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The novel phenomenon of chiral tunneling in metallic single-wall carbon nanotubes is consid-
ered. It is induced by the interplay of electrostatic and pseudomagnetic effects in electron scatter-
ing in chiral nanotubes and is characterized by an oscillatory dependence of the electron trans-
mission probability on the nanotube chiral angle and the strength of the scattering potential. The
appearance of a special �Aharonov–Bohm-like� phase in chiral tunneling affects various phase-
coherent phenomena in nanostructures. We examine chiral effects in: �i� persistent currents in
circular nanotubes, �ii� Josephson currents in nanotube-based SNS junctions, and �iii� resonant
electron tunneling through chiral nanotube-based quantum dots. © 2010 American Institute of
Physics. �doi:10.1063/1.3518334�
I. INTRODUCTION

One of the most spectacular phenomena in physics is the
Aharonov–Bohm �AB� effect which was predicted in 19591

and realized experimentally a year later.2 �See also the re-
view by Olariu and Popescu3 and references therein�. This
effect is fundamental, it has a simple theoretical formulation,
and it has numerous theoretical and experimental applica-
tions. This last point concerns, first of all, condensed matter
physics where the AB effect is a key idea in a vast number of
theoretical and experimental papers.

One of the first and most significant papers on the AB
effect in condensed matter physics is a paper by Kulik on
non-decaying electric currents in normal metal systems pub-
lished in 1970.4 There he predicted that a perfect �impurity-
free� small metallic cylinder threaded by magnetic field will
support a nondissipative �persistent� electric current with the
period equal to a single-flux quantum �0=hc /e5,6 and an
amplitude �at low temperatures� given by the single electron
current �evF /L times the number of transverse channels for
a few-channel ring �here vF is the Fermi velocity and L is the
ring circumference�. At that time, 15 years before the advent
of mesoscopic physics, the prediction that certain physical
characteristics of a real many-body �macroscopic� system
�now it is better to say mesoscopic� could be sensitive to a
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single-electron contribution sounded bizarre to many physi-
cists. Although the fundamental nature of Kulik’s prediction
was evident �the paper was published in the most prestigious
physics journal in the Soviet Union�, the prospects for ex-
perimental observation of this effect seemed obscure. Never-
theless, rather soon the prediction was confirmed, at first in
indirect experiments7,8 with massive cylinders where AB per-
sistent currents were induced by electronic states localized
near the surface �whispering gallery states� and forming ef-
fectively a doubly connected �ring� geometry.9,10 Later, in the
beginning of the 1990’s, persistent currents were measured in
a single metallic �gold� ring11 �diffusive electron transport12�
and soon thereafter in a quantum ring formed in a 2D elec-
tron gas �EG�.13 In a 2DEG, electron transport is ballistic and
the measurements13 were in good agreement with Kulik’s
prediction.4

Since that time persistent currents have been a hot topic
in condensed matter physics and there is a vast literature on
the problem.14–17 Aharonov–Bohm oscillations have been
observed in metallic rings and cylinders, but also in more
exotic systems such as conducting quasi-1D materials with
charge density wave excitations,18 where the AB effect is
induced by the quantum coherent dynamics of collective
modes.19,20 Theoretical studies of nontraditional AB effects
© 2010 American Institute of Physics
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in condensed matter range from the calculation of persistent
currents in dielectrics21 to the study of AB oscillations in-
duced by superconducting plasmons.22

Here we discuss persistent currents in circular carbon
nanotubes and supercurrents in nanotube-based
superconductor/normal metal/superconductor �SNS� junc-
tions. Both structures have been studied experimentally.
Ring-shaped nanotubes �including rings of single-wall nano-
tubes� have been observed and investigated in Refs. 23 and
24, while measurements of the Josephson current in a single-
wall nanotube-based SNS junction have been reported in
Ref. 25.

What is distinctive about the transport properties of car-
bon nanotube-based mesoscopic structures compared to “or-
dinary” metallic nanowires? Electron transport in metallic
single-wall nanotubes �SWNT� is ballistic and this property
is explained by a specific scattering of charge carriers by the
nanotube defects.26 Conduction electrons in SWNT are
Dirac-like particles and their relativistic spectrum leads to
certain peculiarities in electron scattering. In particular, long-
range electrostatic potentials in metallic nanotubes do not
scatter electrons at all. This effect is explained by the con-
servation of helicity for relativistic particles. In quantum
field theory the phenomenon of particle free penetration
through potential barriers is known as the Klein paradox.27

The specific features of electron scattering in chiral nano-
tubes and their influence on persistent and super-currents in
carbon nanotube-based devices are the subject of the this
paper.

In Sec. II we introduce the new concept of chiral tunnel-
ing in metallic SWNTs. The transmission and reflection am-
plitudes are derived for a special 2�2-matrix scattering po-
tential. It is shown that, in the local limit, the transmission
coefficient D��� is an oscillating function of the chiral phase
�c=U0 cos �, where U0 is the dimensionless strength of the
scattering potential and � is the nanotube chiral angle. Reso-
nant chiral tunneling, Dr���=0, occurs for quantized values
of the chiral phase, with �c=�n �where n is an integer�.

