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Systematic tight-binding investigations of the electronic spectra (as a function of the magnetic field) are
presented for trigonal graphene nanoflakes with reconstructed zigzag edges, where a succession of pentagons
and heptagons, that is 5-7 defects, replaces the hexagons at the zigzag edge. For nanoflakes with such reczag
defective edges, emphasis is placed on topological aspects and connections underlying the patterns dominating
the spectra of these systems. The electronic spectra of trigonal graphene nanoflakes with reczag edge terminations
exhibit certain unique features, in addition to those that are well known to appear for graphene dots with zigzag
edge termination. These unique features include breaking of the particle-hole symmetry, and they are associated
with nonlinear dispersion of the energy as a function of momentum, which may be interpreted as nonrelativistic
behavior. The general topological features shared with the zigzag flakes include the appearance of energy gaps
at zero and low magnetic fields due to finite size, the formation of relativistic Landau levels at high magnetic
fields, and the presence between the Landau levels of edge states (the so-called Halperin states) associated with
the integer quantum Hall effect. Topological regimes, unique to the reczag nanoflakes, appear within a stripe
of negative energies εb < ε < 0, and along a separate feature forming a constant-energy line outside this stripe.
The εb lower bound specifying the energy stripe is independent of size. Prominent among the patterns within the
εb < ε < 0 energy stripe is the formation of three-member braid bands, similar to those present in the spectra of
narrow graphene nanorings; they are associated with Aharonov-Bohm–type oscillations, i.e., the reczag edges
along the three sides of the triangle behave like a nanoring (with the corners acting as scatterers) enclosing the
magnetic flux through the entire area of the graphene flake. Another prominent feature within the εb < ε < 0
energy stripe is a subregion of Halperin-type edge states of enhanced density immediately below the zero-Landau
level. Furthermore, there are features resulting from localization of the Dirac quasiparticles at the corners of
the polygonal flake. A main finding concerns the limited applicability of the continuous Dirac-Weyl equation,
since the latter does not reproduce the special reczag features. Due to this discrepancy between the tight-binding
and continuum descriptions, one is led to the conclusion that the linearized Dirac-Weyl equation fails to capture
essential nonlinear physics resulting from the introduction of a multiple topological defect in the honeycomb
graphene lattice.
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I. INTRODUCTION

A. Edge terminations and their nanoelectronics potential

Graphene is a single-layer honeycomb lattice of carbon
atoms that exhibits novel behavior due to the relativisticlike
character of quasiparticle (particle-hole) excitations near the
Fermi level (the Dirac neutrality point).1,2 In addition to
the intrinsic interest in this material, the potential of graphene
for nanoelectronics applications has generated a considerable
amount of research regarding the physics governing
the Dirac electrons in graphene nanostructures. Initially
graphene nanoribbons attracted most of the attention; see,
e.g., Refs. 3–5. However, in the past couple of years the focus
is being shifted to studying zero-dimensional stuctures like
graphene quantum dots and graphene quantum voids (see,
e.g., Refs. 6–16), as well as graphene nanorings (see, e.g.,
Refs. 17–19).

In addition to the novelty of the relativistic nature of the
trapped quasiparticles, the honeycomb lattice of graphene
provides for a variety of edge terminations (see below), which
have no parallel in the case of semiconductor nanosystems.
More importantly, it is now understood20 that the electronic
properties of graphene nanostructures are drastically influ-
enced by the character of the edge termination.

The physical graphene edges develop along the crys-
tallographic axes of the honeycomb lattice, and they may
exhibit two distinct types of terminations: zigzag or armchair.
One-type edges may intersect at angles of 60◦ or 120◦, yielding
graphene flakes and voids with regular trigonal or hexagonal
shapes. Square graphene dots can also be envisioned, but they
have edges of a mixed zigzag and armchair character. Ringlike
trigonal, hexagonal, and squarelike graphene structures are
also the focus of intensive theoretical studies.

The theoretical advances regarding the properties of
graphene edges have in turn motivated considerable exper-
imental efforts aiming at producing graphene edges with a
high degree of purity with respect to the edge termination
(zigzag or armchair), and remarkable successes have been
already reported; see, e.g., Refs. 20–27.

While the zigzag and armchair edges were known for some
time from the theoretical studies on graphene nanoribbons, the
recent consideration (anticipated theoretically and confirmed
through observation) of yet another physical edge, formed
through reconstruction of the zigzag edge, has added a new
dimension to the research on the electronic properties of
graphene nanostructures.28–31 Indeed, this reconstructed edge,
which is usually called reczag and consists of a succession
of pentagons and heptagons (5-7 defect) according to the
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Stone-Wales-defects prescription, has the potential to yield
new distinctive features in the electronic structure of graphene
nanostructures, whether these nanostructures are graphene
flakes, voids, or graphene rings. The reczag edge belongs
to a general class of defective formations in graphene: a
related defective formation is the alternation of pentagons
and octagons (5-8-5 defect), which has also been observed
experimentally in the past couple of years and which is
expected to behave like a “quantum wire” within the graphene
sheet.20,32

B. Topological aspects: Coexistence of quantum-wire,
ideal-ring, and quantum-dot singly-connected-geometry

behavior

Experimentally, two-dimensional semiconductor quantum
dots (SQDs) exhibit usually soft edges,33,34 which can be
modeled by a harmonic potential confinement.35–37 Never-
theless, important theoretical studies concerning topological
aspects of nonrelativistic electrons in finite systems under
strong magnetic fields have been performed by assuming
hard-wall boundaries. Well known among such studies are
the investigations38–43 (initiated by Halperin38) regarding
the edge states related to the integer-quantum-Hall effect
(IQHE) and those44–47 (initiated by Sivan and Imry44) on the
Aharonov-Bohm (AB) oscillations which are superimposed
on the de Haas–van Alphen (dHvA) oscillations. Halperin
introduced a hard boundary through an infinite-box-type
confining potential, while Sivan and Imry used a 10 × 10
square-lattice tight-binding (TB) model.

Finite graphene nanosystems [graphene QDs (GQDs)
or nanoflakes] offer a broader framework to study such
topological connections. Most importantly, original trends
and phenomena can emerge3,15,16 which have no analog
with the physics of semiconductor QDs. Indeed, compared
to SQDs, graphene QDs exhibit distinct features, including
those listed below. (1) They possess15,16,48 atomically defined
sharp physical boundaries (because of the abrupt termina-
tion of the honeycomb lattice). (2) Due to the underlying
honeycomb lattice of graphene, the confined electrons are
most appropriately described by TB modeling,3,10,16,49 while
at the same time the corresponding continuous description
reveals that they behave as massless relativistic particles
obeying the Dirac-Weyl (DW) equation.16,49–51 (3) The natural
shapes of GQDs are not circular, but triangular, hexagonal, or
rhombuslike;16 as a result, the electronic spectra can explore
geometric symmetries lower than the circular one.19 (4) As
we will show below, the presence of defective edges intro-
duces a quantum-wire and/or ring-type (doubly-connected-
geometry) behavior, in addition to the singly-connected QD
behavior familiar from the theory45 of SQDs with sharp
edges.

