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Beyond the constant-mass Dirac physics: Solitons, charge fractionization, and the emergence
of topological insulators in graphene rings
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The doubly connected polygonal geometry of planar graphene rings is found to bring forth topological
configurations for accessing nontrivial relativistic quantum field (RQF) theory models that carry beyond
the constant-mass Dirac-fermion theory. These include the generation of sign-alternating masses, solitonic
excitations, and charge fractionization. The work integrates a RQF Lagrangian formulation with numerical
tight-binding Aharonov-Bohm electronic spectra and the generalized position-dependent-mass Dirac equation.
In contrast to armchair graphene rings (aGRGs) with pure metallic arms, certain classes of aGRGs with
semiconducting arms, as well as with mixed metallic-semiconducting ones, are shown to exhibit properties
of one-dimensional nontrivial topological insulators. This further reveals an alternative direction for realizing
a graphene-based nontrivial topological insulator through the manipulation of the honeycomb lattice geometry,
without a spin-orbit contribution.
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I. INTRODUCTION

Research endeavors aiming at the realization [1–9] of
vaunted relativistic quantum field (RQF) behavior [10] in
“low-energy” laboratory setups were spawned by the isolation
of graphene [1,3], whose low-energy excitations behave as
massless Dirac-Weyl (DW) fermions (moving with a Fermi
velocity vF instead of the speed of light c; vF ∼ c/300),
offering a link to quantum electrodynamics [2,3,11,12] (e.g.,
Klein tunneling and Zitterbewegung).

Here we show that planar polygonal graphene rings with
armchair edge terminations (aGRGs) can provide an as-yet
unexplored condensed-matter bridge to high-energy particle
physics beyond both the massless Dirac-Weyl and the constant-
mass Dirac fermions. Due to their doubly connected topology
(supporting Aharonov-Bohm (AB) physics [13]), aGRGs
bring forth condensed-matter realizations for accessing ac-
claimed one-dimensional (1D) RQF models involving the
emergence of position-dependent masses and consideration of
interconnected vacua (or topological domains). As a function
of the ring’s arm width, one finds two general outcomes: (i) the
formation of soliton/antisoliton fermionic complexes [14–16]
studied in the context of charge fractionization [17] and the
physics of trans-polyacetylene [14,15] and (ii) the formation of
fermion bags introduced in the context of the nuclear hadronic
σ model [18] and in investigations of nontrivial Higgs-field
mass acquisition for heavy quarks [19].

A principal result of our study is that it reveals an emergent
alternative direction for realizing a graphene-based nontrivial
topological insulator (TI) [4,5] through the manipulation of the
honeycomb lattice geometry, without a spin-orbit contribution.
In particular, in contrast to armchair graphene rings with pure
metallic arms, certain classes of aGRGs with semiconducting
arms, as well as with mixed metallic-semiconducting ones, are
shown to exhibit properties of one-dimensional nontrivial TIs.
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II. METHODOLOGY

The energy of a particle (with one-dimensional momen-
tum px) is given by the Einstein relativistic relation E =√

(pxvF )2 + (Mv2
F )2, where M is the rest mass. In gapped

graphene or graphene systems, the mass parameter is related
to the particle-hole energy gap �, as M = �/(2v2

F ). In
RQF theory, the mass of elementary particles is imparted
through interaction with a scalar field known as the Higgs
field. Accordingly, the mass M is replaced by a position-
dependent Higgs field φ(x) ≡ m(x), to which the relativistic
fermionic field �(x) couples through the Yukawa Lagrangian
[19,20] LY = −φ�†β� (with β being a Pauli matrix). In
the elementary-particles standard model [10], such coupling
is responsible for the masses of quarks and leptons. For
φ(x) ≡ φ0 (constant), Mv2

F = φ0, and the massive fermion
Dirac theory is recovered.