In Sec. III we evaluate the persistent current in a circular
metallic SWNT with chiral tunneling. We show that the chi-
ral phase �c plays a crucial role in the magnetic response of
circular carbon nanotubes. In particular, the parity of the chi-
ral resonance �even or odd n� determines the character of the
magnetic response �paramagnetic or diamagnetic persistent
current�. The existence of non-equilibrium spontaneous per-
sistent currents in an isolated nanotube ring with asymmetric
populations of the �kF-valleys is briefly discussed.

In Sec. IV we consider the influence of chiral effects on
the supercurrent in a SWNT-based SNS junction. An equa-
tion for the bound state energies �Andreev–Kulik levels� in
the presence of chiral tunneling is derived. It is shown that,
for energy independent phase factors �forward and backward
scattering phases and the chiral phase�, the spectral equation
expressed in terms of scattering data coincides with the cor-
responding equation for standard SNS junctions. All infor-
mation specific to chiral tunneling is hidden in the oscillatory
dependence of the junction transparency on the chiral angle
and chiral phase. In particular we discuss here the interesting
possibility of fabricating highly transparent junctions by us-
ing high quality carbon nanotubes with small chiral angles.
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In Sec. V, resonant electron transport through a “chiral”
quantum dot �QD� �i.e., a QD based on a chiral metallic
SWNT� is discussed. We show that when a chiral scatterer
exists inside the tube, the spacings between the resonant con-
ductance peaks �measured by varying the gate voltage� de-
pend strongly on the nanotube chiral angle and the chiral
phase �which in principle can be regarded as a controllable
parameter�. The distribution of the number of conductance
maxima over level spacing ranges from �-function like peaks
for armchair nanotubes �equidistant spectrum of QD energy
levels� to a smooth Wigner-Dysonlike distribution �quasi-
random energy spectrum� in chiral nanotubes in the limit of
weak chiral tunneling �D	1�.

In the Conclusion we summarize the main results and
briefly discuss the influence of electron-electron interactions
on chiral tunneling.

II. CHIRAL TUNNELING

We evaluate the transmission probability for electron
scattering by special defects �see below� in carbon nano-
tubes. We assume that the defect potentials are long-range
and do not induce inter-valley electron scattering ��k
	2kF�. Thus, in our model, the metallic SWNT Hamiltonian
is diagonal in the valley index j=� and takes the form28

H� = � 
vF� 0 exp� � i��p̂x

exp� � i��p̂x 0
� . �1�

Here vF is the Fermi velocity, p̂x=−i�x, � is the chiral angle
of the nanotube �0���� /6�, and the x-axis is directed
along the cylinder axis. Notice that we follow Ref. 28 in the
definition of chiral angle ��=0 for an armchair nanotube and
�=� /6 for a zigzag nanotube�, which is different from the
definition used in Refs. 29 and 30. The presence of chiral
factors exp���� in the Hamiltonian of Eq. �1� results in
special scattering of electrons by a non-diagonal potential,28

an effect which we refer to as chiral tunneling in the follow-
ing.

The electrostatic �scalar� potential is diagonal in the
pseudospin indices and cannot induce electron backscatter-
ing in our model Eq. �1� owing to the conservation of helic-
ity for massless Dirac particles �the Klein paradox�. To get
nontrivial scattering of chiral particles we consider the ma-
trix potential

V̂s�x� = �V�x� V�x�
V�x� V�X�

� , �2�

which mixes the sublattice components of the electron wave
function. For simplicity we consider all matrix elements to
be real and equal. An effective scattering potential of the
form �2� was suggested in Ref. 28 for electron scattering in
metallic carbon nano-peapods. It is induced by hybridization
of fullerene molecular orbitals �LUMO� with the conduction
electron states in the nanotube.

To proceed further we assume that the scattering poten-
tial �2� is “local.” However, we cannot take the spatial de-
pendence of Vs�x� to be simply ��x�. This is because a
�-function scattering potential is ill-defined in the context of
the 1D Dirac equation. One has additionally to define the
value of the fermion wave function at the singular point x
ense or copyright; see http://ltp.aip.org/about/rights_and_permissions



Low Temp. Phys. 36 �10—11�, October–November 2010 Parafilo et al. 961

Down
=0 �the wave function has a jump at this point�. In order to
correctly solve the problem, we first consider a rectangular
potential of width a and height V0, which yields an analytical
solution for the scattering problem. Then we consider the
local scatterer limit by letting a→0, and V0→
 while keep-

ing the product V0a constant.
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The transmission and reflection amplitudes for the rect-
angular potential are found by matching the plane wave and
evanescent mode solutions of the Dirac equation at the points
x=0, a. The transmission amplitude, for instance, takes the
form
t�E� =
1

2i�
vF

exp	i�2� − a�k + q��
�V0 − E�
��V0 − E�2 + 
2vF

2��2 − q2� + V0ei��2q
vF − V0ei� sin a���sin a� − 2i
vF�V0 − E�� cos a�
, �3�
where �=�V0
2 cos2 �−2EV0+E2 /
vF, q=V0 cos � /
vF, k

