School of Physics

 

 

 

Latest News

This semester, 36 faculty members from across the Institute, including four from the College of Sciences, were awarded tenure.

The fellowships are awarded to outstanding graduate students pursuing STEM research and education. 

The College of Sciences’ signature research event featured thought-provoking discussions at the intersection of neuroscience, cognition, and artificial intelligence.

The new center, announced by the College in December 2024, will drive research aimed at improving life across the state of Georgia. 

Events

Apr 17

School of Physics CRA Seminar - Dr. Caitlin Rose

CRA Seminar | Dr. Caitlin Rose |Georgia Tech| Host: Dr. Surabhi Sachdev

Apr 18

Fossil Friday

Come join the Spatial Ecology and Paleontology Lab for Fossil Fridays! Become a fossil hunter and help discover how vertebrate communities have changed through time.

Apr 21

School of Physics Spring Colloquium Series-Dr. Lia Medeiros

Lia Medeiros(Univ. of Wisconsin Milwaukee) EHT images of black holes: what we've learned from them and how we can improve them

Apr 22

Systems Matter Seminar | Materials-Driven Strategies for Translational Bioelectrical Interfaces

Featuring Bozhi Tian, professor at the University of Chicago department of Chemistry

Apr 23

Entanglement in Tensor Networks- Dr. Andrej Gendiar, School of Physics CM/AMO/Quantum Seminar

Tensor Networks are special classes of variational quantum states typically applied to study strongly correlated many-body systems.

Apr 25

Fossil Friday

Come join the Spatial Ecology and Paleontology Lab for Fossil Fridays! Become a fossil hunter and help discover how vertebrate communities have changed through time.

May 01

Observatory Public Night

On the grounds between the Howey and Mason Buildings, several telescopes are typically set up for viewing, and visitors are invited to bring their own telescope, as well.

 

Experts in the News

Peter Yunker, associate professor in the School of Physics, reflects on the results of new experiments which show that cells pack in increasingly well-ordered patterns as the relative sizes of their nuclei grow.

“This research is a beautiful example of how the physics of packing is so important in biological systems,” states Yunker. He says the researchers introduce the idea that cell packing can be controlled by the relative size of the nucleus, which “is an accessible control parameter that may play important roles during development and could be used in bioengineering.”

Physics Magazine 2025-03-21T00:00:00-04:00

School of Physics Professor Ignacio Taboada provided brief commentary on KM3NeT, a new underwater neutrino experiment that has detected what appears to be the highest-energy cosmic neutrino observed to date.

“This is clearly an interesting event. It is also very unusual,” said Taboada, spokesperson for the IceCube experiment in Antarctica. IceCube, which has a similar detector-array design as KM3NeT but is encased in ice rather than water, has detected neutrinos with energies as high as 10 PeV, but nothing in 100 PeV range. “IceCube has worked for 14 years, so it’s weird that we don’t see the same thing,” Taboada said. Taboada is not involved in the KM3Net experiment. 

The KM3NeT team is aware of this weirdness. They compared the KM3-230213A event to upper limits on the neutrino flux given by IceCube and the Pierre Auger cosmic-ray experiment in Argentina. Taking those limits as given, they found that there was a 1% chance of detecting a 220-PeV neutrino during KM3NeT’s preliminary (287-day) measurement campaign. 

This also appeared in Scientific American and Smithsonian Magazine.

Physics Magazine 2025-02-12T00:00:00-05:00

Georgia Tech researchers from the School of Chemistry and Biochemistry, the School of Earth and Atmospheric Sciences, and the School of Physics including Regents' Professor Thomas Orlando, Assistant Professor Karl Lang, and post-doctoral researcher Micah Schaible are among the authors of a paper recently published in Scientific Reports.

Researchers from the University of Georgia and Georgia Tech demonstrated that space weathering alterations of the surface of lunar samples at the nanoscale may provide a mechanism to distinguish lunar samples of variable surface exposure age.

Nature Scientific Reports 2025-01-02T00:00:00-05:00

Despite the fact that Antarctica is extraordinarily difficult to get to, astronomers love it and have chosen it as the location for the IceCube Neutrino Observatory. What could possibly make such a remote location so desirable for space science that it’s worth all that trouble? 

In this article, scientists including Georgia Tech's Brandon Pries from the School of Physics explain why the South Pole is such a hotspot for astronomers. The answer? At the South Pole, you can best view neutrons and neutrinos in space. 

Pries compares the benefits of the South Pole to the North Pole. “The North Pole is more difficult because ice coverage there fluctuates,” explains Pries. “There is a foundation of bedrock underneath Antarctica that serves as a solid base for the IceCube instruments.” This bedrock is also why Antarctica is home to the South Pole Telescope, a radio observatory that helped take the first ever photo of a black hole.

Popular Science 2024-09-05T00:00:00-04:00

Georgia Tech researchers from the School of Physics including fifth-year PhD student Mengqi Huang and Assistant Professor Chunhui Rita Du are among the authors of a paper recently published in Nature Physics. Researchers from six universities and Oak Ridge National Laboratory showed that strong quantum fluctuations can stabilize an unconventional magnetic phase after destroying a more conventional one.

Nature Physics 2024-08-26T00:00:00-04:00

Scientists have produced an image of the Milky Way not based on electromagnetic radiation - light - but on ghostly subatomic particles called neutrinos. They detected high-energy neutrinos in pristine ice deep below Antarctica's surface, then traced their source back to locations in the Milky Way - the first time these particles have been observed arising from our galaxy.

The neutrinos were detected over a span of a decade at the IceCube Neutrino Observatory at a U.S. scientific research station at the South Pole, using more than 5,000 sensors covering an area the size of a small mountain.

School of Physics Professor Ignacio Taboada is the spokesperson for the IceCube Neutrino Observatory and provides a brief commentary on this new research:

"This observation is ground-breaking. It established the galaxy as a neutrino source. Every future work will refer to this observation," says Taboada.

Reuters 2024-07-29T00:00:00-04:00