Experts in the News

To request a media interview, please reach out to School of Physics experts using our faculty directory, or contact Jess Hunt-Ralston, College of Sciences communications director. A list of faculty experts and research areas across the College of Sciences at Georgia Tech is also available to journalists upon request.

In the cosmos, the rhythm of seasons is a dance choreographed by the distinct axial tilt of each planet. The study of these celestial ballets has been the focus of astrophysicist Gongjie Li, assistant professor in the School of Physics. Funded by NASA, Li’s research delves into the reasons behind seasonal patterns, centering on the effects of a planet’s axial tilt or obliquity. Earth has an axis tilted about 23 degrees from vertical, a feature that triggers the varying intensity of sunlight across different hemispheres, resulting in changing seasons. Li articulates that planets ideally aligned axially with their orbit around the sun, assuming a circular orbit, wouldn’t bear witness to seasons due to a constant influx of sunlight.

BNN Breaking 2024-01-10T00:00:00-05:00

Systems consisting of spheres rolling on elastic membranes have been used to introduce a core conceptual idea of general relativity: how curvature guides the movement of matter. However, such schemes cannot accurately represent relativistic dynamics in the laboratory because of the dominance of dissipation and external gravitational fields. A new study from School of Physics researchers demonstrates that an “active” object (a wheeled robot), which moves in a straight line on level ground and can alter its speed depending on the curvature of the deformable terrain it moves on, can exactly capture dynamics in curved relativistic spacetimes. The researchers' mapping and framework facilitate creation of a robophysical analog to a general relativistic system in the laboratory at low cost that can provide insights into active matter in deformable environments and robot exploration in complex landscapes. Researchers includes Hussain Gynai and Steven Tarr, graduate students; Emily Alicea-Muñoz, academic professional; Gongjie Li, assistant professor; and Daniel Goldman, Dunn Family Professor. 

Nature Scientific Reports 2023-12-07T00:00:00-05:00

This roundup of some of the most unique excrement in the animal kingdom, showcasing the fascinating diversity of animal waste, includes a 2018 Georgia Tech study of how wombats manage to produce square-shaped feces. The study's authors include David Hu, professor in the School of Biological Sciences and the George W. Woodruff School of Mechanical Engineering, with an adjunct appointment in the School of Physics. As it turns out, the elastic nature of the marsupial's intestinal walls is a key factor.

Interesting Engineering 2023-12-01T00:00:00-05:00

Blimps are indeed part of this "Innovations" roundup, but it's the collaborative abilities of army ants that have led engineers from Northwestern University and the New Jersey Institute of Technology to speculate that the insects' behavioral principles and brains could one day be used to program swarms of robots. David Hu, professor in the School of Biological Sciences and the George W. Woodruff School of Mechanical Engineering (with an adjunct appointment in the School of Physics), is quoted regarding his research on fire ant raft constructions during flooding, comparing the insects to neurons in one large brain.

Mastercard Newsroom 2023-11-30T00:00:00-05:00

Ever wondered why your dog’s back-and-forth shaking is so effective at getting you soaked? Or how bugs, birds, and lizards can run across water—but we can’t? Or how about why cockroaches are so darn good at navigating in the dark? Those are just a few of the day-to-day mysteries answered in the new book How to Walk on Water and Climb Up Walls: Animal Movement and the Robots of the Future, by David Hu, professor in the School of Biological Sciences and the George W. Woodruff School of Mechanical Engineering, with an adjunct appointment in the School of Physics. The book answers questions you probably won’t realize you even had, but they’re questions with serious answers that span the worlds of physics, fluid mechanics, and biology. Throughout the book, Hu demonstrates the extraordinary value day-to-day curiosity brings to science.

WNYC Science Friday 2023-11-27T00:00:00-05:00

Georgia Tech scientists will soon have another way to search for neutrinos, those hard-to-detect, high-energy particles speeding through the cosmos that hold clues to massive particle accelerators in the universe—if researchers can find them. "The detection of a neutrino source or even a single neutrino at the highest energies is like finding a holy grail," says Nepomuk Otte, professor in the School of Physics. Otte is the principal investigator for the Trinity Demonstrator telescope that was recently built by his group and collaborators, and was designed to detect neutrinos after they get stopped within the Earth.

