The explosions that blew apart the universe’s first stars are shrouded in mystery. These energetic blasts are inherently difficult to recreate in computer simulations, even using modern computing power. “It’s one of the hardest physics problems out there,” says Alexander Ji, an astrophysicist at the Carnegie Observatories in Pasadena, Calif. Furthermore, he notes that researchers still lack an answer to a simple question: What types of stars do—and do not—explode? John Wise, a computational astrophysicist at the Georgia Institute of Technology who is currently studying how metals propagated from the first generation of stars to the second, says this study has already inspired him to modify his methodology for that project. “Now we have some motivation to look at aspherical supernovae,” he says. Researchers do not yet know whether the likely aspherical explosion of the supernova preceding HE 1327-2326 was a rarity or a common occurrence. They still wonder whether the bulk of supernova explosions from the first generation were spherical or aspherical. So, though it appears they have approached a solution to one mystery about the first stars, numerous others abound.