This roundup of news items includes a report updating research on graphene, a possible successor to silicon as the foundation for all electronics, from Walter de Heer, Regent's Professor in the School of Physics. De Heer's latest advance involves developing a new nanoelectronics platform based on graphene. The technology is compatible with conventional microelectronics manufacturing, a necessity for any viable alternative to silicon.
Pushing a shovel through snow, planting an umbrella on the beach, wading through a ball pit, and driving over gravel all have one thing in common: They all are exercises in intrusion, with an intruding object exerting some force to move through a soft and granular material. Predicting what it takes to push through sand, gravel, or other soft media can help engineers drive a rover over Martian soil, anchor a ship in rough seas, and walk a robot through sand and mud.
Comet Lulin, a rare green comet discovered in 2007, is set to make its closest approach to the Earth around Feb. 24. The comet's green color comes from the gases that make up its atmosphere. Its closest approach to Earth will be 38 million miles.
Is science better when it disrupts or when there are just incremental improvements to previous knowledge? The topic was analyzed in a recent study, and it seems that researchers have spent these past years improving things rather than trying to revolutionize everything.
Elisabetta Matsumoto, an associate professor in the School of Physics, will present “Knotty Knits: A Chat about Math and Crafts” beginning at 3 p.m. March 3, at Southern Illinois University's Guyon Auditorium.
Astrobites, a daily astrophysical literature journal written by graduate students in astronomy since 2010, features a guest column written by two Ph.D. students extolling the virtues of community college. One of the authors is School of Physics alumna Kiersten Boley, B.S PHYS 2019, now seeking a Ph.D.
Just like fashioning decorative shapes and figures using the Japanese art of folding paper, tracing when and where origami originated is complicated. But what cannot be disputed is its incredible influence in modern engineering. While styles of origami can be incredibly diverse, the art is rooted in mathematical principles that make it applicable to science and industry. This story in E&T mentions scientists at Georgia Tech exploring origami, kirigami (where paper is cut as well as folded) and specific folding techniques for building everything from furniture to bridges.
A pressing quest in the field of nanoelectronics is the search for a material that could replace silicon. Graphene has seemed promising for decades. But, its potential faltered along the way, due to damaging processing methods and the lack of a new electronics paradigm to embrace it.