=E /
vF.
In the limit of interest, Eq. �3� simplifies greatly. The

corresponding transmission and reflection amplitudes are

t =
cos � exp�− iU0 cos ��

cos � cos�U0 cos �� + i sin�U0 cos ��
,

r = −
sin � sin�U0 cos ��

cos � cos�U0 cos �� + i sin�U0 cos ��
. �4�

From Eq. �4� we get expressions for the scattering data
which will be used below �i.e., for the transmission coeffi-
cient D= tt*, and the forward, � f, and backward, �b, scatter-
ing phases�

D��� =
cos2 �

cos2�U0 cos ��cos2 � + sin2�U0 cos ��
,

R��� = 1 − D���; �5�

� f��� = arctan� sin�2U0 cos ��cos2��/2�
cos2�U0 cos ��cos � − sin2�U0 cos ��


= U0 cos � + �b��� ,

�b��� = arctan� tan�U0 cos ��
cos �


 . �6�

Here U0=aVo /
vF is the dimensionless strength of the “lo-
cal” scattering potential in our model. Notice that, after a
change of notation, the formula for the transmission coeffi-
cient D is the same as the analogous expression for the trans-
mission coefficient in graphene.31 In our case, the chiral
angle � plays the role of the incident angle of a particle
scattered by a rectangular barrier in 2D graphene.

To understand why the quantity U0 cos � appears in the
arguments of some of the trigonometric functions, it is useful
to find the spectrum of the Dirac equation for the constant
matrix potential

V̂s = �Vd Vo

Vo
* Vd

� . �7�

From Eqs. �1� and �7� we immediately get the spectrum
E = Vd � 
vF
��p + Ũ0 cos�� − ���2 + Ũ0

2 sin2�� − �� ,

�8�

where Ũ0��Vo� /
vF and Vo= �Vo�exp�i��. We see that the
only effect of the diagonal potential Vd is a constant shift of
the energy spectrum. The off-diagonal potential Vo �i� in-
duces a gap �if ����, which mixes left- and rightward mov-
ing components of the wave function �i.e., it leads to back-
scattering events�, and �ii� plays the role of a “vector”
potential by shifting the momentum to p+Uo cos��−��. No-
tice that the potential Vo has to be odd with respect to time
reversal �t→−t�. Both properties are crucial for chiral tun-
neling. We will see in the next section that the quantity
U0 cos � �we consider real potentials� changes the
Aharonov–Bohm phase in the problem of persistent currents.
For convenience, we refer to �c���= �U0 /2��cos � as the di-
mensionless chiral flux.

It is readily seen from Eqs. �5� and �6� that for an arm-
chair ��=0� nanotube, D�0�=1, irrespective of the potential
strength; this is an illustration of the Klein paradox in non-
chiral metallic nanotubes. In addition, D���=1 for U0 cos �
=�N �N an integer�. The minimum transmission probability,
Dmin=cos2 �, is reached at U0 cos �=��N+1 /2�. We will re-
fer to these cases as on- and off-resonance chiral tunneling.
The “quantization conditions” considered above31 are typical
for quantum resonant transport �see, e.g., Refs. 32 and 33,
where an analogous formula for the transmission coefficient
is obtained for resonant heat transport through a Luttinger
liquid constriction�. The on- and off-resonance conditions for
chiral tunneling are analogous to the corresponding condi-
tions of constructive �� /�0=N, where � is the magnetic
flux and �0=hc /e is the flux quantum� and destructive
�� /�0=N+1 /2� interference for an Aharonov–Bohm inter-
ferometer �see, e.g., Eq. �4.25� of Ref. 34�. It is worth noting
that, unlike in other resonant scattering problems, it is the
potential strength �and not the energy of bound states� which
is quantized in our case. The dependences of the transmis-
sion coefficient and scattering phases on the chiral angle for
different values of the potential are illustrated in Fig. 1.

III. PERSISTENT CURRENTS IN CHIRAL NANOTUBES

A number of theoretical studies of persistent currents in
ring-shaped SWNTs have been published. They mostly deal
with impurity-free nanotubes and the reported results con-
ense or copyright; see http://ltp.aip.org/about/rights_and_permissions



962 Low Temp. Phys. 36 �10–11�, October–November 2010 Parafilo et al.

Down
cern specific properties of fullerene toroids,35 differences in
magnetic response of metallic and small gap semiconducting
nanotubes,36 and the influence of electron-electron interac-
tions on persistent currents in defect-free SWNTs.37 The
presence of a short-range scatterer which induces inter-valley
electron backscattering ��k�2kF� in sufficiently long nano-
tubes can be described by a Luttinger liquid model �for a
short range electron-electron interaction� or a Wigner crystal
model �for an unscreened Coulomb interaction�. Persistent
currents have been evaluated using these models.16,38,39 In all
these cases the nanotube chirality had no effect on the per-
sistent currents. In this section we consider long-range
�“soft”� defects which can induce only intra-valley electron
scattering. For these processes chiral effects are significant
and will determine the properties of the persistent current.