C. Main findings

The main findings of the paper are as follows.
(I) Beyond the well known features found for graphene

quantum dots with zigzag edge terminations, the electronic
spectra (as a function of the magnetic field B) of trigonal
graphene nanoflakes with reconstructed edges (that is, edge

t

t1t2

t3
t4

FIG. 1. (Color online) Distribution of the hopping matrix ele-
ments tk (see Table I) for the reczag edge.

termination with 5-7 defects; see Figs. 1 and 2) exhibit unique
additional regimes; they break the particle-hole symmetry and
are characterized by a nonlinear dispersion of the electron
energy versus momentum, associated with a nonrelativistic
quantum mechanical description.

(II) The general features shared by graphene flakes with
reczag termination with those having zigzag edges include the
appearance of energy gaps at zero and low magnetic fields
due to the finite size (designated as region A; see Fig. 3), the
formation of relativistic Landau levels (labeled as regions B;
see Fig. 3) at high magnetic fields, and the presence between
the Landau levels of edge states (so-called Halperin states,
labeled as regions Ci ; see Fig. 3) associated with the IQHE. The
characteristic length scale52 for the Halperin-type edge states
is the cyclotron radius (magnetic length lB ) of the electron orbit
(inversely proportional to the strength of the applied magnetic
field).

(III) The unique regimes that emerge in the spectrum
of GQDs with reczag (reconstructed zigzag) edges include
(a) several features within a band of negative energies εb =
−0.205t < ε < 0 [region labeled as D below in Fig. 3(c);

(a)

(c)(b)

FIG. 2. (Color online) Diagrams of corners used for the equilat-
eral trigonal graphene flakes. (a) Corner for zigzag edges. (b) Type-I
corner for reczag edges. (c) Type-II corner for reczag edges.
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FIG. 3. (Color online) (a) TB single-particle spectrum for a zigzag trigonal graphene dot as a function of the magnetic field (the magnetic
flux � over the whole dot). (b) Shape of the corresponding equilateral trigonal graphene dot with zigzag edges; it has 61 hexagons in the outer
row along each side (the total number of carbon atoms is 3966). (c) TB single-particle spectrum for a type-I reczag trigonal graphene dot as
a function of the magnetic field (the magnetic flux � over the whole dot). (d) Shape of the corresponding trigonal graphene dot with reczag
edges (type-I corner); it has 60 hexagons in the outer unreconstructed row along each side (the total number of carbon atoms is 4731). Energy
in units of the tight-binding hopping parameter t = 2.7 eV. Lengths in units of the honeycomb graphene lattice constant a = 0.246 nm. The
magnetic flux is given in units of �0 = hc/e.

divisible into regions D1 and D2, see Fig. 4], and (b) a
feature forming a constant-energy line at εc ≈ −0.297t [region
labeled as E1; see Fig. 3(c)]. The εb lower bound of the
region D [see (a) above] is independent of size.

(IV) Prominent among the features within the aforemen-
tioned εb = −0.205t < ε < 0 energy stripe is the formation
of three-member braid bands (subregion D1; see Fig. 4),
similar to those present18,19 in the spectra of narrow graphene
nanorings, which were shown to be associated with Aharonov-
Bohm oscillations in graphene nanosystems.19 This suggests
that the reczag edge behaves in a manner that is analogous
to a nanoring enclosing the magnetic flux � through the
entire area of the graphene flake; � will be given in units of
�0 = hc/e. Obviously the length scale governing the behavior
of these edge states associated with the reczag defective edge
is the characteristic length L of the entire graphene flake. This
analogy is further substantiated with an analysis using a sim-
ple nonrelativistic one-dimensional (1D) superlattice model

(see Sec. III B2) where the corners of the trigonal flake are
modeled by appropriate scatterers.

(V) Another prominent feature within the εb = −0.205t <

ε < 0 energy stripe is a subregion (D2) of Halperin-type edge
states with enhanced density below the zero-Landau level; see
Fig. 4 and Sec. III B3.

(VI) Furthermore, there are features resulting from localiza-
tion of the Dirac quasiparticles at the corners of the polygonal
flake (regions labeled as E1 and E2; see Sec. III B4).

(VII) A main finding concerns the limited applicability of
the continuous Dirac-Weyl equation. As we explicitly show
in Sec. IV, the general features, e.g., the relativistic Landau
levels, and the Halperin-type edge states, are also present in
the continuum-DW reczag spectra. However, concerning the
unique features found via TB calculations, only the feature
of the Halperin-type edge states with an enhanced density
spectrum (D2 region) maintains also in the continuum spectra;
the rest of the special reczag features [see (III), (IV), and (VI)
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FIG. 4. (Color online) (a) Enlarged section of the regime marked
as D in Fig. 3(c), showing the TB single-particle spectrum for a
reczag trigonal graphene dot (with type-I corners), as a function of
the magnetic field (the magnetic flux � over the whole dot). (b) The
TB spectrum for the corresponding reczag trigonal GQD with type-II
corners. Energy in units of the tight-binding hopping parameter t .
The magnetic flux is given in units of �0 = hc/e.

above] are missing in the continuum-DW spectrum. Due to this
major discrepancy between the TB and continuum descrip-
tions, we are led to conclude that the linearized DW equation
fails to capture essential nonlinear physics (i.e., a nonlinear
dispersion of energy versus momentum53 coexisting with the
Dirac cone), resulting from the introduction of a nontrivial
(multiple) topological defect54–58 (e.g., reconstructed reczag
edge) in the honeycomb graphene lattice.

D. Plan of paper

In addition to this section, the Introduction consisted of
three other ones. The first (Sec. I A) provided background in-
formation concerning the different graphene edge terminations
and their nanoelectronics potential, while the second (Sec. I B)
introduced the topological aspects. The main findings of this
paper were outlined in Sec. I C.

The remainder of the paper is organized as follows.

Section II recapitulates briefly the tight-binding and con-
tinuum Dirac-Weyl methodologies.

Our main results from the tight-binding calculations are
presented in Sec. III. This section is further divided in two
parts: Sec. III A describes the general features of the spectra of
trigonal flakes which are shared with GQDs having other edge
terminations (e.g., zigzag or armchair). The special features
which are unique to the reczag edge termination are presented
in Sec. III B. For a synopsis of these general and special
features, see the section describing the main findings (Sec. I C).
Three different sizes of trigonal graphene flakes are considered
in Sec. III, with the two smaller sizes being discussed in
Sec. III C.

The corresponding continuous Dirac-Weyl description for
a circular reczag GQD is elaborated and contrasted to the TB
results in Sec. IV.

A summary and discussion of our results is given in Sec. V.
Finally the Appendix presents the explicit expressions for

the transfer matrices employed in Sec. III B2.

II. METHODOLOGY

In previous publications, we studied primarily graphene
quantum dots and graphene nanorings with zigzag edge termi-
nations. In this paper, we carry out systematic investigations of
the electronic properties of graphene flakes with reczag edge
terminations and the shape of a regular triangle (see Figs. 1
and 2), and for the cases of zero-magnetic, low-magnetic, and
high-magnetic fields. In particular, we study the excitation
spectra using independent-particle treatments, i.e., we use both
the tight-binding approach and the semianalytic continuum
Dirac-Weyl equations; see, e.g., Refs. 16 and 19.

