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Using the method of breaking circular symmetry and the subsequent symmetry restoration via projection
techniques, we present calculations for the ground-state energies and excitation spectra of N-electron parabolic
quantum dots in strong magnetic fields in the medium-size range 10�N�30. The physical picture suggested
by our calculations is that of finite rotating electron molecules �REMs� comprising multiple rings, with the
rings rotating independently of each other. An analytic expression for the energetics of such nonrigid multiring
REMs is derived; it is applicable to arbitrary sizes given the corresponding ring configuration of classical point
charges. We show that the rotating electron molecules have a nonrigid �nonclassical� rotational inertia exhib-
iting simultaneous crystalline correlations and liquidlike �nonrigidity� characteristics. This mixed phase ap-
pears in high magnetic fields and contrasts with the picture of a classical rigid Wigner crystal in the lowest
Landau level.
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I. INTRODUCTION

A. Computational motivation

Due to the growing interest in solid-state nanostructures,
driven by basic research and potential technological consid-
erations, two-dimensional �2D� N-electron semiconductor
quantum dots �QDs� in field-free conditions and under
applied magnetic fields �B� have been extensively studied
in the last few years, both experimentally1–3 and
theoretically.4–9 Experimentally, the case of parabolic QDs
with a small number of electrons �N�30� has attracted par-
ticular attention, as a result of precise control of the number
of electrons in the dot that has been demonstrated in several
experimental investigations.

Naturally, QDs with a small number of electrons are also
most attractive for theoretical investigations, since their
ground-state properties and excitation spectra can be
analyzed4–8,10–13 through exact-diagonalization �EXD� solu-
tions of the many-body Schrödinger equation. In particular,
in combination with certain approximate methods, which are
less demanding computationally while providing highly ac-
curate results and a transparent physical picture �e.g., the
method of successive hierarchical approximations,7,9 see be-
low�, EXD calculations confirmed the spontaneous formation
of finite rotating electron molecules �REMs� and the descrip-
tion of the excited states with magic angular momenta as
yrast rotational bands of these REMs7 �sometime the REMs
are referred to as “rotating Wigner molecules,” RWMs�.
However, the number of Slater determinants in the EXD
wave-function expansion increases exponentially as a func-
tion of N, and as a result EXD calculations to date have been
restricted to rather low values of N, typically with N�10;
this has prohibited investigation of REMs with multiple
rings. A similar problem appears also with other wave func-
tions that are expressed as a discrete sum over Slater deter-
minants, such as the analytic REM wave functions �see Refs.
7�a� and 7�b��, or the variational Monte Carlo approach of
Ref. 14.

Most EXD calculations �see, e.g., Refs. 4, 7�b�, and 10–
12� have been carried out in the regime of very strong mag-
netic field �i.e., B→��, such that the Hilbert space can be
restricted to the lowest Landau level �LLL�; in this regime,
the confinement does not have any influence on the compo-
sition of the microscopic many-body wave function �see Sec.
II B�. EXD calculations as a function of B that include ex-
plicitly the full effect of the confinement,5,6,8,13 i.e., mixing
with higher Landau levels, are more involved, and thus they
are scarce and are usually restricted to very small sizes with
N�4. An exception is presented by the method of hyper-
spherical harmonics,5,6 which, however, may not be reliable
for all the sizes up to N�10 �see below�.

Systematic EXD calculations beyond the numerical bar-
rier of N�10 electrons are not expected to become feasible
in the near future. In this paper, we show that a microscopic
numerical method, which was developed by us recently and
is based on successive hierarchical approximations �with in-
creasing accuracy after each step� is able to go beyond this
barrier. This approach �referred to, for brevity, as the “two-
step method”� can provide high-quality calculations describ-
ing properties of QDs as a function of B in the whole size
range 2�N�30, with (or without) consideration of the ef-
fect of the confinement on the mixing with higher Landau
levels. In this paper, we will consider the case of fully polar-
ized electrons, which in typical GaAs experimental devices
is appropriate for strong B such that the ground-state angular
momentum L�L0�N�N−1� /2 �see Sec. II A and footnotes
therein�.

The minimum value L0 specifies the so-called maximum
density droplet �MDD�; its name results from the fact that it
was originally defined15 in the LLL where it is a single Slater
determinant built out of orbitals with contiguous single-
particle angular momenta 0 ,1 ,2 , . . . ,N−1. We will show,
however �see Sec. IV B�, that mixing with higher Landau
levels is non-negligible for MDD ground states that are fea-
sible in currently available experimental quantum dots; in
this case the electron density of the MDD is not constant, but
it exhibits oscillations.
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B. Nonclassical (nonrigid) rotational inertia

The existence of an exotic supersolid crystalline phase
with combined solid and superfluid characteristics has been
long conjectured16–18 for solid 4He under appropriate condi-
tions. The recent experimental discovery19 that solid 4He ex-
hibits a nonclassical �nonrigid� rotational inertia �NCRI18�
has revived an intense interest20–24 in the existence and prop-
erties of the supersolid phase in this system, as well as in the
possible emergence of exotic phases in other systems.

As we show here, certain aspects of supersolid behavior
�e.g., the simultaneous occurrence of crystalline correlations
and nonrigidity under rotations� may be found for electrons
in quantum dots. As aforementioned, under a high magnetic
field, the electrons confined in a QD localize at the vertices
of concentric polygonal rings and form a rotating electron
molecule.7 We show that the corresponding rotational inertia
strongly deviates from the rigid classical value, a fact that
endows the REM with supersolidlike characteristics �in the
sense of the appearance of a nonclassical rotational inertia,
but without implying the presence of a superfluid compo-
nent�. Furthermore, the REM at high B can be naturally
viewed as the precursor of a quantum crystal that develops in
the lowest Landau level �LLL� in the thermodynamic limit.
Due to the lack of rigidity, the LLL quantum crystal exhibits
a “liquidlike” behavior. These conclusions were enabled by
the development of an analytic expression for the excitation
energies of the REM that permits calculations for an arbi-
trary number of electrons, given the classical polygonal-ring
structure in the QD.25

The paper is organized as follows. Section II is devoted to
a description of computational methods for the properties of
electrons in QDs under high magnetic fields, with explicit
consideration of effects due to the external confinement. In
Sec. III, we compare results from various computationals
methods with those obtained via exact diagonalization. Illus-
trative examples of the formation of crystalline rotating elec-
tron molecules with ground-state multiple concentric polygo-
nal ring structures, and their isomers, are given in Sec. IV for
QDs with N=6,9 ,11,17. The yrast band of rotational exci-
tations �at a given B� is analyzed in Sec. V along with the
derivation of an analytic formula that provides for stronger
fields �and/or higher angular momenta� accurate predictions
of the energies of REMs with arbitrary numbers of electrons.
In Sec. IV, we discuss the nonrigid �liquidlike� characteristics
of electrons in quantum dots under high magnetic fields as
portrayed by their nonclassical rotational inertia. We summa-
rize our findings in Sec. VII. For an earlier shorter version of
this paper, see Ref. 26.