The Hamiltonian of the nanotube in our model is H

=Hj + V̂s�x� where H� and V̂s�x� are given by Eqs. �1� and
�2�. We model the spatial dependence of the scattering po-
tential with a rectangular barrier in the local limit �see the
previous section�. By placing the scatterer at some specific
point �x=a� we obtain two sets of plane wave solutions of
the Dirac equation, one to the left �l� and one to the right �r�
of the scatterer. For the “�-valley” they are as follows �j
= l ,r�

� j = �exp�ikFx��Aj exp�ikx� + Bj exp�− ikx��
exp�i�kFx − ����Aj exp�ikx� − Bj exp�− ikx��

� .

�9�

The coefficients Aj, Bj are found from two pairs of equations.
The first pair,

�r�x + L� = exp�2�i
�

�0
��l�x� , �10�

represents the Aharonov–Bohm boundary condition �L is the
ring circumference, �0=hc /e is the quantum of flux, and we
note that, with no scatterers �l�x���r�x�, so that in this
case Eq. �10� is the familiar twisted boundary condition for a
particle on a ring threaded by a magnetic field�. The second
pair of equations relates the amplitudes � �a� and � �a� in-
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FIG. 1. Transmission coefficient �a� and backward scattering phase �b� as a f
corresponds to U0=70, the dashed curve, to U0=15.
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duced by local potential scattering. It can be written in the
form �see the previous section�

�Al

Bl
� =�

1

t

r

t

r

t

exp�i2��c�
t*

��Ar

Br
� , �11�

where t and r are the transmission and reflection amplitudes
defined in Eq. �4� and �c= �U0 /2��cos � is the chiral flux.

Note that the matrix Â in Eq. �11� is not a transfer matrix �in
particular det Â=exp�i2U0 cos ���1 for U0�0�. In our
case, the scattering is a two-channel process �we have an
additional spinor index� and the corresponding transfer ma-
trix is 4�4-matrix. It is easy to check that the Dirac current
is conserved in the scattering process. An analogous set of
equations describes the scattering of electrons in the
−kF-valley.

The solvability condition for the above linear equations
results in the spectral equation

�D��� cos�2�
�

�0
� kFL � U0 cos �� = cos�kL − �b���� ,

�12�

where D��� and �b���=� f���−U0 cos � are given by Eqs. �5�
and �6�. Here the upper �lower� signs correspond to the en-
ergy spectrum in the +kF-valley �−kF-valley�. The term kFL
results in a statistical flux �“parity effects”40� in the persistent
current of an isolated ring �where the total number of par-
ticles is fixed�. Chiral tunneling introduces an additional term
�U0 cos �, which have designated as the “chiral phase” �c

�or chiral flux �c=�c /2��. Note that particles in ���-valleys
sense chiral fluxes of opposite signs �the l.h.s. of Eq. �12��.

In the limiting case of a local scatterer of interest to us,
neither the transmission probability nor the scattering phases
depend on energy. So the energy �E= �
vFk� spectrum is
given by

0 0.1 0.2 0.3 0.4 0.5
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En,j =

vF

L
� � arccos��D��� cos�2�

�

�0
− j�eff�


+ �b��� + 2�n� , �13�

where n=0, �1, �2, . . . , j=�, and �eff=kFL−U0 cos � is
the effective dimensionless flux. Evaluating the persistent
current for a ring at given chemical potential �,

J��;�� = − c
��

��
�14�

�where � is the grand canonical thermodynamic potential�,
for the spectrum given by Eq. �13� is straightforward. The
result for a finite temperature T is �we consider here spinless
electrons�

J =
2

�
I0

T

T*
�

j=�,k=1


 sin�2�
�

�0
+ j�eff�

�D−1��� − cos2�2�
�

�0
+ j�eff�

�

sin�k arccos��D��� cos�2�
�

�0
+ j�eff�
�cos k���,��

sinh�k
T

T*
�

�15�

Here I0=evF /L, T*=
vF /�L, and ��� ,��=�L /
vF−�b���.
We see from Eq. �15� that there is a spontaneous persistent
current �i.e., at zero external magnetic flux �=0; see the
discussion in Ref. 17� in each valley. However, at equilib-
rium and for a ring with a fixed chemical potential, for which
the energy levels in the two valleys are equally populated,
the net persistent current at zero flux vanishes, J��=0;��
=0. This conclusion is, of course, a consequence of the time-
reversal invariance of our problem in the absence of an ex-
ternal magnetic field.