1. Basic elements of TB approach

To determine the single-particle spectrum [the energy levels
εi(B)] in the tight-binding calculations for the graphene
nanoflakes, we use the Hamiltonian

HTB = −
∑
〈i,j〉

t̃ij c
†
i cj + H.c., (1)

with 〈 〉 indicating summation over the nearest-neighbor sites
i,j . The hopping matrix element

t̃ij = tij exp

(
ie

h̄c

∫ rj

ri

ds · A(r)

)
, (2)

where ri and rj are the positions of the carbon atoms i and
j , respectively, and A is the vector potential associated with
the applied perpendicular magnetic field B. In the case of a
zigzag edge termination, tij = t = 2.7 eV. In the case of the
reconstructed reczag edge, four additional values (see Fig. 1)
for the hopping matrix elements must be considered for carbon
pairs participating in the defective edge.28,31 These values are
listed in Table I.

The diagonalization of the TB Hamiltonian [Eq. (1)]
is implemented with the use of the sparse-matrix solver
ARPACK.59 We note here that, unlike the continuous Dirac-
Weyl equations,16,17 both the K and K ′ valleys are automati-
cally incorporated in the tight-binding treatment of graphene
sheets and nanostructures.
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TABLE I. DFT extracted values for the hopping matrix elements
tk (see Fig. 1) in the TB modeling of a reczag edge, according to
Ref. 28.

t1/t t2/t t3/t t4/t

0.91 0.99 0.97 1.5

2. Basic elements of continuous Dirac-Weyl equations

In polar coordinates, the low-energy noninteracting
graphene electrons (around a given K or K ′ point) are most
often described via the continuous DW equation.49 Circular
symmetry leads to conservation of the total pseudospin49

ĵ = m̂ + σ̂z, where m̂ is the angular momentum and σ̂z the
spin of a Dirac electron. The reczag edge does not couple
the two valleys31 and, as a result, we seek solutions for
the two components �A(r) and �B(r) or � ′

A(r) and � ′
B(r) of

the single-particle electron orbital (a spinor). The indices A

and B denote the two graphene sublattices and the unprimed
and primed symbols are associated with the K and K ′ valleys.

Below we focus on the K valley; similar equations apply
also to the K ′ valley. In polar coordinates, one has

ψm(r) =
(

�A(r)

�B(r)

)
=

(
eimθχA(r)

iei(m+1)θχB(r)

)
. (3)

The angular momentum m takes integer values; for simplicity
in Eq. (3) and in the following, the subscript m is omitted in
the sublattice components �A, �B and χA, χB .

With Eq. (3) and a constant magnetic field B (symmetric
gauge), the DW equation reduces (for the K valley) to

d

dx
χB + 1

x

(
m + 1 + x2

2

)
χB = εχA,

(4)
d

dx
χA − 1

x

(
m + x2

2

)
χA = −εχB,

where the reduced radial coordinate x = r/ lB with lB =√
h̄c/(eB) the magnetic length. The reduced single-particle

eigenenergies ε = E/(h̄vF / lB), with vF the Fermi velocity.
The solutions of the DW equations for both valleys in the

case of a circular GQD with a reczag edge is presented in detail
in Sec. IV.

III. TIGHT-BINDING DESCRIPTION FOR RECZAG
TRIGONAL FLAKES

A. General features

An example for a trigonal quantum flake is given in
Fig. 3 where the single-particle spectrum (as a function of the
magnetic field) of a dot with reczag edges (and type-I corners;
see Fig. 2) is compared to that of a dot of similar size, but
with unreconstructed zigzag edges. Various aspects of trigonal
GQDs with pure zigzag edges have been studied earlier;11,13,60

however, for completeness and to allow ready comparisons to
be made, we display and briefly comment on the corresponding
spectrum [see Fig. 3(a)]. In particular, we have marked main
features (or regimes) of the zigzag spectrum as follows. The
regime of zero and low-magnetic fields is denoted by “A”; it

exhibits energy gaps due to finite-size effects. The regime of
Landau levels (LLs) formed at high magnetic fields is denoted
by “B” (only the n = 0 and n = −1 levels are denoted).
The “C|i|’s” denote the edge states15,16 which connect the
(|i| − 1)th and |i|th LLs. The general regimes A, B, and C
are also present in the spectra of trigonal flakes with reczag
edges, as an inspection of Fig. 3(c)] readily reveals.

We note that the three regimes A, B, and Ci have
corresponding analogs in the case of a QD with nonrelativis-
tic electrons confined by a hard-wall boundary.44–47 These
analogies exist despite the well-known differences arising from
the relativistic nature of Dirac electrons, e.g., the energies of
the Landau levels in graphene are En = sgn(n)vF

√
2eh̄B|n|,

n = 0, ± 1, ± 2, . . . (square-root B dependence) compared
to En = h̄ωc(n + 1/2), n = 0,1,2, . . . [with h̄ωc = eB/(m∗c),
linear dependence on B] for the case of a nonrelativistic 2D
electron gas. Such analogs emerge from underlying universal
and topological properties of the 2D finite systems under high
magnetic fields, i.e., when lB ≡ √

h̄c/(eB) < L with L being
a characteristic length of the nanosystem. Naturally, the energy
of the LLs depends on the cyclotron orbit alone, and thus it
is independent of the size and shape of the dot. But also, this
size-and-shape independence is shared to a large degree61 by
the Halperin-type edge states between LLs,38 whose energy
can be derived (to the lowest order) from a semiclassical or
WKB quantization of a single arc of the skipping orbits, both
for nonrelativistic41–43 and Dirac electrons.52

Of interest for the present study are the Aharonov-Bohm–
type refinements concerning the Halperin-type edge states
investigated44–47 for the case of SQDs. Indeed, Refs. 44
and 45 argued that, in the case of the finite, singly-connected
QDs, the Halperin-type edge states form an effective ring;
in a semiclassical picture they correspond to grazing orbits
(see also Ref. 62), reminiscent of the whispering gallery
trajectories63 investigated at low magnetic fields. As a result
the associated spectra must exhibit a dependence on the total
magnetic flux through the area of the QD, which leads to
the emergence of AB-type oscillations in the total Landau
magnetization of the dot. Specifically these high-B AB
oscillations are superimposed on the much larger de Haas–van
Alphen ones, and they tend to decrease as B increases.

It is apparent, that similar high-B AB-type effects are
also present in the case of GQDs with zigzag and reczag
terminations: for example, for the GQDs associated with
Figs. 3(a) and 3(c), it suffices to calculate the Landau mag-
netization assuming a zero-temperature canonical ensemble
and a number, N , of Dirac electrons large enough so that the
corresponding Fermi level εF > 0.2t .

We stress that our findings regarding trigonal flakes with
reczag edges go beyond (see Sec. III B) the general features de-
scribed above. Indeed, one of our main findings is that trigonal
flakes support, in addition to the high-B, singly-connected-
dot AB behavior, oscillatory behavior similar to the low-
B Aharonov-Bohm effect, familiar from semiconductor64–67

and graphene nanorings.17,19 The coexistence, in the same
nanostructure, of these two distinct AB behaviors (associ-
ated with singly-connected and doubly-connected geome-
tries) has no analog in previously considered nanosystems,
and it is a special feature unique to graphene defective
edges.