II. DESCRIPTION OF COMPUTATIONAL METHODS
THAT CONSIDER THE EXTERNAL CONFINEMENT

A. The REM microscopic method

In our method of successive hierarchical approximations,
we begin with a static electron molecule �SEM�, described
by an unrestricted Hartree-Fock �UHF� determinant that vio-
lates the circular symmetry.9 Subsequently, the rotation of
the electron molecule is described by a post-Hartree-Fock

step of restoration of the broken circular symmetry via pro-
jection techniques.7,9 Since we focus here on the case of
strong B, we can approximate the UHF orbitals �first step of
our procedure� by �parameter-free� displaced Gaussian func-
tions; that is, for an electron localized at R j �Zj�, we use the
orbital

u�z,Zj� =
1

���
exp�−

	z − Zj	2

2�2 − i	�z,Zj;B�
 , �1�

with �=�
 /m*�; �=��0
2+�c

2 /4, where �c=eB / �m*c� is
the cyclotron frequency and �0 specifies the external para-
bolic confinement. We have used complex numbers to repre-
sent the position variables, so that z=x+ iy, Zj =Xj + iY j. The
phase guarantees gauge invariance in the presence of a per-
pendicular magnetic field and is given in the symmetric
gauge by 	�z ,Zj ;B�= �xY j −yXj� /2lB

2 , with lB=�
c /eB.
For an extended 2D system, the Zj’s form a triangular

lattice.27 For finite N, however, the Zj’s coincide7,9,28 with the
equilibrium positions �forming r concentric regular polygons
denoted as �n1 ,n2 , . . . ,nr�� of N=�q=1

r nq classical point
charges inside an external parabolic confinement.25 In this
notation, n1 corresponds to the innermost ring with n1
0.
For the case of a single polygonal ring, the notation �0,N� is
often used; then it is to be understood that n1=N.

The wave function of the static electron molecule �SEM�
is a single Slater determinant 	�SEM�z�� made out of the
single-electron wave functions u�zi ,Zi�, i=1, . . . ,N. Corre-
lated many-body states with good total angular momenta L
can be extracted7 �second step� from the UHF determinant
using projection operators. The projected rotating electron
molecule state is given by

	�L
REM� = 


0

2�

. . . 

0

2�

d�1, . . . ,d�r

� 	�SEM��1, . . . ,�r��exp�i�
q=1

r

�qLq
 . �2�

Here L=�q=1
r Lq and 	�SEM���� is the original Slater determi-

nant with all the single-electron wave functions of the qth
ring rotated �collectively, i.e., coherently� by the same azi-
muthal angle �q. Note that Eq. �2� can be written as a product
of projection operators acting on the original Slater determi-
nant �i.e., on 	�SEM��1=0 , . . . ,�r=0���. Setting �= lB

�2 re-
stricts the single-electron wave function in Eq. �1� to be en-
tirely in the lowest Landau level7 �see Appendix A�. The
continuous-configuration-interaction form of the projected
wave functions �i.e., the linear superposition of determinants
in Eq. �2�� implies a highly entangled state. We require here
that B is sufficiently strong so that all the electrons are
spin-polarized29 and that the ground-state angular momen-
tum L�L0�N�N−1� /2 �or equivalently that the fractional
filling factor ��L0 /L�1�.

Due to the point-group symmetries of each polygonal ring
of electrons in the SEM wave function, the total angular
momenta L of the rotating crystalline electron molecule are
restricted to the so-called magic angular momenta, i.e.,
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Lm = L0 + �
q=1

r

kqnq, �3�

where the kq’s are non-negative integers30 �when n1=1, k1
=0�.

The partial angular momenta associated with the qth ring,
Lq �see Eq. �2��, are given by

Lq = L0,q + kqnq, �4�

where L0,q=�i=iq+1
iq+nq �i−1� with iq=�s=1

q−1ns �i1=0�, and L0

=�q=1
r L0,q.
The energy of the REM state �Eq. �2�� is given9,28 by

EL
REM = 


0

2�

h�����ei���·�L�d����

0

2�

n�����ei���·�L�d��� ,

�5�

with the Hamiltonian and overlap matrix elements
h�����= ��SEM��0�� 	H 	�SEM������ and n�����
= ��SEM��0�� 	�SEM������, respectively, and ��� · �L�
=�q=1

r �qLq. The SEM energies are simply given by ESEM
=h ��0�� /n��0��.

The many-body Hamiltonian is

H = �
i=1

N

Hsp�i� + �
i=1

N

�
j
i

N
e2

�rij
, �6�

with

Hsp�i� =
1

2m*�pi −
e

c
Ai
2

+
m*

2
�0

2ri
2 �7�

being the single-particle part. The Hamiltonian H describes
N electrons �interacting via a Coulomb repulsion� confined
by a parabolic potential of frequency �0 and subjected to a
perpendicular magnetic field B, whose vector potential is
given in the symmetric gauge by A�r�= 1

2 �−By ,Bx ,0�. m* is
the effective electron mass, � is the dielectric constant of the
semiconductor material, and rij = 	ri−r j	. For sufficiently high
magnetic fields, the electrons are fully spin-polarized and the
Zeeman term �not shown in Eq. �6�� does not need to be
considered.29 Thus the calculations in this paper do not in-
clude the Zeeman contribution, which, however, can easily
be added �for a fully polarized dot, the Zeeman contribution
to the total energy is Ng*�BB /2, with g* being the effective
Landé factor and �B the Bohr magneton�.

The crystalline polygonal-ring arrangement �n1 ,n2 , . . . ,
nr� of classical point charges is portrayed directly in the elec-
tron density of the broken-symmetry SEM, since the latter
consists of humps centered at the localization sites Zj’s �one
hump for each electron�. In contrast, the REM has good an-
gular momentum and thus its electron density is circularly
uniform. To probe the crystalline character of the REM, we
use the conditional probability distribution �CPD� defined as

P�r,r0� = ��	�
i�j

��ri − r���r j − r0�	��/��	�� , �8�

where ��r1 ,r2 , . . . ,rN� denotes the many-body wave func-
tion under consideration. P�r ,r0� is proportional to the con-

ditional probability of finding an electron at r, given that
another electron is assumed at r0. This procedure subtracts
the collective rotation of the electron molecule in the labo-
ratory frame of reference, and, as a result, the CPDs reveal
the structure of the many-body state in the intrinsic �rotating�
reference frame.

B. Exact diagonalization in the lowest Landau level

We describe here a widely used approximation4,10,31 for
calculating the ground state at a given B, which takes advan-
tage of the simplifications at the B→� limit, i.e., when the
relevant Hilbert space can be restricted to the lowest Landau
level �then 
�0� 
�c /2 �for B→�� and the confinement
can be neglected at a first step�. Then, the many-body Hamil-
tonian �see Eq. �6�� reduces to

HLLL
B→� = N


�c

2
+ �

i=1

N

�
j
i

N
e2

�rij
. �9�

Due to the form of the limiting Hamiltonian in Eq. �9�,
one can overlook the zero-point-energy term and perform an
exact diagonalization only for the Coulomb interaction part.
The corresponding interaction energies can be written as

E˜int,LLL
EXD �L� = E˜int,LLL

EXD �L�
e2

�lB
, �10�

where E˜int,LLL
EXD is dimensionless. The subscript “int” identifies

the e−e interaction as the source of this term.
In this approximation scheme, at finite B the external con-

finement 
�0 is taken into consideration only through the
lifting of the single-particle degeneracy within the LLL,
while disregarding higher Landau levels. As a result, the ef-
fect of the confinement enters here only as follows: �i� in the
interaction term �see Eq. �10��, one scales the effective mag-
netic length, i.e., one replaces lB by � /�2 �see Sec. II A for
the definition of lB and �� without modifying the dimension-

less part E˜int,LLL
EXD , and �ii� the contribution, Esp

n=0�B ,L� �refer-
enced to N
��, of the single-particle Hamiltonian �i=1

N Hsp�i�
to the total energy �see Eq. �6�� is added to E˜int,LLL

EXD �L� �cor-
responding to the second term on the right-hand side of Eq.
�6��. Esp

n=0�B ,L� is the sum of Darwin-Fock single-particle
energies �n,l

DF with zero nodes �n=0; the corresponding single-
particle states become degenerate at B→� and form the low-
est Landau level�. Since

�n,l
DF = �2n + 1 + 	l	� 
 � − l 
 �c/2, �11�

the Esp
n=0�B ,L� is linear in the total angular momentum L

=�i=1
N li, i.e.,

Esp
n=0�B,L� = 
 �� − �c/2�L . �12�

Note that Esp
n=0�B→ � ,L�→0.

