cr152

Chandra Raman
Professor
Education

Ph.D., University of Michigan, Ann Arbor, 1997

Research Interests

Bose-Einstein condensation and quantum atomic sensors

My group has two thrusts.  In one effort we utilize sophisticated tools to cool atoms to temperatures less than one millionth of a degree above absolute zero. Using these tools, we explore topics ranging from superfluidity in Bose-Einstein condensates (BECs) to quantum antiferromagnetism in a spinor condensate.  In another effort we partner with engineers to build cutting edge atomic quantum sensors on-chip that can one day be mass-produced.

Papers:

1.     Magnetic solitons in a spin-1 Bose-Einstein condensate, Xiao Chai, Di Lao, Kazuya Fujimoto, Ryusuke Hamazaki, Masahito Ueda and Chandra Raman, e-print at https://arxiv.org/abs/1912.06672

2.     Near source fluorescence spectroscopy for miniaturized thermal atomic beams, Xiao Chai, Chao Li, Bochao Wei, Jeremy Yang, Anosh Daruwalla, Farrokh Ayazi and C. Raman, e-print at  http://arxiv.org/abs/1911.06388

3.     Nematic-orbit coupling and nematic density waves in spin-1 condensates, Di Lao, Chandra Raman, C. A. R. Sá de Melo, to appear in Physical Review Letters, e-print at https://arxiv.org/abs/1904.01635.

4.     Cascaded collimator for atomic beams traveling in planar silicon devices, Chao Li, Xiao Chai, Bochao Wei, Jeremy Yang, Anosh Daruwalla, Farrokh Ayazi and C. Raman, Nature Communications 10, 1 p. 1831 (2019).  https://doi.org/10.1038/s41467-019-09647-3

5.     Subnanometer optical linewidth of thulium atoms in rare-gas crystals, Vinod Gaire, Chandra S. Raman, and Colin V. Parker, Phys. Rev. A 99, 022505 (2019).

6.     Hanbury Brown-Twiss correlations and multimode dynamics in quenched, inhomogeneous density spinor Bose-Einstein condensates, A. Vinit and C. Raman,  New Journal of Physics Spotlight on Multicomponent Quantum Matter, New J. Phys. 20 095003 2018 https://doi.org/10.1088/1367-2630/aadc74