165440-5



ROMANOVSKY, YANNOULEAS, AND LANDMAN PHYSICAL REVIEW B 86, 165440 (2012)

B. Unique features due to the reczag edge

Having discussed the common general features shared
by both the zigzag and reczag trigonal graphene flakes (see
Sec. III A), we turn now to study the unique features emerging
solely in the case of reczag trigonal flakes. An inspection of
the electronic spectra in Figs. 3(a) and 3(c) shows that the main
differences arise from the presence of the two regimes denoted
as D and E1 in the case of the reczag dot. In particular, the
regime D consists of the features within a band of negative
energies εb = −0.205t < ε < 0, while the regime E1 consists
of a constant-energy line at εc ≈ −0.297t . (The reconstructed
reczag edge violates particle-hole symmetry, while as is well
known the zigzag edge preserves it.) We found that the lower
energy bound εb of the D regime is independent of the size and
shape (e.g., hexagonal versus trigonal flake), as well as of the
type of corners (type-I versus type-II; see Fig. 2); εb depends
only on the values of the TB hopping matrix elements tk (see
Table I).

An enlarged section of the electronic spectrum in Fig. 3(c)
(case of type-I corner) is displayed in Fig. 4(a), while the
corresponding section for a trigonal reczag QD with type-II
corners is displayed in Fig. 4(b). From a comparison of the
two cases in Fig. 4, we conclude that the main features in the
region D maintain: they show rather small variations between
the type-I and type-II corners. The larger variation is exhibited
by the E1 regime (not shown in Fig. 4). Indeed the E1 line for
the type-II corners has moved to a positive energy εc ≈ 0.120t .
The enlarged spectra in Fig. 4 suggest a further division of
the D regime into features denoted as D1, D2, and E2. (The
grouping of the E2 feature with the E1 feature will become
apparent below; see Sec. III B4).

Because of the similarity between the electronic spectra of
the two types of corners, it will be sufficient below to restrict
our further analysis of spectral features to the case of type-I
corners [see Figs. 4(a) and 3(c)].

1. Region D1: Ideal-ring, low-B-type edge states
and Aharonov-Bohm oscillations

The main feature of the D1 region are the many energy
bands consisting of three-curve braid patterns, an enlargement
of which is displayed in Fig. 5(a). These braid bands are
quite similar to the ones displayed by the low-B electronic
spectra of a narrow trigonal graphene nanoring with zigzag
edges [see Fig. 5(b)], which were investigated19 recently in
the context of the AB effect. Based on this similarity and
the findings of Ref. 19, we infer that these braid bands are
associated with the formation of a second type of edge state,
in addition to the Halperin-type ones. These second type
edge states are localized (in the radial direction) within the
physical defective reczag edge and exhibit behavior associated
with a quantum wire. In particular, in the case of a trigonal
reczag-GQD, the three wire segments along the sides of the
triangle are coupled pairwise (via electron tunneling at the
corners) and form a trigonal quantum nanoring. Henceforth,
we will adopt the term reczag edge states to designate
these states, which are associated with the physical defective
edge.

To gain further insight into the similarity of the reczag
edge states to the graphene-ring states, we display in Fig. 6

FIG. 5. (Color online) Enlarged section of the regime marked
as D1 in Fig. 4(a) showing the TB single-particle spectrum for a
reczag trigonal graphene dot (with type-I corners), as a function of
the magnetic field (the magnetic flux � over the whole dot). The
horizontal arrows highlight the alternation 2-1-1-2 (1-2-2-1) in the
state degeneracy between two successive braid bands at �/�0 = n

(�/�0 = n + 1/2), n = 0,1,2, . . . . (b) An example (for reasons of
comparison) of a TB single-particle spectrum for a narrow trigonal
graphene ring with zigzag edge terminations. Such nanorings were
used in Ref. 19 to study the Aharonov-Bohm oscillatory patterns in
graphene nanosystems.

the probability densities at �/�0 = 15.9 (φ/�0 = 0.0037)
for several of the reczag states [with energies belonging
to successive braid bands starting with the lowest-in-energy
one; see Fig. 5(a)]; φ denotes the magnetic flux through a
single hexagon of the honeycomb graphene lattice. Probability
densities at �/�0 ∼ 6 (φ/�0 = 0.003) for two characteristic
states of the narrow trigonal graphene nanoring with zigzag
edges (considered in Ref. 19) are displayed in Fig. 7. It is
apparent that the electronic densities in Fig. 6 (reczag flake)
are restricted near the physical boundary of the flake, and thus
they correspond to formation of edge states. In addition, the
presence of azimuthal (along the sides of the triangle) nodes
in these electronic densities is clearly visible, and the number
of nodes changes by unity from one braid band to the next,
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FIG. 6. (Color online) TB electron densities (modulus) of reczag
edge states participating (counting from the bottom) in the first (a),
second (b), and fourth (c) braid bands of region D1 [see Fig. 5(a)],
at � = 15.9�0. The A (red) and B (blue) sublattices are plotted
separately. Green color denotes the density on the outer carbon dimers
resulting from the edge reconstruction and connected by the hopping
matrix element t4 in Fig. 1. (Note that the color codings between Fig. 1
and the current Fig. 6 are unrelated.) The presence of azimuthal (along
the sides of the triangle) nodes in the electronic densities is clearly
visible. The number of nodes changes by unity from one braid band to
the next, increasing with increasing energy. This behavior (including
the fact that all three states within each braid band maintain the same
number of nodes) is quite analogous to that of the edge states of a
trigonal graphene nanoring at low magnetic fields (see Fig. 7 below).
Energies in units of t = 2.7 eV.

increasing with increasing energy. This behavior (including
the fact that all three states within each braid band maintain
the same number of azimuthal nodes) is quite analogous to
that of the edge states of a trigonal graphene nanoring at low
magnetic fields (see Fig. 7).

The similarities between the reczag edge states and the
low-B states of graphene nanorings indicates that the reczag
edge behaves like a quantum wire. Naturally, this quantum-

ε=0.9415E-03

ε=0.1305E-01

ε=0.9415E-03

ε=0.1305E-01

A B

(a)

(b)

FIG. 7. (Color online) TB electron densities (modulus) of edge
states of the zigzag ring participating (counting from the bottom) in (a)
the first and (b) the third braid bands in Fig. 5(b)], at �/�0 ∼ 6. The
A (red) and B (blue) sublattices are plotted separately. The azimuthal
nodes in the electronic densities are clearly visible. The number of
nodes changes by one from one braid band to the next, increasing
with increasing energy. Energies in units of t = 2.7 eV. The ring has
a total of 906 carbon atoms.

wire behavior places the reczag edge states in a separate
category, different from that of the Halperin-type edge states.
In Sec. III B2 below, we will further elaborate on the quantum-
wire aspects of the reczag edge states using a simple one-
dimensional superlattice model.

2. Simple semianalytic model for the reczag edge states

In this section we show that the main qualitative features
of the braid bands in the D1 region can be reproduced using a
simple nonrelativistic 1D superlattice approach. Indeed, in this
approach, each side of the trigonal reczag flake is modeled as a
unit subcell consisting of a two-region piecewise potential [see
Fig. 8(a)]. In particular, the first and wider region was chosen
to have a length of L1 = 12.5 nm and a zero potential height,
V1 = 0. The second region models the scatterer’s behavior of
the triangle’s corner and was taken to be a narrow potential
barrier; we chose L2 = 1.5 nm and V2 = 0.1 eV. Note that the
total length L = L1 + L2 = 14 nm is similar to the length of
the side of the equilateral triangle in Fig. 3, while the height
of the potential barrier is roughly one-fifth of the width (0.2t)
of the D region (see Fig. 3). Naturally, due to the simplicity
of the model, we did not attempt to achieve a full quantitative
agreement with the TB spectra.