We denote the final expression of this approximation by

E˜tot,LLL
EXD ; it is given by

E˜tot,LLL
EXD �B,L� = Esp

n=0�B,L� + �2 E˜int,LLL
EXD �L�

e2

��
. �13�
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An approximate ground-state energy for the system can
be found through Eq. �13� by determining the angular-
momentum value Lgs that minimizes this expression. In the
following, this ground-state energy at a given B will be de-
noted simply by omitting the variable L on the left-hand-side

of Eq. �13�, i.e., E˜tot,LLL
EXD �B��E˜tot,LLL

EXD �B ,Lgs�.
We note that, although few in number, full EXD calcula-

tions for finite B that take into consideration both the con-
finement 
�0 and the actual complexity of the Darwin-Fock
spectra �including levels with n
0� have been reported5,6,8,13

in the literature for several cases with N=3 and N=4 elec-
trons. These calculations will be of great assistance in evalu-
ating the accuracy of the REM method �see Sec. III�.

In the above Eq. �13�, we have used exact diagonalization
in the lowest Landau level for evaluating the interelectron
interaction contribution to the total energy. In alternative
treatments, one may obtain the interelectron energy contribu-
tion through the use of various approximate wave functions
restricted to the LLL. These include the use of the Laughlin
wave function and descendants thereof �e.g., composite fer-
mions�, or the rotating electron wave functions at the limit
B→�, which is reached by setting �= lB

�2 in the right-hand
side of Eq. �1� �defining the displaced orbital�. For these

cases, we will use the obvious notations E˜tot,LLL
Laughlin�B ,L�,

E˜tot,LLL
CF �B ,L�, and E˜tot,LLL

REM �B ,L�.

III. COMPARISON OF APPROXIMATE RESULTS WITH
EXACT DIAGONALIZATION CALCULATIONS

A. Ground-state energies in external confinement

Before proceeding with the presentation of results for
N
10, we demonstrate the accuracy of the two-step method
through comparisons with existing EXD results for smaller
sizes. In Fig. 1, our calculations for ground-state energies as
a function of B are compared to EXD calculations5 for N
=4 electrons in an external parabolic confinement. The thick
dotted line �red� represents the broken-symmetry UHF ap-
proximation �first step of our method�, which naturally is a
smooth curve lying above the EXD one �solid line �green��.
The results obtained after restoration of symmetry �dashed-
dotted line �blue�; marked as REM� agree very well with the
EXD one in the whole range 2 T�B� 15 T.32 We recall here
that, for the parameters of the QD, the electrons form in the
intrinsic frame of reference a square about the origin of the
dot, i.e., a �0,4� configuration, with the zero indicating that
no electron is located at the center. According to Eq. �3�,
L0=6, and the magic angular momenta are given by Lm=6
+4k, k=0,1 ,2 , . . ..

To further evaluate the accuracy of the two-step method,
we also display in Fig. 1 �thin dashed line �violet�� ground-
state energies calculated with the commonly used4,10,31 ap-

proximation E˜tot,LLL
EXD �B� �see Sec. II B�. We find that the en-

ergies E˜tot,LLL
EXD �B� tend to substantially overestimate the REM

�and EXD� energies for lower values of B �e.g., by as much
as 5.5% at B�4 T�. On the other hand, for higher values of

B �
 12 T�, the energies E˜tot,LLL
EXD �B� tend to agree rather well

with the REM ones. A similar behavior is exhibited also by

FIG. 1. �Color online� Two-step method versus EXD calcula-
tions: Ground-state energies for N=4 electrons �referenced to 4
��
as a function of the magnetic field B. Thick dashed line �red�:
broken-symmetry UHF �SEM�. Solid line �green�: EXD �from Ref.
5�. Thick dashed-dotted line �blue�: REM. Thin dashed line �violet,

marked LLL�: the commonly used approximate energies E˜tot,LLL
EXD �B�

�see Eq. �13��. Thin dotted line �black�: E˜tot,LLL
REM �B� �see Sec. II B�.

For B�8 T, the E˜tot,LLL
EXD �B� and E˜tot,LLL

REM �B� curves coincide; we
have checked that these curves approach each other also at larger
values of B, outside the plotted range. Numbers near the bottom
curves denote the value of magic angular momenta �Lm, see Eq. �3��
of the ground state. Corresponding fractional filling factors are
specified by �=N�N−1� / �2Lm�. Parameters used: confinement

�0=3.60 meV, dielectric constant �=13.1, effective mass m*

=0.067me.

FIG. 2. �Color online� Two-step method versus EXD calcula-
tions: Ground-state energies �per particle, referenced to 
�� for N
=3 electrons. The electrons are arranged in a �0,3� structure in the
intrinsic frame of reference. Thick dashed line �red�: broken-
symmetry UHF �SEM�. Thinner solid line �green�: EXD �from Ref.
13�. Thick solid line �blue�: REM. Thin dashed line �violet�: the

commonly used approximate energies E˜tot,LLL
EXD �B� �see text�. Thin

dotted line �black�: E˜tot,LLL
REM �B� �see text�. For B�8 T, the

E˜tot,LLL
EXD �B� and E˜tot,LLL

REM �B� curves coincide; we have checked that
these curves approach each other also at larger values of B, outside
the plotted range. Numbers denote the value of magic angular mo-
menta �Lm� of the ground state. Corresponding fractional filling
factors are specified by �=N�N−1� / �2Lm�. Parameters used: con-
finement 
�0=3.37 meV, dielectric constant �=12.4, effective
mass m*=0.067me.
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the E˜tot,LLL
REM �B� energies �the interaction energies are calcu-

lated within the LLL using the REM wave function; dotted
line �black��. We have found that the overestimation exhib-
ited by the E˜tot,LLL

EXD �B� energies is due to the fact that the

actual dimensionless Coulomb coefficient E˜int,LLL
EXD �L� �See

Eq. �13�� is not independent of the magnetic field, but de-
creases slowly as B decreases when the effect of the confine-
ment is considered �see Appendix B�. A similar agreement
between REM and EXD results, and a similar inaccurate
behavior of the limiting-case approximation, was found by
us also for N=3 electrons in the range 2 T�B�16 T shown
in Fig. 2 �the EXD calculation was taken from Ref. 13�.

In all cases, the total energy of the REM is lower than that
of the SEM �see, e.g., Figs. 1 and 2�. Indeed, a theorem
discussed in Sec. III of Ref. 33, pertaining to the energies of
projected wave functions, guarantees that this lowering of
energy applies for all values of N and B.