We exploit the generalized Dirac physics governed by a
total Lagrangian density L = Lf + Lφ , where the fermionic
part is given by

Lf = −i��† ∂

∂t
� − i�vF �†α

∂

∂x
� + LY , (1)

and the scalar-field part has the form

Lφ = −1

2

(
∂φ

∂x

)2

− ξ

4

(
φ2 − φ2

0

)2
, (2)

with the potential V (φ) (second term) assumed to have a
double-well φ4 form; ξ and φ0 are constants.

Henceforth, the Dirac equation is generalized as

E� + i�vF α
∂�

∂x
− βφ(x)� = 0. (3)

In one dimension, the fermion field is a two-component spinor
� = (ψu,ψl)T ; u and l stand, respectively, for the upper and
lower component and α and β can be any two of the three
Pauli matrices.

Each arm of a polygonal ring can be viewed as an
approximation of an armchair graphene nanoribbon (aGR).
The excitations of an infinite aGR are described by the 1D

1098-0121/2014/89(3)/035432(6) 035432-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.035432


YANNOULEAS, ROMANOVSKY, AND LANDMAN PHYSICAL REVIEW B 89, 035432 (2014)

massive Dirac equation [see Eq. (3)], with α = σ2, β = σ1, and
φ(x) ≡ φ0 = �/2 ≡ |t1 − t2|. The two (in general) unequal
hopping parameters t1 and t2 are associated with an effective
1D tight-binding problem (see Appendix A) and are given
[21] by t1 = −2t cos[pπ/(NW + 1)], p = 1,2, . . . ,NW and
t2 = −t ; NW is the number of carbon atoms specifying the
width of the nanoribbon and t = 2.7 eV is the hopping
parameter for 2D graphene. The effective [21] TB Hamiltonian
of an aGR has a form similar to that used in trans-polyacetylene
(a single chain of carbon atoms). In trans-polyacetylene,
the inequality of t1 and t2 (referred to as dimerization) is a
consequence of a Peierls distortion induced by the electron-
phonon coupling. For an aGR, this inequality is a topological
effect associated with the geometry of the edge and the width
of the ribbon. We recall that as a function of their width, NW ,
the armchair graphene nanoribbons fall into three classes:
(I) NW = 3l (semiconducting, � > 0), (II) NW = 3l + 1
(semiconducting, � > 0), and (III) NW = 3l + 2 (metallic,
� = 0), l = 1,2,3, . . . .

We adapt the “crystal” approach [13] to the AB effect
and introduce a virtual Dirac-Kronig-Penney [22] (DKP)
relativistic superlattice (see Appendix B). Charged fermions
in a perpendicular magnetic field circulating around the ring
behave like electrons in a spatially periodic structure (period
D) with the magnetic flux �/�0 (�0 = hc/e) playing the role
of the Bloch wave vector k, i.e., 2π�/�0 = kD [see the cosine
term in Eq. (B5)].

III. RESULTS

A. Rings with semiconducting arms

Naturally, nanorings with arms made of nanoribbon seg-
ments belonging to the semiconducting classes I and II may
be expected to exhibit a particle-hole gap (particle-antiparticle
gap in RQF theory). Indeed this is found for class-I aGRGs
[see gap � in Fig. 1(a)]. Surprisingly, the class-II nanorings
demonstrate a different behavior, showing a “forbidden”
band in the middle of the gap region [see Fig. 1(b)]. This
forbidden band is dissected by the zero-energy axis and its
members cross this axis at regular magnetic-flux intervals
� = (±j + 1/2)�0, j = 1,2,3, . . ., manifesting semimetallic
behavior.

This behavior of class-II aGRGs can be explained through
analogies with RQF theoretical models, describing single zero-
energy fermionic solitons with fractional charge [14,17] or
their modifications when forming soliton/antisoliton systems
[14,16]. [A solution of the equation of motion corresponding to
Eq. (2) is a Z2 kink soliton, φk(x). The solution of Eq. (3) with
φ = φk(x) is the fermionic soliton.] We model the hexagonal
ring with the use of a continuous 1D Kronig-Penney [22,23]
model (see Appendix B) based on the generalized Dirac
equation (3), allowing variation of the scalar field φ(x) along
the ring’s arms. We find that the DKP model reproduces [see
Fig. 1(d)] the spectrum of the class-II ring (including the
forbidden band) when considering alternating masses ±m0