Science X 2023-11-18T00:00:00-05:00

The American Physical Society (APS) recently honored five MIT community members for their contributions to physics. The recipients include MIT Research Laboratory of Electronics postdoctoral scholar Chao Li, who received his Ph.D. from the School of Physics in 2022. He was awarded the Outstanding Doctoral Thesis Research in Beam Physics Award from the APS.

MIT News 2023-11-16T00:00:00-05:00

For the undergraduate students who interned in quantum science laboratories and research groups as part of the second cohort of the Chicago Quantum Exchange’s (CQE) Open Quantum Initiative (OQI) Fellowship Program, this summer was a chance to immerse themselves in a fast-growing field — one that is driving the development of cutting-edge technology by harnessing the properties of nature’s smallest particles. Eight of the 18 fellows contributed to Q-NEXT, a U.S. Department of Energy (DOE) National Quantum Information Science Research Center led by DOE’s Argonne National Laboratory. One of the fellows is Anais El Akkad in the School of Physics, whose research this summer focused on studying the phenomenon of superradiance in a rare-earth doped crystal, which has potential applications to the development of quantum memories.

Argonne National Laboratory 2023-11-16T00:00:00-05:00

Isabella Muratore at the New Jersey Institute of Technology says studying army ants comes with certain occupational hazards, like their very aggressive nature. But what's truly remarkable is when the ants encounter obstacles — such as a gap between leaves or branches — they build living bridges out of their bodies, hooking themselves together like a barrel of monkeys. This story includes comments from David Hu, professor in the School of Biological Sciences and the George W. Woodruff School of Mechanical Engineering, with an adjunct appointment in the School of Physics. Hu has studied how fire ants use their bodies to build rafts. He says this type of work reveals how ants make collective decisions, which could have implications for controlling swarms of robots. (This story was also covered on Houston Public Media, Georgia Public Broadcasting, and National Public Radio.)

Alabama Public Radio 2023-11-14T00:00:00-05:00

A new computer simulation of the early universe has been built by researchers, and it closely matches data obtained with the James Webb Space Telescope (JWST). The results, which were presented in The Open Journal of Astrophysics, were obtained by Maynooth University and Georgia Tech researchers. They demonstrate that the data obtained with JWST are consistent with theoretical expectations. The team’s “Renaissance simulations” are a set of extremely complex computer models of galaxy formation in the early universe. The School of Physics researchers are John Wise, Professor and Director of the Center for Relativistic Astrophysics (CRA), and Samantha Hardin, graduate student. (This study was also covered at CityLife, Silicon RepublicSciTechDailyPhys.org and List23.)

AZoQuantum 2023-10-27T00:00:00-04:00

This fall, the Institute will launch a foundational, interdisciplinary program to lead in research related to neuroscience, neurotechnology, and society. The Neuro Next Initiative is the result of the growth of GTNeuro, a grassroots effort over many years that has led in the hiring of faculty studying the brain and the creation of the B.S. in neuroscience in the College of Sciences, and contributed to exciting neuro-related research and education at Georgia Tech. Guided by faculty members Christopher Rozell, professor and Julian T. Hightower Chair in the School of Electrical and Computer Engineering; Simon Sponberg, Dunn Family Associate Professor of Physics and Biological Sciences; and Jennifer S. Singh, associate professor in the School of History and Sociology, the Neuro Next Initiative at Georgia Tech will lead the development of a community that supports collaborative research, unique educational initiatives, and public engagement in this critical field.

India Education Diary 2023-10-23T00:00:00-04:00

An annular "ring of fire" eclipse will stretch from Oregon to Texas next Saturday, October 14. During this type of eclipse, the Moon is near its farthest point from Earth, so it does not completely cover the Sun. The Moon appears as a dark disk on top of a larger, bright sun. In Georgia, we will see a partial solar eclipse. James Sowell, principal academic professional in the School of Physics and director of the Georgia Tech Observatory, said over the three-hour event the sun will take on a different appearance. "For those of us in Atlanta, it’s a little more than 50 percent. So you’d have the disk of the sun, and part of it would be blocked out. So you would first see a little blocked out, and ultimately about 50 percent... The sun would be a crescent and then the moon would work its way out," Sowell said. If you want to view the eclipse, you must do so safely. You'll need special protection. Special solar-safe glasses can be purchased online, which are much, much stronger than a normal pair of sunglasses. (11Alive also spoke with Sowell on Oct. 12)