B. Yrast rotational band at B\�

As a second accuracy test, we compare in Table I REM
and EXD results for the interaction energies of the yrast band
for N=6 electrons in the lowest Landau level �an yrast state
is the lowest energy state for a given magic angular momen-
tum Lm, Eq. �3��. The relative error is smaller than 0.3%, and
it decreases steadily for larger L values.

IV. ILLUSTRATIVE EXAMPLES FROM MICROSCOPIC
REM CALCULATIONS

A. Which ring isomer has the lowest ground-state energy?
REM versus UHF energies

For a given number N of electrons, there exist25 in general
more than one polygonal-ring isomers, associated with stable

and metastable equilibrium configurations of N electrons in-
side an external harmonic confinement 
�0. Figure 3 dis-
plays UHF and REM ground-state energies for N=6 and N
=9 electrons associated with the various classical polygonal-
ring configurations. For N=6, one has two isomers, i.e., a
�0,6� configuration and a �1,5� configuration �with one elec-
tron at the center�. For N=9 electrons, there exist three dif-
ferent isomers, i.e., �0,9�, �1,8�, and �2,7�. From the bottom
panel in Fig. 3, we observe that for N=9 electrons, the low-
est REM energies correspond to the classically stable isomer,
i.e., to the �2,7� configuration with two electrons in the inner
ring and seven electrons in the outer ring. In particular, we
note that the �0,9� isomer �which may be associated with a
single-vortex state� yields REM energies far above the �2,7�
one in the whole magnetic-field range 5 T�B�25 T, and in
particular for magnetic fields immediately above those asso-
ciated with the MDD �the so-called MDD breakup range�;
the MDD for N=9 electrons has an angular momentum L0
=36 and corresponds to the first energy oscillation in the
figure.

We have found that the �0,N� isomer is not associated
with REM ground energies for any magnetic-field range in
all cases with N�7. The only instance when the �0,N� con-
figuration is associated with a REM ground-state energy is
the N=6 case �see Fig. 3, top frame�, where the REM energy
of the �0,6� configuration provides the ground-state energy in

TABLE I. Comparison of yrast-band energies obtained from
REM and EXD calculations for N=6 electrons in the lowest Landau
level, that is in the limit B→�. In this limit the external confine-
ment can be neglected and only the interaction energy contributes to
the yrast-band energies. Energies in units of e2 / ��lB�. For the REM
results, the �1,5� polygonal-ring arrangement was considered. For
L�140, see Table IV in Ref. 7�b� and Table III in Ref. 9�c�. The
values of the fractional filling may be obtained for each L as �
=N�N−1� / �2L�.

L REM EXD Error �%�

140 1.6059 1.6006 0.33

145 1.5773 1.5724 0.31

150 1.5502 1.5455 0.30

155 1.5244 1.5200 0.29

160 1.4999 1.4957 0.28

165 1.4765 1.4726 0.27

170 1.4542 1.4505 0.26

175 1.4329 1.4293 0.25

180 1.4125 1.4091 0.24

185 1.3929 1.3897 0.23

190 1.3741 1.3710 0.23

195 1.3561 1.3531 0.22

200 1.3388 1.3359 0.21

FIG. 3. �Color online� Comparison of REM and UHF ground-
state energies per particle �referenced to 
�� associated with differ-
ent ring isomers for N=6 and N=9 electrons as a function of the
magnetic field B. The curves are labeled with the computational
method and the isomer �n1 ,n2�. To the left of the vertical arrow �at
B=11.5 T�, the UHF�1,8� curve is energetically favored. To the
right of the vertical arrow, the UHF�2,7� curve is energetically fa-
vored. Parameters used: confinement 
�0=3.6 meV, dielectric con-
stant �=13.1, effective mass m*=0.067me.
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the range 6.1 T�B� 7.7 T, immediately after the breakup of
the MDD.

For comparison, we have also plotted in Fig. 3 the UHF
energies as a function of the magnetic field. Most noticeable
is the fact that the REM ground states, compared to the UHF
ones, may result in a different ordering of the isomers. For
example, in the range 5 T�B�6.1 T, the UHF indicates, by
a small energetic advantage, the �0,6� as the ground-state
configuration associated with the MDD, while the REM
specifies the �1,5� arrangement as the ground-state configu-
ration. A similar switching of the ground-state isomers is also
seen between the �1,8� and �2,7� configurations in the case of
N=9 electrons in the magnetic-field range 5 T�B�11.5 T.
We conclude that transitions between the different electron-
molecule isomers derived from UHF energies alone34,35 are
not reliable.

B. The case of N=9 electrons

In Fig. 4 we show ground-state energies for the case of
N=9 electrons, which have a nontrivial double-ring configu-
ration �n1 ,n2�. Here, the most stable configuration for classi-
cal point charges25 is �2,7�, for which we have carried UHF
�SEM� and REM �projected� calculations in the magnetic
field range 5 T�B�25 T. We also display in Fig. 4 the

energies E˜tot,LLL
REM �B� �dotted curve �black��, which, as in the

N=4 and N=3 cases discussed in Sec. III, overestimate the
ground-state energies, in particular for smaller B.36 In keep-
ing with the findings for smaller sizes7�c� �with �0,N� or
�1,N−1� configurations�, both the UHF and the REM
ground-state energies of the N=9 case approach as B→� the
classical equilibrium energy of the �2,7� polygonal configu-
ration �i.e., 16.75 meV; 4.088E0 in the units of Ref. 25, E0
��m*�0

2e4 /2�2�1/3�.
In analogy with smaller sizes �see, e.g., Figs. 1 and 2 for

N=4 and N=3�, the REM ground-state energies in Fig. 4
exhibit oscillations as a function of B. These oscillations re-
flect the incompressibility of the many-body states associated
with magic angular momenta. The magic angular momenta

are specified by the number of electrons on each ring, and in
general they are given by Lm=N�N−1� /2+�q=1

r kqnq, where
the nq’s are the number of electrons located in the qth ring
and the kq’s are non-negative integers; in particular, Lm=36
+2k1+7k2 for the N=9 case in Fig. 4. An analysis of the
actual values taken by the set of indices �k1 ,k2� reveals sev-
eral additional trends that further limit the allowed values of
ground-state Lm’s. In particular, starting with the values �k1

=0 ,k2=0� at B=5 T �Lm
MDD=36�, the indices �k1 ,k2� reach

the values �2,24� at B=25 T �Lm=208�. As seen from Table
II, the outer index k2 has a short period, while the inner index
k1 exhibits a longer period and increases much more slowly
than k2. This behavior minimizes the total kinetic energy of
the independently rotating rings �having a variable radius,
see Sec. V below�.

We also list in Table III the first few pairs of indices

�k1 ,k2� associated with the E˜tot,LLL
REM curve �see top dotted

curve in Fig. 4�. It can be seen that the magic angular mo-
menta are different from those associated with the REM
curve, when the confinement is taken into consideration us-
ing the full projected wave function in Eq. �2�. The magic

angular momenta of the E˜tot,LLL
REM curve coincide with the Lm’s

of the EXD within the LLL, and thus are characterized by

TABLE II. Ground-state magic angular momenta and their de-
composition �k1 ,k2� for N=9 in the magnetic-field range 5 T�B
�25 T. These results correspond to the REM �see lower curve in
Fig. 4, with the electrons arranged in a �2,7� structure�. The param-
eters used are as in Fig. 4.