The influence of temperature on the persistent current in
SWNTs is standard—at high temperatures �T�T*� the am-
plitude of Aharonov–Bohm oscillations is exponentially
small. The crossover temperature T* is determined by the
level spacing. Here we consider the low temperature limit
T	T* and the case of zero chemical potential, which corre-
sponds to undoped nanotubes. The most interesting situation
is that of resonant chiral tunneling �D=1, �b

res=0�. Then per-
sistent current is given by

Jres =
8

�

evF

L �
k=1


 sin�2�k
�

�0
�

k
cos�k��N

2
− n0�
 , �16�

where N is the total number of spin-1 /2 electrons in the ring
�in the half-filled conduction band� and n0=U0 cos � /�. As
can be readily seen from Eq. �16�, the current at ��0 per-
sists even at the Dirac point ��=0�. In an undoped SWNT
ring ��=0� the total number of particles with energy E�0
and momentum −kF�k�+kF is N=4�m+2� �m is an inte-
ger�. A degeneracy factor of 4 comes from spin�helicity
degeneracy and another factor of 2 comes from the double
degeneracy of zero-energy modes at each Dirac point. We
loaded 22 Jan 2011 to 130.207.50.192. Redistribution subject to AIP lic
see that in the absence of chiral tunneling �U0=0� the per-
sistent current is always paramagnetic.37 Now the response
of the ring to a magnetic field depends on the parity of the
chiral resonance: for even n0 the persistent current is para-
magnetic, for odd n0 we have a diamagnetic persistent cur-
rent.

At low temperatures, T→0, and for �=0, in the off-
resonance case �U0 cos �→��n0+1 /2�� the persistent cur-
rent even for a zigzag nanotube �maximal backscattering co-
efficient R=1 /4� is highly anharmonic �it has a prominent
sawtooth-like shape�. Depending on the parity of n0 and the
approach to the off-resonance point, the current is either
paramagnetic �even n0, from the “left” of the off-resonance
point� or diamagnetic �even n0, from the “right” of the off-
resonance point� and vice versa �see Fig. 2�. The change
from a para- to a diamagnetic response is associated with a
jump in the backscattering phase Eq. �6� by ��b=� each
time the off-resonance condition is passed. Thus, the parity
of the resonance �n0� determines the type of the response up
to the off-resonance point, where it changes “smoothly” �see
Fig. 2�.

In an isolated ring �with a fixed total number of par-
ticles� at T=0 the population of zero-energy modes can be
asymmetric. Then the ring will support a spontaneous persis-
tent current �the sign of the current, clockwise or counter-
clockwise, will be determined by the specific choice of zero-
mode population by chiral electrons�. These currents are not
equilibrium currents41 in the presence of even small
2kF-backscattering, which tends to symmetrize the popula-
tion of the zero-energy modes.

IV. CHIRAL EFFECTS ON THE JOSEPHSON CURRENT

We consider the influence of nanotube chirality on the
supercurrent through an SNS junction based on a single-wall
carbon nanotube. The standard approach for describing
S/SWNT/S junctions is to model the normal region as a Lut-
tinger liquid.42 In Luttinger liquids there are specific phe-
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I 0
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� �/ 0

FIG. 2. Persistent current as a function of magnetic flux for different values
of the chiral angle near the off-resonance point ��c=��n0+1 /2��; �
=0.402 rad and U0=70 results in n0=20 �this integer represents the 20-th
off-resonance point counted from �=� /2 in D����: the solid curve corre-
sponds to �=0.398 rad, the dashed curve to �=0.418 rad.
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nomena �strong enhancement of backscattering off local im-
purities, spin-charge and charge-entropy separation� which
are absent in Fermi liquids. The most important property for
charge transport is strong renormalization of the scattering
potential by electron-electron interactions, which results in a
power-law dependence of the differential conductance on
temperature and bias voltage �the Kane-Fisher effect43�.
Backscattering processes ��k�2kF� mix quasiparticles �elec-
trons and holes� of different helicities and the chiral proper-
ties of the nanotube cease to be relevant. It is known44 that in
a fully transparent junction �without normal backscattering�
the Josephson current is not renormalized by electron-
electron interactions. In long SNS tunnel junctions, interac-
tions mostly lead to a renormalization �suppression for repul-
sive interactions� of the junction transparency.45,32 In both
cases the chirality of the junction does not affect the super-
current at all.

There is a certain analogy between supercurrents in long
SNS junctions �d��0, where d is the length of the junction
and �0=hvF /�0 is the superconducting coherence length�
and persistent currents in normal-metal ballistic rings.46 We
have seen already that chiral tunneling leads to new effects in
persistent currents. What is the effect of chiral tunneling on
the Josephson current through an S/SWNT/S junction?

To calculate the supercurrent in an SNS junction using
the equation

J =
4e




��

��
�17�

�where � is the thermodynamic potential, � is the phase
difference and the factor 4 counts spin and pseudospin de-
generacies�, we need to know the spectrum of the Andreev
bound states in the normal region �here a SWNT containing
a “soft” scatterer�. Although we know the scattering charac-
teristics of our potential from Eqs. �5� and �6�, we cannot
begin by the known formulae for the spectrum of Andreev–
Kulik levels47 and the Josephson current in an SNS junction
in terms of the junction transparency. The Andreev scattering
in graphene has some peculiarities �specular Andreev
reflection�48 relative to ordinary SNS junctions. Therefore,
we shall follow the standard approach and find the spectrum
by solving the Bogoliubov-de Gennes �BdG� equation with
the order parameter ��x� constant in the superconductors
���x�=�0ei�L for x�0, ��x�=�0ei�R for x�d, where �L

−�R=�� and ��x�=0 in the normal region. The scatterer is
placed at the point x= l inside the normal region.

