Eric Sembrat's Test Bonanza

Image: 

Abstract

Strong Coulomb interactions in single-layer transition metal dichalcogenides (TMDs) result in the emergence of strongly bound excitons. These excitons and excitonic complexes, trions or biexcitons, for example, possess the valley degree of freedom and can be either optically bright or dark, depending on the spin configuration of the conduction and valence bands. In this talk, I will review our recent efforts on probing and controlling excitons in monolayer MoSe2 and WSe2 TMDs with high magnetic fields.

By employing high-field optical magneto-spectroscopy under strong out-of-plane magnetic fields and as a function of doping level, we can identify different exciton species and deduce their valley origins and binding energies. When a strong magnetic field is applied parallel to the 2D plane, it can be used to tilt and mix the CB spin component of excitons, which allows us to brighten and probe directly otherwise optically dark excitons.

Event Details

Date/Time:

Abstract

a-RuCl3 is a layered antiferromagnetic Mott insulator that is believed to host a Kitaev quantum spin liquid, and notably there has been a claim for non-Abelian transport seen in a quantized thermal Hall conductance experiment. Seeking a means to access this physics by electronic means, we have begun exploring this material by exfoliation a la graphene. In particular, we have incorporated RuCl3 flakes into so-called van der Waals heterostructures.

While the electrical conductivity of RuCl3 alone is seen to drop like a rock with decreasing temperature, when placed in close proximity to monolayer graphene we observe an anomalously high conductivity through the combined system. Moreover, we find evidence of multiband transport and clear signatures of a 'critical resistivity' due to electron scattering by spin fluctuations near a magnetic phase transition. All of these effects vary with an applied gate voltage. It appears that proximity to graphene induces a charge transfer to RuCl3 that is sensitive to and perhaps controllable by an external voltage.

Event Details

Date/Time:

Abstract:

One of the promising routes towards creating novel topological states and excitations is to combine superconductivity with quantum Hall (QH) effect. However, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has until recently eluded experimental observation. Here, we explore high mobility graphene/boron nitride heterostructures contacted by type II superconducting electrodes that could withstand magnetic fields of a few Tesla.

At low magnetic fields, our devices demonstrate the Fraunhoffer pattern and Fabri-Perot oscillations, confirming their uniformity and ballisticity. At fields of 1-2 Tesla, when Landau quantization is fully developed, regions of superconductivity can be observed on top of the conventional QH fan diagram. The measured supercurrent is very small, on a few nA scale, and periodic in magnetic field. Additional measurements on side- and top-gated samples shed light on the alternative mechanisms that mediate supercurrent along the QH edge states. Finally, we demonstrate the evidence of the “Andreev edge states” – single particle electron-hole hybrid states propagating along the QH-superconductor boundary. 

Event Details

Date/Time:

Abstract

Natural swarms exhibit sophisticated colony level behaviors with remarkably scalable and error tolerant properties. Their evolutionary success stems from more than just intelligent individuals, it hinges on their morphology, their physical interactions, and the way they shape and leverage their environment. Mound-building termites, for instance, are believed to use their own body as a template for construction; the resulting dirt mound serves, among many things, to regulate volatile pheromone cues which in turn guide further construction and colony growth. Throughout this talk I will argue how we can leverage the same principles to achieve greater performance in robot collectives, through hardware and software co-development, and by integrating the environment into the design process. I will give examples of systems from our lab that exploit form, function, and the concept of robotic superorganisms, spanning collective robotic construction inspired by African mound-building termites, ongoing work towards slime-mold inspired soft robot collectives, and initial studies of bio-hybrid collectives of honey bees.