Lm k1 k2 Lm k1 k2

36 0 0 129 1 13

43 0 1 136 1 14

50 0 2 143 1 15

57 0 3 150 1 16

64 0 4 157 1 17

71 0 5 164 1 18

78 0 6 171 1 19

87 1 7 173 2 19

94 1 8 180 2 20

101 1 9 187 2 21

108 1 10 194 2 22

115 1 11 201 2 23

122 1 12 208 2 24

TABLE III. Ground-state magic angular momenta and their de-

composition �k1 ,k2� for N=9 electrons associated with the E˜tot,LLL
REM

curve �top curve in Fig. 4; see Sec. II B for an explanation of
notation; the electrons are arranged in a �2,7� structure�.

Lm k1 k2 Lm k1 k2

36 0 0 57 0 3

45 1 1 64 0 4

52 1 2 71 0 5

FIG. 4. �Color online� Ground-state energies �i.e., for the �2,7�
configuration� for N=9 electrons �per particle, referenced to 
�� as
a function of the magnetic field B. Dashed line �red�: UHF �SEM�.
Solid line �blue�: REM. Dotted line �black�: approximate energies

E˜tot,LLL
REM �B� �see text�. Parameters used: confinement 
�0

=3.60 meV, dielectric constant �=13.1, effective mass m*

=0.067me.
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having L0+N=45 �instead of L0+n2=43� as the magic angu-
lar momentum immediately following that of the MDD �i.e.,
L0=36�. The L0+N magic angular momentum is associated
with the �0,N� ring arrangement, which can be interpreted as
a single “vortex-in-the-center” state.

Based on EXD calculations restricted to the lowest Lan-

dau level12,37,38 �that is, E˜int,LLL
EXD or E˜tot,LLL

EXD in our notation�, it
has been conjectured that, for QDs with N�15, the breakup
of the MDD with increasing B proceeds through the forma-
tion of the above-mentioned single central vortex state. How-
ever, our REM calculations show �see also the case of N
=11 electrons in Sec. IV C and the case of N=17 electrons in
Sec. IV D� that taking into account properly the influence of
the confinement does not support such a scenario. Instead,
the breakup of the MDD resembles an edge reconstruction
and it proceeds �for all dots with N
6� through the gradual
detachment of the outer ring associated with the ground-state
classical polygonal configuration �see Table II for the case of
N=9 electrons�. The only case we found where the breakup

of the MDD proceeds via a �0,N� vortex state is the one with
N=6 electrons �see Sec. IV A�, and naturally the cases with
N�5.

As another illustration of the subtle, but important, differ-
ences that exist between wave functions defined exclusively
within the LLL and those specified by the REM wave func-
tion for finite B in Eq. �2�, we display in Fig. 5 for N=9
electrons the radial electron densities of the MDD at B→�
and at B=5.5 T. While the electron density of the MDD in
the LLL �B→ � � is constant in the central region �up to r
�3lB, see Fig. 5�a��, the corresponding density at B=5.5 T
displays the characteristic oscillation corresponding to the
�2,7� multiring structure �see Fig. 5�b��; the latter behavior is
due to the mixing of higher Landau levels. To further illus-
trate the �2,7� crystalline character of the MDD when higher
Landau levels are considered, we display in Fig. 6 the corre-
sponding CPDs associated with the REM wave function of
the MDD at B=5.5 T and an external confinement of 
�0
=3.6 meV. Our conclusions concerning the MDD electron
densities �and CPDs� are supported by EXD calculations for
N=4 electrons.39 Note that, while the radial ring structure is
well developed in the CPDs shown in Fig. 6, the azimuthal
�2,7� structure of the rings �see in particular the outer ring in
the left panel in Fig. 6� is rather weak, as expected for the
lowest angular momentum L0 �MDD�. However, the ring
structure is easily discernible in contrast to the CPDs for the
MDD restricted to the LLL where structureless CPDs �as
well as structureless electron densities� are found.

C. The case of N=11 electrons

Figure 7 presents the case for the ground-state energies of
a QD with N=11 electrons, which have a nontrivial double-
ring configuration �n1 ,n2�. The most stable25 classical con-
figuration is �3,8�, for which we have carried UHF �SEM�
and REM �projected� calculations in the magnetic field range
5 T�B�25 T. Figure 7 also displays the LLL ground-state

energies E˜tot,LLL
REM �B� �dotted curve �black��, which, as in pre-

FIG. 5. �Color online� REM radial electron densities for the
MDD �Lm=L0=36� of N=9 electrons �in the �2,7� ground-state con-
figuration� at �a� B→�, i.e., in the lowest Landau level and �b� at
B=5.5 T. Parameters used in �b�: confinement 
�0=3.60 meV, di-
electric constant �=13.1, effective mass m*=0.067me. Lengths: �a�
in units of the magnetic length lB; �b� in units of R0

= �2e2 /m*��0
2�1/3. Electron densities: �a� in units of 1 / lB

2; �b� in
units of 1 /R0

2. Normalization: 2��0
���r�rdr=N.

FIG. 6. �Color online� Conditional probability distributions ob-
tained from REM wave functions of the MDD �L0=36� for N=9
electrons at B=5.5 T �see Fig. 5�b��. The electrons are arranged in a
�2,7� structure. The observation point is denoted by a solid dot. On
the left, the observation point is located on the outer shell, and on
the right it is located on the inner shell. Parameters used: confine-
ment 
�0=3.60 meV, dielectric constant �=13.1, effective mass
m*=0.067me. Lengths in units of R0= �2e2 / ��m*�0

2��1/3. CPDs �ver-
tical axes� in arbitrary units.

FIG. 7. �Color online� Ground-state energies for N=11 electrons
�per particle, referenced to 
�� as a function of the magnetic field
B. Dashed line �red�: UHF �SEM�. Solid line �blue�: REM. Dotted

line �black�: Approximate energies E˜tot,LLL
REM �B� �see text�. Parameters

used: confinement 
�0=3.60 meV, dielectric constant �=13.1, ef-
fective mass m*=0.067me. The inset shows a magnification of the
REM curve in the range 5 T�B�12 T.
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vious cases, overestimate the ground-state energies for
smaller B. The approximation E˜tot,LLL

REM �B�, however, can be
used to calculate ground-state energies for higher values of
B. In keeping with the findings for smaller sizes7�c� �with
�0,N� or �1,N−1� configurations�, we found that both the
UHF and the REM ground-state energies approach, as
B→�, the classical equilibrium energy of the �3,8� polygo-
nal configuration �i.e., 19.94 meV; 4.865E0 in the units of
Ref. 25, E0��m*�0

2e4 /2�2�1/3�.
In analogy with smaller sizes �see, e.g., Figs. 1, 2, and 4

for N=4, 3, and 9, respectively�, the REM ground-state en-
ergies in Fig. 7 exhibit oscillations as a function of B �see in
particular the inset�. As discussed in Sec. IV B, these oscil-
lations are associated with magic angular momenta, specified
by the number of electrons on each ring. For N=11 they are
given by Eq. �3�, i.e., Lm=55+3k1+8k2, with the kq’s being
non-negative integers. As was the case with N=9 electrons,
an analysis of the actual values taken by the set of indices
�k1 ,k2� reveals several additional trends that further limit the
allowed values of ground-state Lm’s. In particular, starting
with the values �0,0� at B=5 T �L0=55�, the indices �k1 ,k2�
reach the values �3,24� at B=25 T �Lm=256�. As seen from
Table IV, the outer index k2 changes faster than the inner
index k1. This behavior minimizes the total kinetic energy of
the independently rotating rings; indeed, the kinetic energy
of the inner ring �as a function of k1� rises faster than that of
the outer ring �as a function of k2� due to the smaller moment
of inertia �smaller radius� of the inner ring �see Eq. �14��.