Following Ref. 68, one constructs first the transfer matrices
M1 and M2 (see the Appendix) for the regions 1 and 2 of the
unit subcell portrayed in Fig. 8(a). Then the transfer matrix (Ts)
for the unit subcell is simply the product of the two matrices
M1 and M2, i.e.,

Ts = M1M2. (5)
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FIG. 8. (Color online) (a) Schematic diagram of the unit subcell
associated with a single side of the trigonal graphene flake with reczag
edge terminations. V2 denotes the height of the potential barrier which
mimicks the scatterer at the corners of the trigonal reczag flake. (b)
Schematic diagram of the unit cell associated with the magnetic-field
virtual lattice; it involves all three sides of the equilateral triangle,
and thus it consists of three unit subcells in a series. (c), (d) The
function f (E) = Tr[T(E)]/2 [see the right-hand side of Eq. (7)],
which is associated with the unit cell [shown in (b)] of the magnetic-
field virtual superlattice, as a function of the energy variable E. In
calculating f (E), the parameters for the unit subcell [shown in (a)]
were taken as: L1 = 12.5 nm, L2 = 1.5 nm, V1 = 0, and V2 = 0.1 eV.
The relevant values of f (E) lie within ±1 (i.e., within the dotted
lines). (c) f (E) in the range 0 � E � V2. (d) f (E) in the range
V2 � E � 4V2. Energy in units of eV.

A magnetic field perpendicular to the plane generates a
flux � over the entire area of the flake. Thus all three sides of
the triangle must be considered in the study of magnetic-field
effects. To this end, and following Ref. 64, we consider the
equivalent problem of a magnetic-field virtual superlattice. In
our case, however, the unit cell of the virtual lattice is more
complex; it consists of three unit subcells in a series [see
Fig. 8(b)] in order to account for the three scatterers at the
corners. Then the transfer matrix for the unit cell is given
by

T = Ts
3. (6)

To form the magnetic-field superlattice, the unit cell must be
repeated ad infinitum. This is equivalent to imposing periodic
boundary conditions on a succession of finite lattice blocks

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1  2  3  4  5

E
 (t

)
Φ/Φ

0

FIG. 9. (Color online) Single-particle spectrum (as a function of
the total flux �) from the semianalytic superlattice model considered
in Sec. III B2. The parameters for the unit subcell mimicking
each reczag side of the trigonal graphene flake are L1 = 12.5 nm,
L2 = 1.5 nm, V1 = 0, and V2 = 0.1 eV. Note that the total length
L1 + L2 = 14 nm is similar to the length of the trigonal flake in
Fig. 3. The height of the potential barrier defining the scatterers at the
corners (V2) is roughly one-fifth of the width (0.2t) of the D region
[see Fig. 3(c)]. Energies in units of eV. The magnetic flux is given in
units of �0 = hc/e.

withN unit cells and taking the limitN → ∞. Accordingly,68

the dispersion relation determining the energy bands of the
virtual superlattice is given by

cos(2π�/�0) = Tr[T(E)]/2, (7)

where we used the fact that the equivalent Bloch wave vector
for the magnetic-field superlattice is K = 2π�/(3L�0), 3L

being the width of the unit cell (see Ref. 64).
The energy bands resulting from the dispersion relation in

Eq. (7), with the specific parameter values mentioned in the
beginning of this section, are displayed in Fig. 9. A comparison
with the braid bands in Figs. 4(a) and 5(a) (D1 region of
the TB spectra) shows that the simple 1D model reproduces
the essential trends of the TB braid bands. Specifically, the
common trends are as follows. (I) The alternation 2-1-1-2
(1-2-2-1) in the state degeneracy between two successive
braid bands at �/�0 = n (�/�0 = n + 1/2), n = 0,1,2, . . .

[see the horizontal arrows in Figs. 5(a) and 9]. (II) The
width of the braid bands increases with increasing energy.
(III) In contrast, the energy gaps separating the braid bands
decrease with increasing energy. (IV) At high enough energies,
the braid bands tend to merge into a single pattern having
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“chicken-wire” topology, familiar from the well-known ideal-
metal-ring energy spectrum;69 this last feature is present in the
TB spectra of Fig. 4 in the region 0 � �/�0 < 8.0.

We note that in the context of the simple 1D model of
this section, these trends can be further understood from an
inspection of the behavior of the f (E) function plotted in
Figs. 8(c) and 8(d). Indeed, for a given �, the single-particle
energies plotted in Fig. 9 correspond to the crossing points
of the f (E) curve with a horizontal straight line having an
ordinate f = cos(2π�/�0) < 1. In particular, the trend (IV)
above is associated with the asymptotic behavior of the f (E)
function; this asymptotic behavior at high energies (above the
barrier height V2) corresponds to the fact that the tunneling
particle behaves like a free fermion and it does not feel strongly
the effect of the scatterers.

3. Region D2: Dense spectrum of Halperin-type edge states

We focus now on the region marked as D2 in Fig. 4(a). The
single-particle spectra in this region consist of energy curves
similar to those of the Halperin-type edge states in region C1
(which connect the n = 1 and n = 0 graphene Landau levels).
A main difference, however, between these two regions is that
the spectrum in D2 is more dense compared to that in region
C1. For example, at �/�0 = 15.9, we found that within the
range |ε| � 0.4414t , there are 20 states in the D2 region, but
only 10 states in the C1 region above the zero-energy line.
We note that the density of states in the C1 region of a reczag
flake is similar to that in the C1 region of a zigzag flake with
comparable size. As a result, because all the states in region
D2 converge to the zero-energy Landau level, the degeneracy
(density of states per unit magnetic flux) of this Landau level is
higher in the case of a trigonal reczag flake compared to that of
a pure zigzag flake. This behavior raises naturally the question
of whether the conductance properties of the anomalous49–51

relativistic IQHE will be impacted. We will, however, defer
elaborating on this question until the section on the continuous
Dirac-Weyl description (Sec. IV).

To further investigate the properties of region D2, we
display (for �/�0 = 15.9) in Fig. 10 electron densities for
a couple of characteristic states in this region. Compared to
Fig. 6, the absence of azimuthal nodes in their electronic
densities is noticeable. Specifically,, in Fig. 10(a) we consider
a state with near-zero energy (ε = −0.1272 × 10−4t). This
state exhibits a zero-Landau-level behavior familiar from a
graphene sheet,49 and, accordingly, one sublattice component
(here the B sublattice) vanishes everywhere. This contrasts
with the special case of the zero-Landau-level states in a
zigzag flake, which are of a mixed bulk-edge character,
with the bulk and edge components residing on different
sublattices.15,16 In Fig. 10(b), we consider a state with lower
energy ε = −0.2207 × 10−1t , which is representative of the
pristine Halperin-type double-edge states between the n = 0
and n = 1 Landau levels discussed in Refs. 15 and 16 for
GQDs with zigzag edge terminations.

The enhanced density of TB states in the D2 region
maintains also in the spectra derived from the continuous
Dirac-Weyl equation in the case of a circular disk with reczag
edges (see Sec. IV below).