associated with contiguous arms [see inset in Fig. 1(b)].
The sign-alternating mass regions, separated by six regions

of vanishing mass centered at the corners, correspond to
a Higgs field composed of a train (or a so-called crystal
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FIG. 1. (Color online) Aharonov-Bohm spectra for hexagonal
armchair graphene rings. (a) Tight-binding spectrum for a class-I
nanoring with NW = 15. (b) TB spectrum for a class-II nanoring with
NW = 16. The armchair graphene rings are semiconducting (NW =
15) and metallic at � = (±j + 1/2)�0, j = 1,2,3, . . . (NW = 16).
The two lowest-in-energy six-membered bands are shown. The hole
states (with ε < 0, not shown) are symmetric to the particle states
(with ε > 0). Insets: schematics of the Higgs fields φ(x) employed
in the DKP modeling. φ(x) is approximated by steplike functions
m

(n)
i ; i counts the three regions of each arm (L(n)

1 = L
(n)
3 = a and

L
(n)
2 = b), and n (n = 1, . . . ,6) counts the hexagon’s arms. The

nonzero (constant) variable-mass values of φ(x) are indicated by
yellow (red) color when positive (negative). These resulting DKP
spectra [(c) and (d)] reproduce the TB ones in (a) and (b), respectively.
The parameters used in the DKP modeling are (c) a = 2a0, b =
28a0, m

(n)
1 = m

(n)
3 = 0.06t/v2

F , m
(n)
2 = 0.13t/v2

F [see corresponding
schematic inset in (a)] and (d) a = 7a0, b = 15a0, m

(n)
1 = m

(n)
3 = 0,

m
(n)
2 = (−1)nm0 with m0 = 0.18t/v2

F (see schematic inset). The inset
in (c) shows the spectrum for a free massive Dirac fermion with
a constant mass M = 0.13t/v2

F . Note the six-membered braided
bands and the “forbidden” band [within the gap, in (b) and (d)].
a0 = 0.246 nm is the graphene lattice constant and t = 2.7 eV is the
hopping parameter.

[24–26]) of three kink/antikink soliton pairs. In analogy with
the physics of trans-polyacetylene, the positive and negative
masses correspond to two degenerate domains associated
with the two possible dimerization patterns [14,15]· · · − t1 −
t2 − t1 − t2 − · · · and · · · − t2 − t1 − t2 − t1 − · · · , which are
possible in a single-atom chain. The transition zones between
the two domains (here the corners of the hexagonal ring) are
referred to as the domain walls.

For a single soliton, a (precise) zero-energy fermionic
excitation emerges, localized at the domain wall. In the
case of soliton-antisoliton pairs, paired energy levels with
small positive and negative values appear within the gap.
The TB spectrum in Fig. 1(b) exhibits a forbidden band
of six paired +/− levels, a property fully reproduced by
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FIG. 2. (Color online) Wave functions for an excitation belong-
ing to the “forbidden” solitonic band. (a) A-sublattice (red) and
B-sublattice (blue) components of the TB state with energy ε =
0.12507 × 10−2t at � = �0/3, belonging to the forbidden solitonic
band of the class-II nanoring with NW = 16 [see Fig. 1(b)]. (b) Upper
(red) and lower (blue) spinor components for the corresponding
state (forbidden band) according to the DKP spectrum [see Fig.
1(d)], reproducing the TB behavior of the class-II nanoring with
NW = 16 (m0 = 0.18t/v2

F ). The TB and DKP wave functions for
all states of the solitonic band are similar to those displayed here.
The wave functions here represent trains of solitons. For contrast, see
Fig. 10 in Ref. [20] which schematically portrays the spinor �S for
a single fermionic soliton attached to a Higgs field with a smooth
kink-soliton analytic shape φk(x) = φ0 tanh(