In addition to the overestimation of the ground-state en-
ergy values, particularly for smaller magnetic fields �see Fig.
7 and our above discussion�, the shortcomings of the LLL
approximation pertaining to the ground-state ring configura-
tions �see Sec. II B, Eq. �13��, as discussed by us above for
N=9, persist also for N=11. In particular, we find that ac-
cording to the LLL approximation the ground-state angular
momentum immediately after the MDD �L0=55� is Lm=66,
i.e., the one associated with the �0,N� vortex-in-the-center
configuration. This result, erroneously stated in Ref. 38 as
the ground state, disagrees with the correct result that in-
cludes the effect of the confinement—listed in Table IV,
where the ground-state angular momentum immediately fol-
lowing the MDD is Lm=63. This angular momentum corre-
sponds to the classically most stable �3,8� ring
configuration—that is a configuration with no vortex at all.

Figure 8 displays the REM conditional probability distri-
butions for the ground state of N=11 electrons at B=10 T
�Lm=106�. The �3,8� ring configuration is clearly visible. We
note that when the observation point is placed on the outer
ring �left panel�, the CPD reveals the crystalline structure of
this ring only; the inner ring appears to have a uniform den-
sity. To reveal the crystalline structure of the inner ring, the
observation point must be placed on this ring; then the outer
ring appears to be uniform in density. This behavior suggests
that the two rings rotate independently of each other, a prop-
erty that we will explore in Sec. V to derive an approximate
expression for the yrast rotational spectra associated with an
arbitrary number of electrons.

D. The case of N=17 electrons

Figure 9 presents �for 5 T�B�15 T� REM and UHF
ground-state energies for N=17 electrons, which have a

�1,6,10� three-ring configuration as the most stable classical
arrangement.25

In analogy with smaller sizes �see, e.g., previous figures
for N�12� the REM ground-state energies in Fig. 9 exhibit
oscillations as a function of B, and each oscillation is asso-
ciated with a given particular �magic� value of the angular
momentum. Earlier in this section we discussed the physical
origins of the magic angular momenta. As before, the magic
angular momenta are specified by the number of electrons on
each ring �Eq. �3��, with L0=136 and Lm=136+6k2+10k3 for
N=17; kq’s being non-negative integers �the central electron
does not contribute to the total angular momentum�. Analysis

TABLE IV. Ground-state magic angular momenta and their de-
composition �k1 ,k2� for N=11 in the magnetic-field range 5 T�B
�25 T. The results correspond to the REM �see lower curve in Fig.
7�. The parameters used are as in Fig. 7.

Lm k1 k2 Lm k1 k2

55 0 0 165 2 13

63 0 1 173 2 14

71 0 2 181 2 15

79 0 3 189 2 16

90 1 4 197 2 17

98 1 5 205 2 18

106 1 6 213 2 19

114 1 7 224 3 20

122 1 8 232 3 21

130 1 9 240 3 22

138 1 10 248 3 23

146 1 11 256 3 24

154 1 12

FIG. 8. �Color online� REM conditional probability distributions
for N=11 electrons at B=10 T �L=106�. The electrons are arranged
in a �3,8� structure. The observation point �solid dot� is placed on
�left� the outer ring at r0=1.480R0, and �right� on the inner ring at
r0=0.557R0. Parameters used: confinement 
�0=3.60 meV, dielec-
tric constant �=13.1, effective mass m*=0.067me. Lengths in units
of R0= �2e2 /m*��0

2�1/3. CPDs �vertical axes� in arbitrary units.
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of the particular values taken by the set of indices �k2 ,k3�
reveals similar trends to those found for the cases with N
=9 and N=11 electrons. In particular, starting with the val-
ues �0,0� at B=5 T �L0=136�, the indices �k2 ,k3� reach the
values �k2=5 ,k3=18� at B=15 T �Lm=346�. As seen from
Table V, the outer index k3 changes faster, than the inner
index k2. This behavior minimizes the total kinetic energy of
the independently rotating rings, as was already discussed for
N=9 and N=11 electrons.

We have also calculated the ground-state energies for N
=17 electrons in the LLL approximation, i.e., we calculated

the quantity E˜tot,LLL
REM �B� �not shown in Fig. 9�. We find once

more that E˜tot,LLL
REM �B� overestimates the ground-state energies

in the magnetic-field range covering the MDD and the range
immediately above the MDD. For N=17, however, the short-
coming of the LLL approximation is not reflected in the de-
termination of the ground-state ring configurations. We find
that for N=17 the LLL approximation yields a �1,6,10� ring
configuration �with Lm=146� for the ground state immedi-

ately following the MDD, in agreement with the REM con-
figurations listed in Table V.

V. REM YRAST BAND EXCITATION SPECTRA
AND DERIVATION OF ANALYTIC

APPROXIMATE FORMULA

In Fig. 10, we display the CPD for the REM wave func-
tion of N=17 electrons. This case has a nontrivial three-ring
structure �1,6,10�,25 which is sufficiently complex to allow
generalizations for larger numbers of particles. The remark-
able combined character �partly crystalline and partly fluid
leading to a nonclassical rotational inertia, see Sec. VI� of the
REM is illustrated in the CPDs of Fig. 10. Indeed, as the two
CPDs �reflecting the choice of taking the observation point
�r0 in Eq. �8�� on the outer �left frame� or the inner ring �right
frame�� reveal, the polygonal electron rings rotate indepen-
dently of each other. Thus, e.g., to an observer located on the
inner ring, the outer ring will appear as having a uniform
density, and vice versa. The wave functions obtained from
exact diagonalization exhibit also the property of indepen-
dently rotating rings �see e.g., the N=12 and L=132 ��
=1/2� case in Fig. 11�, which is a testimony to the ability of
the REM wave function to capture the essential physics40 of
a finite number of electrons in high B. In particular, the con-
ditional probability distribution obtained for exact diagonal-
ization wave functions in Fig. 11 exhibits the characteristics
expected from the CPD evaluated using REM wave func-
tions for the �3,9� configuration and with an angular-
momentum decomposition into shell contributions �see Eqs.
�2� and �4�� L1=3+3k1 and L2=63+9k2 �L1+L2=Lm; for
Lm=132 the angular-momentum decomposition is L1=6 and
L2=126�.

In addition to the conditional probabilities, the solid/fluid
character of the REM is revealed in its excited rotational
spectrum for a given B. From our microscopic calculations
based on the wave function in Eq. �2�, we have derived �see
below� an approximate �denoted as “app”�, but analytic and
parameter-free, expression �see Eq. �19� below� which re-

TABLE V. Ground-state magic angular momenta and their de-
composition �k2 ,k3� for N=17 electrons in the magnetic-field range
5 T�B�15 T. The results correspond to the REM �see lower
curve in Fig. 9�. The parameters used are as in Fig. 9.