ε=-0.1272E-04 ε=-0.1272E-04

ε=-0.2207E-01 ε=-0.2207E-01

A B

(a)

(b)

FIG. 10. (Color online) TB electron densities (modulus) of two
characteristic states for the D2 regime of the reczag flake at �/�0 =
15.9. (a) A state with near-zero energy ε = −0.1272 × 10−4t exhibit-
ing bulk zero-Landau-level behavior. (b) A state with lower energy
ε = −0.2207 × 10−1t exhibiting Halperin-edge behavior. Compared
to Fig. 6, the absence of azimuthal nodes in the electronic densities
here is noticeable. Energies in units of t = 2.7 eV. The total number of
carbon atoms is 4731. The A (red) and B (blue) sublattices are plotted
separately. Green color denotes the density on the outer carbon dimers
resulting from the edge reconstruction and connected by the hopping
matrix element t4 in Fig. 1.

4. Regions E1 and E2: States localized at the corners

The states belonging to the E1 and E2 regimes are grouped
together. Indeed, as revealed from the electron densities
displayed in Fig. 11, they are localized (to one degree or the
other) at the corners of the triangle. As seen from Fig. 4(a), the
E2 feature consists of three states whose energy curves form a
single braid, similar to the braids in region D1. One of the states
in this triad (with energy ε = −0.6826 × 10−1t at �/�0 =
15.9) is plotted in Fig. 11(a). Because of the localization
at the corners, the quantum-wire model of Sec. III B2 is
not appropriate for the E2 regime. However, as discussed in
Sec. IV A of Ref. 70 (see in particular Figs. 6 and 7 therein), a
simple Hückel model involving three localized Gaussian wave
functions at the corners of an equilateral triangle is able to
reproduce qualitatively the braiding behavior of the energy
curves as a function of the magnetic field.

The states in the E1 regime behave in a different way; in
fact, their energies as a function of B do not form a braid, but an
approximate straight line located at εc ≈ −0.297t . In the C2
region (between the n = −2 and n = −1 Landau levels), there
are three such states with very close energies [at �/�0 = 15.9,
these energies are −0.2957t , −0.2968t , and −0.2976t ; the
state corresponding to the second energy here is plotted in
Fig. 11(b)]. In the C1 region (between the n = −1 and n = 0
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FIG. 11. (Color online) TB electron densities (modulus) of two
characteristic states for the E1 and E2 regimes of the reczag flake
at �/�0 = 15.9. Note the concentration of the electron densities at
the corners of the triangle. (a) A state in the E2 regime with energy
ε = −0.6826 × 10−1t . (b) A state in the E1 regime with energy ε =
−0.297t . Energies in units of t = 2.7 eV. The A (red) and B (blue)
sublattices are plotted separately. Green color denotes the density on
the outer carbon dimers resulting from the edge reconstruction and
connected by the hopping matrix element t4 in Fig. 1.

Landau levels), only two of these states exist. At present, we
are unaware of any simple model describing such a behavior.

Because the corners were shown earlier to act as scatterers
(see Sec. III B2), the appearance of states that are localized at
(or attracted towards) the corners may seem counterintuitive at
a first glance. This behavior, however, originates from the rel-
ativistic nature of the graphene massless Dirac quasiparticles
for which the scatterers may also act as centers of attraction due
to Klein tunneling.71,72 In this context, we mention Ref. 73,
where similar localized wave functions under the repulsive
potential barrier defining a circular graphene antidot were
reported.

C. Smaller trigonal shapes and Aharonov-Bohm oscillations

Of interest is the question of the size dependence of the
spectra of the reczag trigonal flakes. The size of the flake
investigated in previous sections [with sixty hexagons along
each side; see Fig. 3(d)] is sufficiently large for the main
features of the spectra to have been fully developed. We
thus briefly investigate here smaller sizes. Indeed, Fig. 12(a)
displays the spectrum of a very small trigonal reczag flake with
10 hexagons along each side [see the corresponding shape
in Fig. 12(b)], while Fig. 12(c) displays the spectrum of an
intermediate-size flake with 38 hexagons along each side [see
the associated shape in Fig. 12(d)].

The spectrum for the very small flake [Fig. 12(a)] exhibits
rather large differences from that of the large flake [Fig. 3(c)].
This is mainly due to the full development (within the plotted
� range) of the Hofstadter-butterfly10,74 fractal patterns (des-
ignated as region F), which appear for very strong magnetic
fields such that lB � a, i.e., when the magnetic length is
similar to or smaller than the honeycomb graphene-lattice
constant. Furthermore, the Landau levels (region B) and
region D (which is unique to the reczag edges and has been
our main focus in this paper) are hardly recognizable; they are
strongly quenched compared to the case of the large flake in
Fig. 3(c).

For the intermediate-size case shown in Fig. 12(c), both the
Landau-level regime and the two regimes D1 (three-member
braid bands) and D2 (Halperin-type edge states with enhanced
density) are well developed; see enlarged part in Fig. 13(a).
We note again the constancy and size independence of the
lower bound εb of the D region.

We take advantage of the full development of the spectrum
in the intermediate size, and we calculate explicitly for this
size the Landau magnetization [displayed in Fig. 13(b)]
for a positively charged flake with N = 60 holes (spin
included). Following Ref. 19, we carry out this calculation
in the canonical ensemble and zero temperature, and the
thick black line in Fig. 13(a) denotes the corresponding
Fermi level. As a function of the total magnetic flux �,
the magnetization exhibits clear (albeit with variable shapes)
oscillatory Aharonov-Bohm patterns associated with the braid
bands. At the same time, these AB patterns are superimposed
on larger oscillations generated by the rapid variation (with
�) of background Halperin-type edge states crossing the
braid bands. These background Halperin edge states are also
responsible for the skipping of the Fermi level between
different braid bands and between different states in the same
braid band, which results in the jumps and in the variation of
the shape of the AB patterns (which is to be contrasted with
the regular AB oscillations in graphene nanorings with zigzag
edges19).

We display also in Figs. 13(c) and 13(d) the energy spectrum
and Landau magnetization, respectively, for the corresponding
zigzag trigonal flake (with 38 hexagons in the outer row along
each side). The absence of Aharonov-Bohm oscillations in
Fig. 13(d) is apparent. For a meaningful comparison, the Fermi
level in the canonical ensemble [see thick black line in (c)] was
chosen to fall within the εb = −0.205t < ε < 0 energy band.
We note that for the reczag flake this energy band contains
the special D region; for the zigzag flake this energy band is
reduced to being part of region C1. For the zigzag flake the
Fermi level is determined by the number N∗ of effective holes
(N∗ = 4 here, spin included). Indeed the total number of holes
is N = N0 + N∗, with N0 being the number of strictly zero-
energy states present in the zigzag trigonal flake (N0 equals11,13

the number of hexagons along one side minus one). Naturally,
the strictly zero-energy states do not contribute to the Landau
magnetization. We further note that as a result of the recon-
struction process (reczag flake), however, the strictly zero-
energy states acquire finite energies. In a continuum model
(see Sec. IV below), this mapping is codified by the boundary
condition specified by Eq. (8), which involves the reczag
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FIG. 12. (Color online) (a) TB single-particle spectrum for a very small (with type-I corners) reczag trigonal graphene dot, as a function
of the magnetic field (the magnetic flux � over the whole dot). (b) Shape of the equilateral trigonal graphene dot which corresponds to (a); it
has 10 hexagons in the outer unreconstructed row along each side (the total number of carbon atoms is 195). (c) TB single-particle spectrum
for a larger (with type-I corners) reczag trigonal graphene dot, as a function of the magnetic field (the magnetic flux � over the whole dot).
(d) Shape of the trigonal graphene dot which corresponds to (c); it has 38 hexagons in the outer unreconstructed row along each side (the
total number of carbon atoms is 1819). The thick black line in (c) denotes the Fermi level in the canonical ensemble corresponding to N = 60
holes (spin included). Energy in units of the tight-binding hopping parameter t = 2.7 eV. Lengths in units of the honeycomb graphene lattice
constant a = 0.246 nm. The magnetic flux is given in units of �0 = hc/e.

parameter F [Eq. (9)]; for F = 0, the zigzag-edge case is
recovered.