Bio

Kirstin Petersen is an Assistant Professor in the School of Electrical and Computer Engineering at Cornell University; she is also a member of the Computer Systems Lab, and has field positions in Mechanical Engineering and Computer Science. Her lab, the Collective Embodied Intelligence Lab, is focused on design and coordination of large robot collectives able to achieve complex behaviors beyond the reach of an individual, and corresponding studies on how social insects do so in nature. Major research topics include swarm intelligence, embodied intelligence, and autonomous construction. Before arriving at Cornell, Petersen did a postdoc with the Physical Intelligence Department at the Max Planck Institute for Intelligent Systems in Germany. She completed a PhD in 2014 in computer science at Harvard University and the Wyss Institute for Biologically Inspired Engineering. Her graduate work was featured in and on the cover of Science in February 2014, and was elected among the top ten scientific breakthroughs of 2014. Kirstin completed her M.Sc. in modern artificial intelligence in 2008 and a B.Sc. in electro-technical engineering in 2005, both with the University of Southern Denmark.

Event Details

Date/Time:

Abstract

NSFD schemes are based on a methodology not centered on the a priori satisfaction of particular mathematical requirements. A central and critical feature is that the discretization equations be dynamical consistent with the differential equations with regard to specific properties of the (physical) original system. Major consequences include modification of the step-size function and the non-local discrete representations of function. The general procedures will be illustrated by means of several explicit examples.

Biographical Summary

Ronald Elbert Mickens received his BA degree in physics from Fisk University (1964) and a Ph.D. in theoretical physics from Vanderbilt University (1968).  He held postdoctoral positions at the MIT Center for Theoretical Physics (1968-70), Vanderbilt University (1980-81), and the Joint Institute for Laboratory Astrophysics (1981-82).  He was professor of physics at Fisk University from 1970 – 1981.  Presently, he is the Distinguished Fuller E. Callaway Professor at Clark Atlanta University.  His current research interests include nonlinear oscillations, asymptotic methods for difference and differential equations, numerical integration of differential equations, the mathematical modeling of periodic diseases, the history/sociology of African Americans in science, and the relationship between mathematics and physics.  As of 2016, he has published more than 335 peer-reviewed scientific/mathematical research articles; written and/or edited 17 books; published over 390 abstracts; and authored nearly 100 scientific bio-essays, book reviews, and commentaries.  He serves on editorial boards of several research journals, including the Journal of Difference Equations and Applications and the International Journal of Evolution Equations.  His scholarly writings have appeared in reference works such as African American Lives (Oxford University Press), American National Biography (Oxford University Press), and Biographical Encyclopedia of Scientists (Marshall Cavendish).  His honors include fellowships from the Ford, Woodrow Wilson, and National Science Foundations; and election to Phi Beta Kappa (1964).  During 1998-99, he was an American Physical Society Centennial speaker (as part of the activities to celebrate the 100th anniversary of the founding of the APS).  He also served as a Distinguished National Lecturer for Sigma Xi, The Scientific Research Society for 2000 – 2002.  His professional memberships include the American Association for the Advancement of Science, the American Physical Society (for which he is an elected Fellow), the History of Science Society, the Society for Mathematical Biology, and the American Mathematical Society.

In July 2014, “The Brauer-Mickens Distinguished Seminar Series,” in the Simon A. Levin Mathematical, Computational and Modeling Center (Arizona State University), was inaugurated to honor Ronald Mickens for his “stellar scholarly contributions to the mathematical, engineering, and natural sciences … and (his) overall service and mentorship to the applied mathematical sciences community.”

Access to a multi-hour interview with Professor Mickens is posted at http://www.thehistorymakers.com/biography/Ronald-n.  This interview covers a variety of issues related to his family life, career, and scientific contributions.  The Amistad Research Center, Tulane University, New Orleans, LA, houses a large collection of his personal and scientific correspondence.

Event Details

Date/Time:

More Workers Working Might Not Get More Work Done, Ants (and Robots) Show

Thursday, August 16, 2018

For ants and robots operating in confined spaces like tunnels, having more workers does not necessarily mean getting more work done. Just as too many cooks in a kitchen get in each other’s way, having too many robots in tunnels creates clogs that can bring the work to a grinding halt.

A study published August 17 in the journal Science shows that in fire ant colonies, a small number of workers does most of the digging, leaving the other ants to look somewhat less than industrious. For digging nest tunnels, this less busy approach gets the job done without ant traffic jams – ensuring smooth excavation flow. Researchers found that applying the ant optimization strategy to autonomous robots avoids mechanized clogs and gets the work done with the least amount of energy.