Lm k2 k3 Lm k2 k3

136 0 0 238 2 9

146 0 1 248 2 10

156 0 2 264 3 11

166 0 3 274 3 12

172 1 3 284 3 13

182 1 4 294 3 14

192 1 5 310 4 15

202 1 6 320 4 16

212 1 7 330 4 17

218 2 7 340 4 18

228 2 8 346 5 18

FIG. 9. �Color online� Ground-state energies �per particle, ref-
erenced to 
�� for N=17 electrons as a function of the magnetic
field B. The electrons are arranged in a �1,6,10� structure. Dashed
line �red�: UHF. Solid line �blue�: REM. Parameters used: confine-
ment 
�0=3.6 meV, dielectric constant �=13.1, effective mass
m*=0.067me.

FIG. 10. �Color online� Ground-state conditional probability
distributions, CPDs, obtained from REM wave functions for the
ground state of N=17 electrons at B=10 T �L=228�. The electrons
are arranged in a �1,6,10� structure. The observation point �solid
dot� is placed on the outer ring at r0=1.858R0 �left frame�, and on
the inner ring at r0=0.969R0 �right frame�. The rest of the param-
eters are the same as in Fig. 9. Lengths in units of R0

= �2e2 / ��m*�0
2��1/3. CPDs �vertical axes� in arbitrary units.
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flects directly the nonrigid �nonclassical� character of the
REM for arbitrary size. This expression allows calculation of
the energies of REMs for arbitrary N, given the correspond-
ing ring configuration of confined classical point charges.

We focus on the description of the yrast band at a given B.
Motivated by the aforementioned nonrigid character of the
rotating electron molecule, we consider the following
kinetic-energy term corresponding to a �n1 , . . . ,nq , . . . ,nr�
configuration �with �q=1

r nq=N�:

Eapp
kin �N� = �

q=1

r


2Lq
2/�2Jq�aq�� − 
 �cL/2, �14�

where Lq is the partial angular momentum associated with
the qth ring about the center of the dot and the total angular
momentum is L=�q=1

r Lq. Jq�aq��nqm*aq
2 is the rotational

moment of inertia of each individual ring, i.e., the moment of
inertia of nq classical point charges on the qth polygonal ring
of radius aq. To obtain the total energy, EL

REM, we include
also the term Eapp

hc �N�=�q=1
r Jq�aq��2 /2 due to the effective

harmonic confinement � �see discussion of Eq. �1��, as well
as the interaction energy Eapp

C ,

Eapp
C �N� = �

q=1

r
nqSq

4

e2

�aq
+ �

q=1

r−1

�
s
q

r

VC�aq,as� . �15�

The first term is the intra-ring Coulomb-repulsion energy of
nq pointlike electrons on a given ring, with a structure factor

Sq = �
j=2

nq

�sin��j − 1��/nq��−1. �16�

The second term is the inter-ring Coulomb-repulsion energy
between rings of uniform charge distribution corresponding
to the specified numbers of electrons on the polygonal rings.
The expression for VC is

VC�aq,as� = nqns 2F1�3/4,1/4;1;4aq
2as

2�aq
2 + as

2�−2�

� e2�aq
2 + as

2�−1/2/� , �17�

where 2F1 is the hypergeometric function.
For large L �and/or B�, the radii of the rings of the rotating

molecule can be found by neglecting the interaction term in
the total approximate energy, thus minimizing only Eapp

kin �N�
+Eapp

hc �N�. One finds

aq = ��Lq/nq, �18�

i.e., the ring radii depend on the partial angular momentum
Lq, reflecting the lack of radial rigidity. Substitution into the
above expressions for Eapp

kin , Eapp
hc , and Eapp

C yields for the total
approximate energy the final expression

Eapp,L
REM�N� = 
 �� − �c/2�L + �

q=1

r
CV,q

Lq
1/2

+ �
q=1

r−1

�
s
q

r

VC���Lq

nq
,��Ls

ns

 , �19�

where the constants

CV,q = 0.25nq
3/2Sqe2/���� . �20�

For simpler �0,N� and �1,N−1� ring configurations, Eq. �19�
reduces to the expressions reported earlier.7�c�,41

VI. A NONRIGID CRYSTALLINE PHASE: NONCLASSICAL
ROTATIONAL INERTIA OF ELECTRONS IN

QUANTUM DOTS

In Fig. 12 �left frame�, and for a sufficiently high mag-
netic field �e.g., B=100 T such that the Hilbert space of the
system reduces to the lowest Landau level�, we compare the
approximate analytic energies Eapp,L

REMwith the microscopic en-
ergies EL

REM calculated from Eq. �5� using the same param-
eters as in Fig. 9 for N=17 electrons. The two calculations
agree well, with a typical difference of less than 0.5% be-
tween them. More important is the marked difference be-
tween these results and the total energies of the classical
�rigid rotor� molecule �EL

rig�, plotted in the right frame of Fig.
12; the latter are given by

EL
rig = 
2L2/�2Jrig� + 0.5�

i=1

N

m*�0
2	Zi	2 + �

i=1

N

�
j
i

N

e2/��	Zi − Zj	� ,

�21�

with the rigid moment of inertia being42

Jrig = �
i=1

N

m*	Zi	2. �22�

The disagreement between the REM and the classical en-
ergies is twofold: �i� The L dependence is different, and �ii�
the REM energies are three orders of magnitude smaller than
the classical ones. That is, the energy cost for the rotation of
the REM is drastically smaller than for the classical rotation,
thus exhibiting nonclassical rotational behavior. In analogy

FIG. 11. �Color online� CPDs for N=12 electrons and with an-
gular momentum L=132 ��=1/2� calculated with EXD in the low-
est Landau level. The electrons are arranged in a �3,9� structure. The
observation point �solid dot� is placed on the outer ring at r0

=5.22lB �left frame�, and on the inner ring at r0=1.87lB �right
frame�. Lengths in units of lB. CPDs �vertical axes� in arbitrary
units.
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with Ref. 18, we define a “nonrigidity” index

� = �EL
rig − EL

REM�/EL
rig. �23�

For the case displayed in Fig. 12, we find that this index
varies �for 1116�L�3716� from �=0.978 to �=0.998, in-
dicating that the rotating electron molecule, while possessing
crystalline correlations is �rotationally� of a high nonrigid
nature. We remark that our definition of � in Eq. �23� was
motivated by a similar form of an index of superfluid frac-
tion introduced in Ref. 18; we do not mean to imply the
presence of a superfluid component for electrons in quantum
dots.

In the context of the appearance of supersolid behavior of
4He under appropriate conditions, formation of a supersolid
fraction is often discussed in conjunction with the presence
of �i� real defects and �ii� real vacancies.16,17 Our REM wave
function �Eq. �2�� belongs to a third possibility, namely to
virtual defects and vacancies, with the number of particles
equal to the number of lattice sites �in the context of 4He, the
possibility of a supersolid with equal number of particles and
lattice sites is mentioned in Ref. 20�. Indeed, the azimuthal
shift of the electrons by ��1 ,�2 , . . . ,�r� �see Eq. �2�� may be
viewed as generating virtual defects and vacancies with re-
spect to the original electron positions at ��1=0 ,�2

=0 , . . . ,�r=0� on the polygonal rings.
A recent publication31 has explored the quantal nature of

the 2D electron molecules in the lowest Landau level �B
→ � � using a modification of the second-quantized LLL
form of the REM wave functions.7 In particular, the modifi-
cation consisted of a multiplication of the parameter-free
REM wave function by variationally adjustable Jastrow-
factor vortices. Without consideration of the rotational prop-
erties of the modified wave function, the inherently quantal

nature of the molecule was attributed exclusively to the Ja-
strow factor. However, as shown above, the original REM
wave function �Eq. �2�� already exhibits a characteristic non-
classical rotational inertia �NCRI�. Consequently, the addi-
tional variational freedom introduced by the Jastrow prefac-
tor may well lead energetically to a slight numerical
improvement, but it does not underlie the essential quantal
physics of the system. Indeed, as discussed previously and
illustrated in detail above, the important step is the projection
of the static electron molecule onto a state with good total
angular momentum �see Eqs. �1� and �2��.