IV. CONTINUOUS DIRAC-WEYL DESCRIPTION
FOR CIRCULAR RECZAG GQDS

In order to describe the properties of graphene and graphene
nanosystems near the neutral Dirac point, the continuous
Dirac-Weyl equation has been widely and successfully used as
an alternative to the TB calculations. In particular, for graphene
nanoribbons with zigzag and armchair edge terminations there
is an overall agreement between the TB results and those of the
DW approach. Although the shape of a GQD in the continuous
description is most often taken as circular and not polygonal,
this overall agreement (albeit with certain caveats) between
circular and TB calculations was also found to extend to the
case of graphene nanoflakes and nanodots (see, e.g., Ref. 16). It
is thus of interest to investigate whether such overall agreement
applies also for the unique features of a reczag flake discussed
in earlier sections.

In the continuum approach, a graphene Dirac elec-
tron (or hole) is represented by a four-component spinor
(�A,�B,� ′

A,� ′
B)T , with the indices A and B denoting the two

sublattices, and the unprimed and primed symbols denoting
the K and K ′ valleys. In the case of zigzag or armchair
edge terminations, the four components of the spinor obey
well-known characteristic boundary conditions.49,52,75 For the
case of the reczag edge, corresponding boundary conditions
were proposed recently in Ref. 31. For the K valley these
conditions relate the components on the A and B sublattices
as follows:

�A = iF�B, (8)

where the parameter F is defined as

F = t2
1 t4

(
t2t4 − t2

3

)
2t

(
t4
3 + t2t

2
3 t4 + t2

2 t2
4

) . (9)

The value for F = 0.07 for the reczag edge; see Table I for
the values of the hopping matrix elements tk , k = 1,2,3,4.
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FIG. 13. (Color online) (a) Reczag flake: an enlarged part of the TB single-particle spectrum shown in Fig. 12(c), as a function of the
magnetic field (the magnetic flux � over the whole dot). The shape of the corresponding reczag flake is displayed in Fig. 12(d). (b) Reczag
flake: Landau magnetization (at zero temperature) for N = 60 holes (spin included) exhibiting Aharonov-Bohm oscillations superimposed on
larger ones generated by the rapid variation of the background Halperin-type edge states which cross the braid bands. The thick black line in
(a) denotes the corresponding Fermi level in the canonical ensemble. (c) Zigzag flake: a similar part of the TB single-particle spectrum for the
corresponding zigzag trigonal flake (with 38 hexagons in the outer row along each side), as a function of the magnetic flux �. (d) Zigzag flake:
Landau magnetization for N∗ = 4 effective holes (spin included); the absence of Aharonov-Bohm oscillations is apparent. The thick black
line in (c) denotes the corresponding Fermi level in the canonical ensemble. For a meaningful comparison, this Fermi level was chosen to fall
within the εb = −0.205t < ε < 0 energy band. Note that for the reczag flake this energy band contains the special D region; for the zigzag
flake this energy band is reduced to being part of region C1. The total number of holes is N = N0 + N∗, where N0 is the number of strictly
zero-energy states present in the zigzag trigonal flake (also, see text). Energy in units of the tight-binding hopping parameter t = 2.7 eV. The
magnetic flux is given in units of �0 = hc/e.

For the K ′ valley, the boundary condition is obtained via the
substitution F → −1/F . Note that the reczag edge does not
mix the two valleys,31 as is the case with the zigzag boundary
condition.

For a finite circular graphene sample of radius R, we seek
solutions of Eq. (4) for ε 
= 0 that are regular at the origin (x =
0). For a nanodot with a reczag edge one finds that the single-
particle spectrum is given by the solutions of the following
dispersion relation:

χB(ε,m,x) + FχA(ε,m,x) = 0, (10)

where F = 0.07 for the K valley and F = −1/0.07 for
the K ′ valley, x = R/lB , m is an angular momentum, and
(see Ref. 15)

χA(ε,m,x)

∝
{

xme−x2/4M
(
m + 1 − ε2

2 ,m + 1, x2

2

)
, if m � 0,

x−me−x2/4M
(
1 − ε2

2 ,− m + 1, x2

2

)
, if m � − 1,

(11)

and

χB(ε,m,x)

∝
{

ε
2

xm+ 1

m+1 e−x2/4M
(
m + 1 − ε2

2 ,m + 2, x2

2

)
, if m � 0,

2m
ε

x −m − 1e−x2/4M
(− ε2

2 , − m,x2

2

)
, if m � −1,

(12)

where M(a,b,z) is Kummer’s confluent hypergeometric
function.76

The solutions of the dispersion relation in Eq. (10) are
plotted in Fig. 14(a) for the K valley and in Fig. 14(b) for the
K ′ valley. One observes that the general features discussed in
Sec. III A (namely, the Landau levels, and the Halperin-type
edge states) are also present in the continuum-DW reczag
spectra. However, concerning the unique features found via TB
calculations (Sec. III B) and associated with a trigonal reczag
flake, only the feature of the Halperin-type edge states with
an enhanced density spectrum (D2 region) maintains also in
the continuum spectra [see Fig. 14(b)]. The rest of the special
reczag features are missing in Fig. 14: in particular we note the
nonexistence of a lower-energy bound εb for the D region and
the absence of the three-member braid bands (region D1), the
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FIG. 14. (Color online) Single-particle spectra as a function of the
magnetic flux �, according to the continuous Dirac-Weyl description
for a circular GQD with a reczag edge termination. (a) The K valley.
(b) The K ′ valley. The radius of the dot is R = 8 nm. Energies in
units of t = 2.7 eV.

latter being a reflection of the ability of the defective reczag
edge to behave as a 1D quantum nanoring. Furthermore, we
note that the E1 and E2 states, which are localized at the
corners, are also missing in the continuum model.

Due to these major discrepancies between the TB and
continuum descriptions, we are led to conclude that the
linearized DW equation fails to capture essential nonlinear
physics resulting from the introduction of a nontrivial defect
in the honeycomb graphene lattice. Indeed the Dirac-Weyl
equation is obtained for the low-energy states of electrons in
the honeycomb lattice, and it is not valid at the reczag edges and
the corners, where the topological structures are very different
from the honeycomb lattice.