√
ξ/2φ0x). φk(x) is a

solution [14,20] of the Lagrangian in Eq. (2). (c) A-sublattice (red)
and B-sublattice (blue) components of the TB state with energy
ε = 0.55636 × 10−2t at � = �0/3, associated with the metallic
(class-III) nanoring with NW = 14 (see corresponding spectrum in
Fig. 1(b) of Ref. [20]). In contrast to the localized-at-the-corners
topological-insulator wave functions of the semiconducting (class-II)
ring in (a), the metallic-aGRG (class-III) wave functions in (c) do
not exhibit any localization features and are thus devoid of any TI
characteristics. DKP densities in units of 10−3/d , where d = 0.35a0.

the DKP model that employs six alternating mass domains
[Fig. 1(d)]. Both our TB and DKP calculations (not shown)
confirm that the width of the forbidden band decreases expo-
nentially as the length of the hexagonal arm tends to infinity, in
agreement with earlier findings of a single soliton-antisoliton
pair [16].

The strong localization of a fraction of a fermion at the
domain walls (hexagon’s corners), characteristic of fermionic
solitons [14] and of soliton/antisoliton pairs [16], is clearly
seen in the TB density distributions (modulus of single-particle
wave functions) displayed in Fig. 2(a). The TB A (B) sublattice
component localizes at the odd- (even-)numbered corners.

These alternating localization patterns (trains of solitons) are
faithfully reproduced [see Fig. 2(b)] by the upper, ψu, and
lower, ψl , spinor components of the DKP model. The three
soliton-antisoliton trains in Fig. 2(b) generate an unusual e/6
charge fractionization at each corner, which is unlike the
e/2 fractionization familiar from polyacetylene. Moreover, the
fractionization patterns in topological graphene structures may
be tuned. For example, as illustrated below, the more familiar
e/2 fraction [15,17,27] can be realized in the case of an aGRG
with mixed class-I and class-III arms.

The absence of a forbidden band (i.e., solitonic excitations
within the gap) in the spectrum of the class-I hexagonal
nanorings [see Fig. 1(a), NW = 15] indicates that the corners
in this case do not induce an alternation between the two
equivalent dimerized domains (represented by ±m0 in the
DKP model). Here the corners do not act as topological domain
walls. The inset in Fig. 1(c) portrays the DKP spectrum when
a constant mass M = 0.13t is assumed to encircle the ring.
This spectrum conforms with that expected from a free massive
Dirac fermion, and it clearly disagrees with the TB spectrum
in Fig. 1(a). However, direct correspondence between the TB
and DKP spectra is achieved here too by using a variable
Higgs field defined as φ(x) = m

(n)
i (x) with m

(n)
1 = m

(n)
3 =

0.06t/v2
F and m

(n)
2 = 0.13t/v2

F [see the schematic inset in
Fig. 1(a); the DKP spectrum is plotted in Fig. 1(c)]. φ(x)
now exhibits depressions at the hexagon corners, instead
of the aforementioned sign alternation; compare insets in
Figs. 1(a) and 1(b). This variation of φ(x) resembles that of
the field used in the theory of polarons in conducting polymers
[28] and in the theory of fermion bags in hadronic [18] and
heavy-quark physics [19].

B. Rings with mixed semiconducting/metallic arms

The pure metallic-aGRG (class-III) wave functions do not
exhibit any localization features and are thus devoid of any
topological-insulator characteristics; see Fig. 2(c). Unique TI
configurations, however, can be formed in mixed rings, i.e.,
with arms belonging to different classes. Figure 3 portrays a
mixed ring, with four arms belonging to class-III (NW = 17;
metallic) ribbons and the two remaining ones belonging to
class-I (NW = 15; semiconducting) ribbons. The TB spectra
are displayed in Fig. 3(a), and Fig. 3(b) schematically describes
the Higgs field φ(x) = m

(n)
i (x), which yields the best DKP

reproduction of the TB spectra (see caption). The TB spectrum
in Fig. 3(a) reflects the loss of sixfold symmetry of the Higgs
field (in contrast to Fig. 1). Furthermore, five states in the
energy range 0.01t/v2

F < ε < 0.13t/v2
F exhibit a magnetic-

field-independent flat profile, corresponding to the behavior of
a particle in a box. Namely, the practically (m0,1 = 0.01t/v2