Optimizing the activity of autonomous underground robots could be useful for tasks such as disaster recovery, mining or even digging underground shelters for future planetary explorers. The research was supported by the National Science Foundation’s Physics of Living Systems program, the Army Research Office and the Dunn Family Professorship.

“We noticed that if you have 150 ants in a container, only 10 or 15 of them will actually be digging in the tunnels at any given time,” said Daniel Goldman, a professor in the School of Physics at the Georgia Institute of Technology. “We wanted to know why, and to understand how basic laws of physics might be at work. We found a functional, community benefit to this seeming inequality in the work environment. Without it, digging just doesn’t get done.”

By monitoring the activities of 30 ants that had been painted to identify each individual, Goldman and colleagues, including former postdoctoral fellow Daria Monaenkova and Ph.D. student Bahnisikha Dutta, discovered that just 30 percent of the ants were doing 70 percent of the work – an inequality that seems to keep the work humming right along. However, that is apparently not because the busiest ants are the most qualified. When the researchers removed the five hardest working ants from the nest container, they saw no productivity decline as the remaining 25 continued to dig.

Having a nest is essential to fire ants, and if a colony is displaced – by a flood, for instance – the first thing the ants will do upon reaching dry land is start digging. Their tunnels are narrow, barely wide enough for two ants to pass, a design feature hypothesized to give locomotion advantages in the developing vertical tunnels. Still, the ants know how to avoid creating clogs by retreating from tunnels already occupied by other workers – and sometimes by not doing anything much at all. 

To avoid clogs and maximize digging in the absence of a leader, robots built by Goldman’s master’s degree student Vadim Linevich were programmed to capture aspects of the dawdling and retreating ants. The researchers found that as many as three robots could work effectively in a narrow horizontal tunnel digging 3D printed magnetic plastic balls that simulated sticky soil. If a fourth robot entered the tunnel, however, that produced a clog that stopped the work entirely.

“When we put four robots into a confined environment and tried to get them to dig, they immediately jammed up,” said Goldman, who is the Dunn Family Professor in the School of Physics. “While observing the ants, we were surprised to see that individuals would sometimes go to the tunnel and if they encountered even a small amount of clog, they’d just turn around and retreat. When we put those rules into combinations with the robots, that created a good strategy for digging rapidly with low amounts of energy use per robot.”

Experimentally, the research team tested three potential behaviors for the robots, which they termed “eager,” “reversal” or “lazy.” Using the eager strategy, all four robots plunged into the work – and quickly jammed up. In the reversal behavior, robots gave up and turned around when they encountered delays reaching the work site. In the lazy strategy, dawdling was encouraged.

“Eager is the best strategy if you only have three robots, but if you add a fourth, that behavior tanks because they get in each other’s way,” said Goldman. “Reversal produces relatively sane and sensible digging. It is not the fastest strategy, but there are no jams. If you look at energy consumed, lazy is the best course.” Analysis techniques based on glassy and supercooled fluids, led by former Ph.D. student Jeffrey Aguilar, gave insight into how the different strategies mitigated and prevented clog-forming clusters.

To understand what was going on and experiment with the parameters, Goldman and colleagues – including Will Savoie, a Georgia Tech Ph.D. student, Research Assistant Hui-Shun Kuan and Professor Meredith Betterton from the Department of Physics at the University of Colorado Boulder – used computer modeling known as cellular automata that has similarities to the way in which traffic engineers model the movement of cars and trucks on a highway.

“On highways, too few cars don’t provide much flow, while too many cars create a jam,” Goldman said. “There is an intermediate level where things are best, and that is called the fundamental diagram. From our modeling, we learned that the ants are working right at the peak of the diagram. The right mix of unequal work distributions and reversal behaviors has the benefit of keeping them moving at maximum efficiency without jamming.”

The ability to avoid clumping seems to meet a need that many systems have, Betterton noted. “The ants work in a sweet spot where they can dig quickly without too many clogs. We see the same physics in ant digging, simulation models, and digging by robots, which suggests that for groups of animals that need to excavate, avoiding clogs is crucial.”