11Alive WXIA 2023-10-07T00:00:00-04:00

Experts in the News

An observatory still under construction at the bottom of the Mediterranean Sea has spotted what could be the most energetic neutrino ever detected. Such ultra-high-energy neutrinos — tiny subatomic particles that travel at nearly the speed of light — have been known to exist for only a decade or so, and are thought to be messengers from some of the Universe’s most cataclysmic events, such as growth spurts of supermassive black holes in distant galaxies. “It would be really interesting to see where in the sky the neutrino originated,” says Nepomuk Otte, an associate professor in the School of Physics. Otte is leading a proposed project — with a prototype now being tested in Utah — that would search for Earth-skimming neutrinos by monitoring the atmosphere just above the horizon for flashes of light.

Nature 2024-06-21T00:00:00-04:00

Knitting, the age-old craft of looping and stitching natural fibers into fabrics, is gaining renewed attention for its potential in advanced manufacturing. Beyond creating garments, knitted textiles hold promise for designing wearable electronics and soft robotics – structures that need to move and bend flexibly. A team of physicists from the Georgia Institute of Technology has taken the technical know-how of knitting and added a mathematical foundation to it. Led by Elisabetta Matsumoto, associate professor in the School of Physics, and Krishma Singal, a graduate researcher in Matsumoto’s lab, the team used experiments and simulations to quantify and predict how knitted fabric responses can be programmed.

Earth.com 2024-06-20T00:00:00-04:00

Robotics engineers have worked for decades, using substantial funding, to create robots that can walk or run with the ease of animals. Despite these efforts, today’s robots still cannot match the natural abilities of many animals in terms of endurance, agility, and robustness. Seeking to understand and quantify this disparity, an interdisciplinary team of scientists and engineers from top research institutions, including Dunn Family Associate Professor at the School of Physics and the School of Biological Sciences Simon Sponberg, conducted a comprehensive study to compare various aspects of robotic systems designed for running with their biological counterparts. (This also appeared at The Jerusalem Post, TechXplore, and SciTechDaily.)

Earth.com 2024-04-26T00:00:00-04:00

A group of researchers at the Georgia Institute of Technology have created the world’s first functional semiconductor made from graphene, a development that could lead to advanced electronic devices and quantum computing applications. Seen as the building block of electronic devices, semiconductors are essential for communications, computing, healthcare, military systems, transportation and countless other applications. Semiconductors are typically made from silicon, but this material is reaching its limit in the face of increasingly faster computing and smaller electronic devices, according to the Georgia Tech research team who published their findings in Nature earlier this year. In a drive to find a viable alternative to silicon, Walter de Heer, Regents' Professor in the School of Physics, led a team of researchers based in Atlanta, Georgia and Tianjin, China to produce a graphene semiconductor that is compatible with microelectronics processing methods.

Gas World 2024-04-26T00:00:00-04:00

In an opinion published in the May 2024 edition of APSNews, School of Physics Professor Andrew Zangwill reflects on the debate on the boundaries of physics and its impact on the discipline. Zangwill states “for more than a century, physicists have been drawing and redrawing the borders around the field, embracing and rejecting subfields along the way.”

American Physical Society News 2024-04-12T00:00:00-04:00

The stars aligned to give a Georgia Tech undergraduate student and an alum the moment of a lifetime during the recent solar eclipse. Corinne Hill is currently majoring in physics with a concentration in astrophysics. Nathaniel Greve graduated in 2023 with a degree in computer science. The couple met in 2021 when they both played alto saxes in the Georgia Tech marching band. After being unable to experience totality in 2017, Greve said the pair made plans to go to Wapakoneta, Ohio, for 2024′s eclipse. Hill’s friends in the Astronomy Club went to the Ozarks to experience the eclipse, but Hill agreed to go to Ohio instead.

Atlanta News First 2024-04-11T00:00:00-04:00