"Collapse and stable self-trapping for Bose-Einstein condensates with 1/r^b type attractive interatomic interaction potential" by Pavel Lushnikov

We consider dynamics of Bose-Einstein condensates with long-range attractive interaction proportional to 1/r^b and arbitrary angular dependence. It is shown exactly that collapse of Bose-Einstein condensate without contact interactions is possible only for b greater or equal to 2. Case b=2 is critical and requires number of particles to exceed critical value to allow collapse. Case b>2 is supercritical with expected weak collapse which traps rapidly decreasing number of particles during approach to collapse. For b<2 singularity at r=0 is not strong enough to allow collapse but attractive 1/r^b interaction admits stable self-trapping even in absence of external trapping...

We consider dynamics of Bose-Einstein condensates with long-range attractive interaction proportional to 1/r^b and arbitrary angular dependence. It is shown exactly that collapse of Bose-Einstein condensate without contact interactions is possible only for b greater or equal to 2. Case b=2 is critical and requires number of particles to exceed critical value to allow collapse. Case b>2 is supercritical with expected weak collapse which traps rapidly decreasing number of particles during approach to collapse. For b<2 singularity at r=0 is not strong enough to allow collapse but attractive 1/r^b interaction admits stable self-trapping even in absence of external trapping potential.

Event Details

Date/Time:

  • Date: 
    Monday, April 4, 2011 - 9:00am

Location:
Howey N110