By matching the plane wave solutions of the BdG equa-
tion in the normal region at points x=0, l ,d we obtain an
equation for the bound state energies �Andreev–Kulik
levels47�

cos�2Ed


vF
− 2 arccos

E

�0

 = D���cos �

+ R���cos�2E�2l − d�

vF


 ,

�18�

where R��� and D��� are given by Eq. �5�. The spectral equa-
tion, Eq. �18�, is the standard equation for the bound state
energies in an SNINS junction �I denotes the scatterer inside
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the normal region�. The phase factor which an electron �hole�
acquires during chiral tunneling is energy independent in our
model. The phases acquired by electrons and holes are op-
posite in sign and cancel out in the spectral equation. In
addition, as opposed to the problem of persistent currents in
a ballistic ring, the effective flux �both statistical and chiral�
�eff=kFL−U0 cos � does not enter the spectral equation �18�.
In the process of Andreev reflection at an S/N boundary, two
electrons with small total momentum �k	kF� penetrate into
the bulk superconductor. This means that an electron in the
+kF-valley is reflected as a hole in the −kF-valley �and vice
versa�. The electron and the hole have opposite momenta and
opposite pseudospin �but the same helicity�. The two pos-
sible helicities ��1� result in an additional factor 2 in the
definition of the Josephson current Eq. �17�. We have already
seen in the previous section that particles in the different
valleys carry effective fluxes �eff with opposite signs. These
contributions to the spectral equation, Eq. �17�, cancel out.
As a result all information in Eq. �17� specific to SWNTs is
hidden in the transmission probability D���. In particular, the
nanotube chirality does not influence the Josephson current
at all in the absence of normal scattering �U0=0�.

What, then, are the effects of chiral tunneling on the
Josephson current? In chiral nanotubes the junction transpar-
ency is an oscillating function of the strength, U0, of the
“soft” scattering potential. Therefore one can expect an
anomalous �non-monotonic� behavior of the critical current
as a function of potential strength. For resonant chiral tun-
neling, U0 cos �=�n0, the junction becomes fully transparent
�Dr=1� and the supercurrent through an SNINS junction
equals �i� the Josephson current through a superconducting
constriction �for a short junction d	�0, where �0 is the su-
perconducting coherence length�,49 Jmax

�s� ���
= �2e� /
�sin�� /2� �the additional factor 2 in this formula is
due to pseudospin degeneracy�, or �ii� the supercurrent
through a long, d��0, transparent junction Jmax

�l� ���
=2�evF /d��� /��, where �����. For resonant chiral tunnel-
ing the supercurrent does not depend on the position of the
scatterer inside the normal region. For off-resonant tunneling
the current in a long junction does depend on the actual
position �x= l� of the local scatterer. However, the effect is
numerically small. For the two limiting cases of symmetric
�l=d /2� and maximally asymmetric �l=0,d� junctions, the
supercurrents are

Js
off��;�� =

2

�

evF

d

cos2 � sin �

�1 − �sin2 � + cos2 � cos ��2

� arccos�sin2 � + cos2 � cos �� , �19�

Ja
off��;�� =

2

�

evF

d

cos2 � sin �

��1 + sin2 ��2 − cos4 � cos2 �

� arccos� cos2 � cos �

1 + sin2 �
� . �20�

The behavior of the supercurrents Js,a for different chiral
angles is shown in Fig. 3. We see that for given � and �, the
current through a symmetric junction is always larger �al-
though the effect is numerically small� than the current
through an asymmetric junction.
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It has been proposed that the pair of Andreev levels in a
short SNS junction be used as a qubit �“Andreev qubit,” see
Ref. 50� and for cooling of nanoelectromechanical devices.51

In these proposals the coherent dynamics of the Andreev–
Kulik levels occur deep inside the gap region �E	�0, where
�0 is the superconducting order parameter�. This regime can
be attained only with almost fully transparent junctions, and
chiral nanotube-based junctions might be promising candi-
dates for the fabrication of SNS junctions with high transpar-
ency D−1	1.

In the general case of non-resonant chiral tunneling, the
minimum energy separation between a pair of Andreev–
Kulik levels in a short SNS junction is Eg���=2�0

�1
−D���. The minimal junction transparency Dmin=cos2 � is
reached at U0 cos �=��n0+1 /2� �chiral off-resonance�, so
the gap

Eg��� = 2�0 sin � �21�

could be arbitrarily small for nanotubes with small chiral
angles.