As mentioned earlier in Sec. III B3, the presence of
Halperin-type edge states with an enhanced density spectrum
(D2 region) raises naturally the question whether this feature
may impact the conductance behavior of the anomalous49–51

relativistic IQHE. To be able to answer this question within the
continuous DW description, one needs to count the dispersive
branches of edge states present in the spectrum of the circular
reczag dot when the single-particle energies are plotted versus
the angular momentum m and at a fixed value of the magnetic
flux (the magnetic field). For a circular reczag GQD with radius
R = 8 nm (as was the case in Fig. 14 where the magnetic
flux was varied), this latter spectrum is displayed in Fig. 15
(for a fixed magnetic flux � = 15�0). Both the K and K ′
valleys are considered. We note that there are four dispersive
branches [labeled as (a), (b), (c), and (d)] associated with the
zeroth Landau level. Furthermore, it was found that all four
channels represent edge states; see also Ref. 31 where the case
of the linear reczag edge of a semi-infinite graphene plane
was considered. In contrast, only two dispersive branches
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FIG. 15. (Color online) Single-particle energies as a function of
the angular momentum m, according to the continuous Dirac-Weyl
description for a circular GQD with a reczag edge termination. The
total flux is fixed at � = 15�0. Both the K and K ′ valleys are
considered. Note the four dispersive branches of edge states [(a), (b),
(c), and (d)] associated with the zeroth Landau level. We note that
only two dispersive branches of edge states [(a) and (c)], associated
with the zeroth Landau level, appear in a circular GQD with a zigzag
edge termination. The radius of the dot is R = 8 nm. Energies in units
of t = 2.7 eV.

[corresponding to (a) and (c)], associated with the zeroth
Landau level, appear in a circular GQD with a zigzag edge
termination.50,51 The appearance of these four branches in
the spectrum of the circular reczag GQD, however, does
not influence the IQHE conductance, because two of them,
i.e., the (c) and (d), are counterpropagating, and thus their
contributions are expected to cancel each other.

We stress, however, that the above conclusion is based
on the continuous DW spectrum. As noted above, the DW
spectrum differs drastically from the TB one, and thus a defini-
tive answer to the question concerning the IQHE-conductance
behavior associated with a trigonal reczag flake requires a
full study of the current/transmission using the tight-binding
method.77

V. SUMMARY AND DISCUSSION

The electronic spectra of graphene nanoflakes with reczag
edges, where a succession of pentagons and heptagons, that is
5-7 topological defects, replaces the hexagons at the familiar
zigzag edge, were investigated via systematic tight-binding
calculations. Three different sizes of trigonal graphene flakes
were considered in Sec. III, with the two smaller sizes being
discussed in Sec. III C. (A detailed recapitulation of the results
was given in Sec. I C of the Introduction.) Emphasis was placed
on topological aspects and connections underlying the patterns
dominating these spectra. A central result is that the spectra of
trigonal reczag flakes exhibit both general features (Sec. III A),
which are shared with GQDs having other edge terminations
(i.e., zigzag or armchair), as well as special ones (Sec. III B),
which are unique to the reczag edge termination. These unique
features include breaking of the particle-hole symmetry, and
they are associated with a nonlinear dispersion of the energy
as a function of momentum, which may be interpreted as
nonrelativistic behavior.
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The general topological features (Sec. III A) shared with the
zigzag flakes include the appearance of energy gaps at zero
and low magnetic fields due to finite size, the formation of
relativistic Landau levels at high magnetic fields, and the pres-
ence between the Landau levels of Halperin-type edge states
associated with the integer quantum Hall effect. Topological
regimes, unique to the reczag nanoflakes (Sec. III B), appear
within a stripe of negative energies εb = −0.205t < ε < 0,
and along a separate feature forming a constant-energy line
outside this stripe.

Prominent among the patterns within the εb = −0.205t <

ε < 0 energy stripe is the formation of three-member braid
bands, resembling those in the spectra of narrow graphene
nanorings (Sec. III B1). The reczag edges along the three sides
of the triangle act as a one-dimenional quantum wire (with the
corners behaving as scatterers) enclosing the magnetic flux
through the entire area of the graphene flake (Sec. III B2). This
leads to the development of Aharonov-Bohm–type oscillations
in the magnetization (Sec. III C). Another prominent feature
within the εb = −0.205t < ε < 0 energy stripe is a subregion
of Halperin-type edge states of enhanced density immediately
below the zero-Landau level (Sec. III B3). Furthermore, there
are features resulting from localization of the Dirac quasipar-
ticles at the corners of the polygonal flake (Sec. III B4).

A main finding concerns the limited applicability of the con-
tinuous Dirac-Weyl equation in conjuntion with the boundary
condition proposed in Ref. 31. Indeed, this combination does
not reproduce the special reczag features. Due to this discrep-
ancy between the tight-binding and continuum descriptions,
one is led to the conclusion that the linearized Dirac-Weyl
equation fails to capture essential nonlinear physics resulting
from the introduction of a multiple topological defect in the
honeycomb graphene lattice.

We comment here that simpler topological defects (e.g.,
a single55 pentagon, heptagon, or pentagon-heptagon pair
embedded in the honeycomb lattice) are often described56,57

(at zero magnetic field) in the continuum DW approach via

a gauge field (an additional vector potential) resembling the
one generated by an Aharonov-Bohm magnetic-flux solenoid.
The generalization of this gauge-field modification of the DW
equation to multiple topological defects may provide a better
overall agreement with the TB results.
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APPENDIX: EXPRESSIONS FOR THE
TRANSFER MATRICES

For the first region of the unit subcell in Fig. 8(a), the
transfer matrix is68

M1 =
(

cos(k1L1) − sin(k1L1)/k1

k1 sin(k1L1) cos(k1L1)

)
, (A1)

with k1 =
√

2mE/h̄2; m is the nonrelativistic electron mass
and E the energy variable.

For the second region of the unit subcell, the transfer matrix
is68

M2 =
(

cosh(κ2L2) − sinh(κ2L2)/κ2

−κ2 sinh(κ2L2) cosh(κ2L2)

)
, (A2)

with κ2 =
√

2m(V2 − E)/h̄2, if E < V2, and

M2 =
(

cos(k2L2) − sin(k2L2)/k2

k2 sin(k2L2) cos(k2L2)

)
, (A3)

with k2 =
√

2m(E − V2)/h̄2, if E � V2.
Using the matrices M1 and M2 defined above, and with

the help of the algebraic language MATHEMATICA,78 we found
that the trace of the transfer matrix T [see Eqs. (5)–(7)],
which is associated with the unit cell of the virtual magnetic
superlattice, is given by

Tr[T(E)] = {
2k3

1κ
3
2 cos(3k1L1) cosh3(κ2L2) + 3k2

1κ
2
2

(−k2
1 + κ2

2

)
cosh2(κ2L2) sin(3k1L1) sinh(κ2L2)

+ 3k1κ2 cos(k1L1)
(
k4

1 + κ4
2 − (

k2
1 − κ2

2

)2
cos(2k1L1)

)
cosh(κ2L2) sinh2(κ2L2)

+ (
k2

1 − κ2
2

)(−3
(
k2

1 + κ2
2

)2
sin(k1L1) + (

k2
1 − κ2

2

)2
sin(3k1L1)

)
sinh3(κ2L2)/4

}/(
k3

1κ
3
2

)
, (A4)

when E < V2, and

Tr[T(E)] = −{−2k3
1k

3
2 cos3(k1L1) cos(3k2L2) + 3k1k2 cos(k1L1) cos(k2L2)

(−k4
1 − k4

2 + (
k2

1 + k2
2

)2
cos(2k2L2)

)
sin2(k1L1)

+ sin3(k1L1) sin(k2L2)
(−3k2

1k
2
2

(
k2

1 + k2
2

)
cos2(k2L2) + (

k6
1 + k6

2

)
sin2(k2L2)

)
+ 3k2

1k
2
2

(
k2

1 + k2
2

)
cos2(k1L1) sin(k1L1) sin(3k2L2)

}/(
k3

1k
3
2

)
, (A5)

when E � V2.
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