Collective dynamics in motile cilia: waves in the airways

Nonlinear Science, Soft Condensed Matter & Physics of Living Systems

Motile cilia are cell organelles able to exert a net force onto a liquid; they are highly conserved across eukaryotes, and enable a variety of functions from the motility of single cell organisms to flow that carries nutrients to our brains.  A fascinating process takes place in mammalian airways: a carpet of motile cilia maintains the cell surface free of pathogens and particles by continuously refreshing and clearing a barrier of mucus. In order for this `muco-ciliary clearance' to be effective, cilia motion needs to be phase-locked across significant distances, in the form of a travelling wave, and it is not known how this is achieved. 


Our lab is currently approaching this question from two directions:  recently we have begun imaging ciliated cell carpets, quantifying the spatial and temporal coherence in the dynamics, and perturbing the system; we aim to match the understanding gained at that level with our previous work on model systems, which informed us of the importance of hydrodynamic coupling between driven oscillators, as a mechanism sufficient to establish collective large-scale dynamical patterns. 

 

Event Details

Date/Time:

  • Date: 
    Friday, March 10, 2017 - 1:00pm to 2:00pm

Location:
Howey N110

For More Information Contact

Michael Schatz