The researchers used robots designed and built for the research, but they were no match for the capabilities of the ants. The ants are flexible and robust, able to squeeze past each other in confines that would cause the inflexible robots to jam. In some cases, the robots in Goldman’s lab even damaged each other while jostling into position for digging.

The research findings could be useful for space exploration where tunnels might be needed to quickly shield humans from approaching dust storms or other threats. “If you were a robot swarm on Mars and needed to dig deeply in a hurry to get away from dust storms, this strategy might help provide shelter without having perfect information about what everybody was doing,” Goldman explained. 

Beyond the potential robotics applications, the work provides insights into the complex social skills of ants and adds to the understanding of active matter. 

“Ants that live in complex subterranean environments have to develop sophisticated social rules to avoid the bad things that can happen when you have a lot of individuals in a crowded environment,” Goldman said. “We are also contributing to understanding the physics of task-oriented active matter, putting more experimental knowledge into phenomenon such as swarms.”

In addition to those already mentioned, the research included Michael Goodisman, associate professor in Georgia Tech’s School of Biological Sciences.

This research was supported by the National Science Foundation through grant numbers PoLS-0957659, PHY-1205878 and DMR-1551095 as well as a grant W911NF-13-1-0347 from the Army Research Office, and the National Academies Keck Futures Initiative. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or Army Research Office.

CITATION: J. Aguilar, et. al., “Collective clog control: optimizing traffic flow in confined biological and robophysical excavation,” (Science 2018).

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia  30332-0181 USA

Media Relations Contact: John Toon (404-894-6986) (jtoon@gatech.edu).

Writer: John Toon

Media Contact: 

John Toon

Research News

(404) 894-6986

Summary: 

For ants and robots operating in confined spaces like tunnels, having more workers does not necessarily mean getting more work done. Just as too many cooks in a kitchen get in each other’s way, having too many robots in tunnels creates clogs that can bring the work to a grinding halt.

Intro: 

For ants and robots operating in confined spaces like tunnels, having more workers does not necessarily mean getting more work done. Just as too many cooks in a kitchen get in each other’s way, having too many robots in tunnels creates clogs that can bring the work to a grinding halt.

Alumni: 

School Chair will give an overview of the School of Physics last year and some upcoming news and events.

Event Details

Date/Time:

Are we alone in the universe? The scientific hunt for extraterrestrial intelligence is now well into its fifth decade, and we still haven’t discovered any cosmic company. Could all this mean that finding biology beyond Earth, even if it exists, is a project for the ages – one that might take centuries or longer?

New approaches and new technology for detecting sentient beings elsewhere suggest that there is good reason to expect that we could uncover evidence of sophisticated civilizations – the type of aliens we see in the movies and on TV – within a few decades. But why now, and what sort of evidence can we expect? And how will that affect humanity?

Also, if we do find E.T., what would be the societal impact of learning that something, or someone, is out there?

Note the speaker will give a talk at 3pm in Pettit Microelectronics 102A&B with the same title and abstract. 

Event Details

Date/Time:

Abstract:

Understanding the nature of the first stars is a major challenge of modern cosmology. Despite their importance for the formation of subsequent stars and galaxies, their mass distribution is still uncertain due to a lack of direct observations. Extremely metal-poor stars in the Milky Way allow to constrain the mass of their progenitor supernovae and thereby provide precious information about the first generation of stars. I will give a general introduction to stellar archaeology, the main open questions, and discuss several of our recent

results: I will present a new diagnostic to reliably distinguish mono-enriched from multi-enriched metal-poor stars, based on their elemental abundances. We apply this diagnostic to recently observed stars from the TOPoS survey, which allows us to better constrain the mass function of the first stars. Finally, I will present a novel scenario for the formation of so-called carbon-enhanced metal-poor stars.

Event Details

Date/Time:

Event Details

Date/Time:

Pages

Subscribe to RSS - Eric Sembrat's Test Bonanza