:00

Ph.D. Robotics Student in Robotics Tianyu Wang and Postdoctoral Physics Scholar Christopher Pierce are developing snakelike, limbless robots. The robots could come in handy in search-and-rescue situations, where they could navigate collapsed buildings to find and assist survivors — and could readily move through confined and cluttered spaces such as debris fields, where walking or wheeled robots and human rescuers tend to fail.

The Conversation 2024-02-14T00:00:00-05:00

A new theory allows researchers to create easy-to-solve mathematical models using cables, a previously challenging mathematical problem — offering key insights into the behavior of deformable solids, with applications spanning from engineering and biology to nanotechnology. The work, also shared on Phys.org, was led by School of Physics Assistant Professor Zeb Rocklin and published in the journal Proceedings of the National Academy of Sciences.

Mirage News 2024-02-12T00:00:00-05:00

Brandon Pries is a graduate student in the School of Physics who researches computational astrophysics with Professor John Wise, using machine learning to study the formation and evolution of supermassive black holes in the early universe. Pries has also done extensive research with the NSF IceCube Collaboration. Pries recently shared a deep dive on neutrinos with astrobites, a daily literature journal (an "astro-ph reader's digest") supported by the AAS.

astrobites 2024-02-08T00:00:00-05:00

Atlanta Science Festival (ASF) presented by Delta Air Lines, the city’s ultimate celebration of all things science and one of the largest of its kind in the country, returns March 9-23. All ages can experience more than 100 interactive and educational events. The Exploration Expo, a giant science bash in Piedmont Park, returns as the grand finale of the Festival. The Festival will kickstart with the Science and Engineering Day at Georgia Tech. An array of hands-on STEAM activities, exhibits, and demonstrations will feature robotics, brains, biology, space, art, nanotechnology, paper, computer science, wearable tech, bioengineering, chemical engineering, systems engineering, and more. 

Atlanta Daily World 2024-01-29T00:00:00-05:00

This story about three alumni from Ohio Northern University's School of Science, Technology, and Mathematics who are making a mark in the world of physics and mathematics include Matthew Golden, who is now a postdoctoral researcher in the School of Physics. Golden's research in the Extreme Astrophysics lab focuses on the interface of machine learning and physics.

Ohio Northern University 2024-01-22T00:00:00-05:00

Events

Jul 29

Physics of Living Systems (PoLS) Special Seminar - Prof. Yi Wang

Physics of Living Systems (PoLS) Special Seminar |Prof. Yi Wang|The Chinese Univ. of Hong Kong| - Prof. JC Gumbart

Experts in the News

Every few seconds, somewhere in the observable Universe, a massive star collapses and unleashes a supernova explosion. Physicists say Japan’s Super-Kamiokande (Super-K) observatory might now be collecting a steady trickle of neutrinos from those cataclysms — amounting to a few detections a year.

In an article published in Nature, School of Physics Professor Ignacio Taboada provides a brief commentary on this new research: "The data from Super-K are still too weak to claim a discovery, but the prospect of detecting the diffuse neutrinos is extremely exciting”, says Tabaoda, who is also the spokesperson for the IceCube neutrino observatory at the South Pole. “Neutrinos would provide an independent measurement on the history of star formation in the Universe.”

Nature 2024-07-09T00:00:00-04:00

Groundbreaking research is shedding new light on how biofilms grow — using physics and mathematical models. Biofilms grow everywhere — from plaque on teeth, to medical devices, to the open ocean. But until now, it’s been difficult to study just what controls their growth. In a new study published in Nature Physics, researchers from the Yunker Lab in the School of Physics, including Lead Researcher Aawaz Pokhrel and Associate Professor Peter Yunker, leveraged physics to show that a biofilm’s geometry is the single most important factor in determining growth rate — more important than even the rate at which cells can reproduce. Since some research shows that 80% of infections in human bodies are caused by the bacteria in biofilms, understanding how colonies grow has important human health implications, potentially to help reduce their impact in medical settings or industrial processes. (This also appeared in Phys.org and Dental Review News.)

Nature Physics 2024-07-09T00:00:00-04:00

Recent demonstrations of moiré magnetism, featuring exotic phases with noncollinear spin order in the twisted van der Waals (vdW) magnet chromium triiodide CrI3, have highlighted the potential of twist engineering of magnetic (vdW) materials. In this paper, researchers, including School of Physics assistant professors Hailong Wang and Chunhui Du, reported the observation of two distinct magnetic phase transitions with separate critical temperatures within a moiré supercell of small-angle twisted double trilayer CrI3.

Nature Communications 2024-07-08T00:00:00-04:00

An observatory still under construction at the bottom of the Mediterranean Sea has spotted what could be the most energetic neutrino ever detected. Such ultra-high-energy neutrinos — tiny subatomic particles that travel at nearly the speed of light — have been known to exist for only a decade or so, and are thought to be messengers from some of the Universe’s most cataclysmic events, such as growth spurts of supermassive black holes in distant galaxies. “It would be really interesting to see where in the sky the neutrino originated,” says Nepomuk Otte, an associate professor in the School of Physics. Otte is leading a proposed project — with a prototype now being tested in Utah — that would search for Earth-skimming neutrinos by monitoring the atmosphere just above the horizon for flashes of light.

Nature 2024-06-21T00:00:00-04:00

Knitting, the age-old craft of looping and stitching natural fibers into fabrics, is gaining renewed attention for its potential in advanced manufacturing. Beyond creating garments, knitted textiles hold promise for designing wearable electronics and soft robotics – structures that need to move and bend flexibly. A team of physicists from the Georgia Institute of Technology has taken the technical know-how of knitting and added a mathematical foundation to it. Led by Elisabetta Matsumoto, associate professor in the School of Physics, and Krishma Singal, a graduate researcher in Matsumoto’s lab, the team used experiments and simulations to quantify and predict how knitted fabric responses can be programmed.

Earth.com 2024-06-20T00:00:00-04:00

A group of researchers at the Georgia Institute of Technology have created the world’s first functional semiconductor made from graphene, a development that could lead to advanced electronic devices and quantum computing applications. Seen as the building block of electronic devices, semiconductors are essential for communications, computing, healthcare, military systems, transportation and countless other applications. Semiconductors are typically made from silicon, but this material is reaching its limit in the face of increasingly faster computing and smaller electronic devices, according to the Georgia Tech research team who published their findings in Nature earlier this year. In a drive to find a viable alternative to silicon, Walter de Heer, Regents' Professor in the School of Physics, led a team of researchers based in Atlanta, Georgia and Tianjin, China to produce a graphene semiconductor that is compatible with microelectronics processing methods.

Gas World 2024-04-26T00:00:00-04:00