F )
massless Dirac fermion is confined in the potential well formed
by the four arms n = 1 to 4, unable to penetrate under the high
barrier represented by the larger masses ±m0,2 = ±0.20t/v2

F

associated with the fifth and sixth arms of the hexagon. The
twofold braid band around ε = 0 exhibits a clear Aharonov-
Bohm dependence on the magnetic flux �. The TB wave
function of one state in this band (with ε = 0.1995 × 10−2t at
� = �0/3) is plotted in Fig. 3(c). It describes the emergence
of a fermionic soliton (with e/2 fractional charge) localized
at the domain wall (corner denoted by an arrow) between
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FIG. 3. (Color online) Spectra and wave functions of a mixed
ring with arms belonging to two different classes. Two contiguous
arms [5 and 6 in (b)] belong to class I (semiconducting ribbons,NW =
15) and the remaining arms belong to class III (metallic ribbons,
NW = 17). (a) The TB Aharonov-Bohm spectrum. (b) Schematic
of the φ(x) field in the DKP model, yielding the best reproduction
[not shown, but see the wave function in (d)] of the TB spectra in
(a). Note the unequal size of the colored boxes specifying φ(x). The
m0,2 mass (class-I arms) is much larger than the m0,1 one (class-III
arms). Positive (negative) mass values are indicated in yellow (red).
(c) TB wave function for a state of the braid band at � = �0/3 (ε =
0.1995 × 10−2t), for the A (red) and B (blue) sublattice components.
(d) The upper (red) and lower (blue) spinor components of the DKP
state, corresponding and showing agreement with the TB state in (c).
The arrows [in (b)–(d)] indicate the single hexagon corner where the
soliton is localized. Parameters for the DKP model are m

(n)
1 = m

(n)
3 =

0 and m
(n)
2 = (−1)nm0,1 for n = 1,2,3,4, and m

(n)
2 = (−1)nm0,2 for

n = 5,6, with m0,1 = 0.01t/v2
F and m0,2 = 0.20t/v2

F . a = 10a0 and
b = 10a0. In (c), the indices denote the arms (left) and corners (right).
DKP densities in units of 1/d , where d = 0.36a0.

the fourth and fifth arms of the hexagon. The DKP modeling
closely reproduces this TB solitonic wave function, as seen
from the densities of the upper (red) and lower (blue) spinor
components of the fermionic field �.

A central finding of the paper concerns the emergence
of topological-insulator [4,5] aspects in certain classes of
semiconducting, as well as of mixed metallic-semiconducting,
armchair graphene nanorings. Indeed, it is well established that
the Su-Schrieffer-Heeger (SSH) model [15] for polyacetylene
(and its Jackiw-Rebbi RQF counterpart [17]) is [29–32] a
two-band nontrivial one-dimensional TI. In particular, the

topological domain with a positive mass m0 > 0 is a trivial
insulator with a Chern number equal to zero, while the
topological domain with m0 < 0 is a nontrivial TI with a
Chern number equal to unity. The localized fermionic kink
solitons [Figs. 2(a), 2(b), and 3] at the domain walls (corners of
the hexagonal aGRGs connecting adjacent arms, i.e., domains
with different Chern numbers) correspond to the celebrated
TI edge states (end states [31] for 1D systems), used as
a fingerprint for the emergence of the TI state. Usually,
realization of a TI requires consideration of the spin-orbit
coupling, which, however, is negligible for planar graphene.
Currently, attempts to enhance the spin-orbit coupling of
graphene via adatom deposition are attracting attention [33].
The present findings point to a different direction for realizing
a graphene-based TI through the manipulation of the geometry
of the honeycomb lattice, which is able to overcome the
drawback of negligible spin-orbit coupling.

