Chandra Raman

Ph.D., University of Michigan, Ann Arbor, 1997

Research Interests

Bose-Einstein condensation and quantum atomic sensors

My group has two thrusts.  In one effort we utilize sophisticated tools to cool atoms to temperatures less than one millionth of a degree above absolute zero. Using these tools, we explore topics ranging from superfluidity in Bose-Einstein condensates (BECs) to quantum antiferromagnetism in a spinor condensate.  In another effort we partner with engineers to build cutting edge atomic quantum sensors on-chip that can one day be mass-produced.


1.     Magnetic solitons in a spin-1 Bose-Einstein condensate, Xiao Chai, Di Lao, Kazuya Fujimoto, Ryusuke Hamazaki, Masahito Ueda and Chandra Raman, e-print at

2.     Near source fluorescence spectroscopy for miniaturized thermal atomic beams, Xiao Chai, Chao Li, Bochao Wei, Jeremy Yang, Anosh Daruwalla, Farrokh Ayazi and C. Raman, e-print at

3.     Nematic-orbit coupling and nematic density waves in spin-1 condensates, Di Lao, Chandra Raman, C. A. R. Sá de Melo, to appear in Physical Review Letters, e-print at

4.     Cascaded collimator for atomic beams traveling in planar silicon devices, Chao Li, Xiao Chai, Bochao Wei, Jeremy Yang, Anosh Daruwalla, Farrokh Ayazi and C. Raman, Nature Communications 10, 1 p. 1831 (2019).

5.     Subnanometer optical linewidth of thulium atoms in rare-gas crystals, Vinod Gaire, Chandra S. Raman, and Colin V. Parker, Phys. Rev. A 99, 022505 (2019).

6.     Hanbury Brown-Twiss correlations and multimode dynamics in quenched, inhomogeneous density spinor Bose-Einstein condensates, A. Vinit and C. Raman,  New Journal of Physics Spotlight on Multicomponent Quantum Matter, New J. Phys. 20 095003 2018