V. RESONANT TUNNELING THROUGH A CHIRAL QUANTUM
DOT

Resonant electron tunneling in quantum wires52 is a co-
herent quantum mechanical phenomenon which is extremely
sensitive to the electron energy spectrum. Transport experi-
ments with quantum dots in the resonant tunneling regime
�resonant transport spectroscopy� yield valuable information
about the electron energies and electron wave functions in
the dot by measuring the position and the shape of resonance
conductance peaks as functions of the gate voltage. Since
their discovery, single-wall carbon nanotubes have been re-
garded as promising elements for future nanoelectronics. In
particular, carbon nanotube-based single electron transistors
�SET� have been fabricated and electron transport through
these molecular devices has been studied over a wide range
of temperatures.53 The observation at low temperatures of
Coulomb blockade oscillations and resonant electron tunnel-

0 0.5 1.0 1.5 2.0
–2

–1

0

1

2

���

J(
)/

I
�

��
0

FIG. 3. The Josephson current �in units of I0=evF /d� in a long junction,
U0=70; the solid curves correspond to the chiral resonance ��=0.158 rad�
and two off-resonance cases �=0.276 rad and �=0.507 rad �symmetric
junction�; the corresponding currents in an asymmetric junction are repre-
sented by the dashed curves.
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ing in long �a few hundred nanometers� metallic SWNTs
means that electrons are delocalized along the whole length
of the structure. This fact is usually explained by the specif-
ics �Klein paradox� of charge carrier �massless Dirac elec-
trons� scattering in SWNTs by long-range tube defects.26

Chiral tunneling in this sense has already been indirectly
observed in SWNT-based quantum dots. Here we consider
the direct influence of chiral tunneling on the resonant trans-
port properties of quantum dots.

We model a “chiral quantum dot” by a finite length �L�
metallic chiral SWNT, Eq. �1�, with a “soft” local scatterer,
Eq. �4�, placed at a distance l from the left end of the nano-
tube. The nanotube is connected to the leads by normal tun-
nel barriers, which results in a finite �small� width � of the
electron energy levels �we assume the widths are energy in-
dependent�. The electron energy spectrum can be found, to
lowest order in �, by assuming that the end barriers are in-
finite. The corresponding boundary conditions can be formu-
lated as the absence of any electron �Dirac� current through
the ends of the nanotube, i.e., jD�x=0,L�=0. Since scattering
at the ends connects electrons in the +kF and −kF valleys, the
current should be expressed in terms of the 4-spinors �T

= ��+
T ,�−

T�, where T denotes transposition. For our Hamil-
tonian, Eq. �1�, the current is given by

jD�x� = vF�†�x��
0 ei� 0 0

e−i� 0 0 0

0 0 0 − e−i�

0 0 − ei� 0
���x� . �22�

The physically evident solution for these boundary condi-
tions is scattering at the boundaries, with a left-moving fer-
mion in the “�”-valley being transformed into a right-
moving fermion in the “�”-valley and all analogous
processes following L�↔R�. In general, this scattering is
accompanied by an energy-independent phase shift.

By matching the plane wave solutions of the Dirac equa-
tion at the points x=0, l ,L using our boundary conditions and
the matrix Eq. �11� for “�”- and “�”-valleys ��→−�� we
obtain the spectral equation

cos�2kL − ����� = R���cos�2k�L − 2l��

+ D���cos�2kFL − 2U0 cos �� , �23�

where the total scattering phase ���� is given by

���� = arctan� sin�2U0 cos ��cos �

cos2�U0 cos ��cos2 � − sin2�U0 cos ��

= 2�� f��� − U0 cos �� . �24�

Equation �23� coincides with Eq. �18� of Ref. 54. However,
the expressions for the scattering data are different in our
case �the assumptions about the scattering potential used to
derive the transmission and reflection amplitudes in Ref. 54
are not satisfied in our model�. The derived spectral equation
has a simple physical interpretation. The phase terms in Eq.
�23� depend on: �i� the “quantization length” 2L �at the
boundaries inter-valley electron scattering occurs and a
2L-path is necessary to form a closed trajectory�, �ii� twice
the forward scattering phase 2� f��� acquired by a particle as
it crosses the scattering potential twice, and �iii� the twice the
ense or copyright; see http://ltp.aip.org/about/rights_and_permissions
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chiral phase 2U0 cos �=2�c, which is added to the geometri-
cal phase 2kFL.

Since the momentum kF is defined for an undoped nano-
tube it can be expressed in terms of the total number of
particles in a half-filled conduction band as kFL=�N /2,
where N=4�m+2�, with m an integer. �See the discussion in
Sec. III.� We see that the phase associated with the terms in
kFL does not influence the spectral properties of chiral quan-
tum dots. For armchair nanotubes �R�0�=0 and � f�0�=2U0