IV. SUMMARY

In summary, we have advanced and illustrated that the dou-
bly connected, polygonal geometry of graphene rings brings
forth, in addition to the celebrated Aharonov-Bohm physics
[13,34], an as-yet unexplored platform spawning topological
arrangements (including, in particular, the realization of 1D
nontrivial topological insulators) for accessing acclaimed
one-dimensional relativistic quantum field models [14,17–19].
These include the generation of position-dependent masses,
solitonic excitations, and charge fractionization, beyond the
constant-mass Dirac and DW fermions. These intriguing
phenomena, coupled with advances in the preparation of atom-
ically precise graphene nanostructures [35,36], artificial forms
of graphene [8,37], topological insulators [4,5], and graphene
mimics in ultracold-atom optical lattices [7], provide impetus
[38,39] for further experimental and theoretical endeavors.
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APPENDIX A: TIGHT-BINDING METHOD

To calculate the single-particle spectrum [the energy levels
εi(�)] of the graphene nanorings in the tight-binding approx-
imation, we use the Hamiltonian

HTB = −
∑
〈i,j〉

t̃ij c
†
i cj + H.c., (A1)

with 〈·〉 indicating summation over the nearest-neighbor sites
i,j . The hopping parameter

t̃ij = t exp

[
ie

�c

∫ rj

ri

ds · A(r)

]
, (A2)

where ri and rj are the positions of the carbon atoms i and
j , respectively, and A is the vector potential (in the Landau
gauge) associated with the constant magnetic field B applied
perpendicularly to the plane of the nanoring. � = BS is the
magnetic flux through the area S of the graphene ring and
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�0 = hc/e is the flux quantum. t = 2.7 eV is the hopping
parameter of the two-dimensional graphene.

The derivation of the effective 1D tight-binding equation
for an aGR, given in Ref. [21] [see Eq. (6) therein], starts with
the 2D TB Hamiltonian here [Eq. (A1) above] and involves
Fourier expansions of the wave functions of the A and B

sublattices.

APPENDIX B: DIRAC-KRONIG-PENNEY
SUPERLATTICE MODEL

The building block of the DKP model is a 2 × 2 wave-
function matrix � formed by the components of two indepen-
dent spinor solutions (at a point x) of the one-dimensional,
first-order generalized Dirac equation [see Eq. (3) above].
� plays [22] the role of the Wronskian matrix W used
in the second-order nonrelativistic Kronig-Penney model.
Following Ref. [22], we use the simple form of � in the Dirac
representation (α = σ1, β = σ3), namely,

�K (x) =
(

eiKx e−iKx

�eiKx −�e−iKx

)
, (B1)

where

K2 = (E − V )2 − m2v4
F

�2v2
F

, � = �vF K

E − V + mv2
F

. (B2)

The transfer matrix for a given region (extending between
two matching points x1 and x2 specifying the potential steps
m

(n)
i ) is the product MK (x1,x2) = �K (x2)�−1

K (x1); this latter

matrix depends only on the width x2 − x1 of the region, and
not separately on x1 or x2.

The transfer matrix corresponding to the nth arm of the
hexagon can be formed [20] as the product

tn =
∏

i=1,3

MK (xi,xi+1), x1 = 0, x4 = L, (B3)

with L being the (common) length on the hexagon arm.
The transfer matrix associated with the complete unit cell
(encircling the hexagonal ring) is the product

T =
6∏

n=1

tn. (B4)

Following Refs. [13] and [20], we consider the superlattice
generated from the virtual periodic translation of the unit cell as
a result of the application of a magnetic field B perpendicular
to the ring. Then the Aharonov-Bohm energy spectra are given
as solutions of the dispersion relation,

cos[2π (�/�0 + 1/2)] = Tr[T(E)]/2, (B5)

where we have explicitly denoted the dependence of the right-
hand side on the energy E.

The energy spectra and single-particle densities do not
depend on a specific representation. However, the wave
functions (upper and lower spinor components of the fermionic
field �) do depend on the representation used. To transform
the initial DKP wave functions to the (α = σ2, β = σ1)
representation, which corresponds to the natural separation
of the tight-binding amplitudes into the A and B sublattices,
we successively apply the unitary transformations D23 =
(σ2 + σ3)/

√
2 and D3 = exp(iπσ3/4).
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