+�n with modulus 2�� the spectral equation reads cos�2kL
−2U0�= �cos 2U0, which results in two sets of equidistant
energy levels ��E=�
vF /L� which are shifted relative each
other by � f�0�
vF /L. Note that, for � f ��, the level spacing
is approximately halved �this halved level spacing is usually
regarded as an averaged level spacing in SWNT�. In the case
of chiral resonant tunneling, the electron energy spectrum in
a chiral nanotube does not depend on the position of the
chiral scatterer �as for armchair nanotubes�. It is still equidis-
tant with energy spacing �
vF /L. In the general case of
nonresonant scattering, the energy spectrum is quasi-random
for irrational values l /L. The distribution of the number of
energy levels over the level spacing �normalized by �E
=�
vF /L� for a given potential strength and different chiral
angles is shown in Fig. 4. Levels with energy differences less
then the level width � are regarded as “degenerate.” We see
that two �-function-like peaks for �=0 occur with suffi-
ciently strong backscattering �D	1� for a distribution which
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FIG. 4. The distribution of the number of energy levels over the level spa
=0.49 rad �D=0.8� �a�, �=0.52 rad �D=0.75� �b�, �=0.955 rad �D=0.4� �
equidistant energy levels: �E /�E=0.13 and 0.36. The distribution for l /L=
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resembles the Wigner–Dyson distribution. Although small
transmission coefficients correspond to nonphysical chiral
angles �� close to � /2� in our model �real potentials Vd and
Vo of equal strengths�, small transparencies in chiral tunnel-
ing could be realized in the general case of nonsymmetric
potentials.

With resonant electron tunneling through quantum dots,
the distribution of the spaces between the peak �maximum�
conductances as a function of gate voltages is determined by
the distribution of the level spacings in the electron energy
spectrum. We have shown that the mechanism of chiral tun-
neling is sensitive to the chirality of nanotubes. This phe-
nomenon could, therefore, be used to determine the nanotube
chiral angle by resonant transport spectroscopy.

VI. CONCLUSION

In this paper we have introduced the new concept of
chiral tunneling in metallic single-wall carbon nanotubes.
There are significant differences between the Klein �or chi-
ral� tunneling of massless 2D Dirac-like particles in graphene
�well studied in recent years27� and chiral tunneling of 1D
massless fermions in SWNTs. In the 2D scattering problem
for graphene, even a scalar electromagnetic potential can
backscatter massless Dirac electrons if the incident angle of a
scattering particle is not close to zero �for normal incidence
the transmission coefficient is always D=1�. In a SWNT,

N

N

b

d

0.150 0.200 0.250 0.300

0

50

100

150

200

0.10 0.20 0.30 0.400

20

40

60

80

100

120

140

160

� �E/ E

� �E/ E

�normalized by �E=�
�F /L� for U0=20 and different chiral angles: to �
d ��� /2 �D=0.06� �d�. For the armchair nanotube we have two sets of
and �=0.002 is shown here.
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scattering is a 1D problem and one can expect a finite reflec-
tion probability for massless Dirac particles only in chiral
nanotubes in which spiral-like electron “motion” along the
cylinder axis mimics some features of 2D scattering. In ad-
dition, with nontrivial scattering �R�0� the scattering poten-
tial cannot be purely electrostatic �“diagonal” in our repre-
sentation for the Dirac matrices�. The presence of non-
diagonal components induced by a pseudovector potential
�pseudomagnetic effects� are crucial for chiral tunneling in
nanotubes. Here we have used a phenomenological approach
to the problem and postulated a matrix scattering potential of
the form of Eq. �2� in order to study the general properties of
chiral tunneling. We know of at least one example where
such a matrix potential has been derived microscopically: the
effective scattering potential induced by fullerene molecules
in nano-peapods.28 Note that magnetic potentials in nano-
structures are, as a rule, long-range and are consistent with
our assumption of a “smooth” scattering potential.

We have shown that in chiral tunneling, besides the
�small� reflection probability, one of the important physical
characteristics which also plays a significant role in the pro-
cess is the chiral phase, �c=U0 cos �, a quantity associated
with the effective vector potential experienced by the particle
in the process of tunneling. It is worth noting that the for-
ward and backward scattering phases in chiral tunneling are
related by the simple expression � f −�b=�c. The quantized
chiral phase determines the conditions for resonant ��c=�n,
where n is an integer, and Dr=1� and off-resonant ��c

=��n+1 /2�, D0=cos2 �� chiral tunneling.
The chiral phase is added to the magnetic flux in the

problem of Aharonov–Bohm oscillations and its appearance
can result in a spontaneous persistent current in a ring with
an asymmetric population of zero-energy modes. Since par-
ticles with opposite helicities acquire chiral phases of oppo-
site signs, the chiral phases are cancelled in the Josephson
current problem when a pair of electrons �−kF+kF� tunnel to
the bulk superconductor. We have demonstrated the non-
trivial role played by the chiral phase in various phase co-
herent phenomena in nanostructures.

The last question we would like to discuss here is the
influence of electron-electron interactions on chiral tunnel-
ing. We assume that the interaction is not strong, otherwise
Luttinger liquid effects, which strongly enhance
2kF-backscattering, will violate our assumption of a smooth
diagonal scattering potential. It is physically evident that,
under the conditions of resonant chiral tunneling �Dr=1�,
electron-electron interactions do not renormalize chiral scat-
tering potentials at all. Off-resonance there is finite back-
scattering and one could expect its enhancement by �repul-
sive� interaction effects. This problem merits special
consideration. Here we note briefly that, in the limit of weak
interactions, when renormalization is induced by electron
scattering on Friedel oscillations,55 the naive mean-field ap-
proximation for the interaction potential does not lead to
logarithmic infra-red singularities in the backscattering am-
plitudes.
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