VII. SUMMARY

The focus of this study pertains to the development of
methods that permit investigations of the energetic, struc-
tural, and excitation properties of quantum dots in strong
magnetic fields with an �essentially� arbitrary number of
electrons. Towards this aim, we utilized several computa-
tional methods, and have assessed their adequacy. The meth-
ods that we have used are �1� exact diagonalization which is
limited to a rather small number of particles; �2� the “two-
step” successive-hierarchical-approximations method �see
Sec. II A�, in which a UHF step leading to broken-symmetry
solutions �static electron molecule� is followed by restoration
�via projection techniques� of circularly symmetric states
with good angular momenta �rotating electron molecule,
REM�; �3� an approximation method based on diagonaliza-
tion of the electron-electron interaction term restricted to the
lowest Landau level �LLL�; in this method, the total energy
includes, in addition to the LLL diagonalization term, a con-
tribution from the harmonic confinement that is linear in the
total angular momentum; and �4� an analytic expression �see
Sec. V, Eq. �19�� whose derivation is based on the REM.

We performed comparative calculations for quantum dots
with an increasing number of parabolically confined elec-
trons �N=3, 4, 6, 9, 11, and 17�. The ground-state arrange-
ments of the electrons become structurally more complex as
the number of electrons in the dot increases. Using the nota-
tion �n1 ,n2 ,n3 , . . . � for the number of electrons located on
concentric polygonal rings �see Sec. II A�, the ground-state
arrangements are �0,3� for N=3, �0,4� for N=4, �1,5� for N
=6, �2,7� for N=9, �3,8� for N=11, and �1,6,10� for N=17.

Analysis of the results of our calculations revealed that,
for all sizes studied by us, the two-step REM method pro-
vides a highly accurate description of electrons parabolically
confined in quantum dots for a whole range of applied mag-
netic fields, starting from the neighborhood of the so-called
maximum density droplet and extending to the B→� limit.
In contrast, the LLL-diagonalization approximation was
found to be rather inaccurate for weaker magnetic fields,
where it grossly overestimates the total energies of the elec-
trons; the accuracy of this latter method improves at higher
field strengths.

The ground-state energy of the electrons in a QD oscil-
lates as a function of the applied magnetic field, and the
allowed values of the angular momenta are limited to a set of
magic angular momentum values, Lm, which are a natural
consequence of the geometrical arrangement of the electrons

FIG. 12. �Color online� Left: Yrast spectrum for N=17 electrons
at a high magnetic field B=100 T. Approximate analytic expression
�Eq. �19�, dashed line �violet�� compared with microscopic REM
calculations �Eq. �5�, solid line �green��. Right: The corresponding
classical �rigid rotor� energy EL

rig for N=17 electrons �see text�. The
microscopic REM energies are referenced relative to the zero-point
energy, 17
�. Energies were calculated for magic angular mo-
menta L=L1+L2+L3 with L1=0, L2=21+6k2 and k2=30, and L3

=115+10k3. The parameters are the same as in Fig. 9. Note the
much larger energy scale for the classical case �right frame�, leading
to a nonrigidity index for the REM of ��0.99 �see text�.
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in the rotating electron molecule. Accordingly, the electrons
are localized on concentric polygonal rings which rotate in-
dependently of each other �as observed from the conditional
probability distributions, see Sec. IV�. Underlying the afore-
mentioned oscillatory behavior is the incompressibility of the
many-body states associated with the magic angular mo-
menta. The general expression for Lm is given in Eq. �3�, for
a given number N and occupancy of the polygonal rings �nq�.
For the ground-state Lm’s, the values of the non-negative
integers kq in Eq. �3� are taken such as to minimize the total
kinetic energy of the electrons. Since the moment of inertia
of an outer ring is larger than that of an inner ring of smaller
radius, the rotational energy of the outer ring will increase
more slowly with increasing angular momentum. Therefore,
the kq index in Eq. �3� of an outer ring will vary up to
relatively large values while the values corresponding to in-
ner rings remain small �see Sec. IV�. As a consequence, we
find �see Secs. IV B–IV D� through REM calculations with
proper treatment of the confining potential that for N
6,
with increasing strength of the magnetic field, the maximum
density droplet converts into states with no central vortex, in
contrast to earlier conclusions12,37,38 drawn on the basis of
approximate calculations restricted to the lowest Landau
level. Instead we find that the breakup of the MDD with
increasing B proceeds through the gradual detachment of the
outer ring associated with the multiring classical polygonal
configuration.

In addition to the ground-state geometric arrangements,
we have studied for certain sizes higher-energy structural
isomers �see, e.g., the cases of N=6 and N=9 confined elec-
trons in Fig. 3�. We find that for all cases with N�7 multi-
ring confined-electron structures �n1 ,n2 , . . . ,nr�, with
n1 ,n2 , . . . ,nr�0 and r�2, are energetically favored. For N
=6, a �1,5� structure is favored except for a small B range
�e.g., 6.1 T�B�7.7 T for the parameters in Fig. 3�, where
the �0,6� single-ring structure is favored. For N�5 the �0,N�
single-ring structure is favored for all B values.

In the REM calculations, we have utilized an analytic
many-body wave function �Eq. �2�� which allowed us to
carry out computations for a sufficiently large number of
electrons �N=17 electrons having a nontrivial three-ring po-
lygonal structure�, leading to the derivation and validation of
an analytic expression Eq. �19� for the total energy of rotat-
ing electron molecules of arbitrary N.

The nonrigidity implied by the aforementioned indepen-
dent rotations of the individual concentric polygonal rings
motivated us to quantify �see Sec. VI� the degree of nonri-
gidity of the rotating electron molecules at high B, in analogy
with the concept of nonclassical rotational inertia used in the
analysis18,20 of supersolid 4He. These findings for finite dots
suggest a strong quantal nature for the extended Wigner crys-
tal in the lowest Landau level, designating it as a useful
paradigm for exotic quantum solids.
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APPENDIX A: PROOF THAT u„z ,Z… [Eq. (1)] LIES IN THE
LLL WHEN �= lB

�2

Using the identity −i�xY −yX�= �zZ*−z*Z� /2, one finds

u�z,Z;� = lB
�2� =

e�−zz*−ZZ*+2zZ*� � 4lB
2

�2�lB

=
e�−zz*−ZZ*� � 4lB

2

�2�lB
�
l=0

�
1

l!
� zZ*

2lB
2 
l

= �
l=0

�

Cl�Z*��l�z� ,

�A1�

where z=x+ iy, Z=X+ iY, and

Cl�Z*� =
1

�l!
� Z*

lB
�2


l

e−ZZ* � 4lB
2
, �A2�

with

�l�z� =
1

�2�l!lB
� z

lB
�2


l

e−zz* � 4lB
2

�A3�

being the Darwin-Fock single-particle wave functions with
zero nodes forming the LLL.

APPENDIX B: COULOMB MATRIX ELEMENTS
BETWEEN DISPLACED GAUSSIANS [EQ. (1)]

We give here the analytic expression for the Coulomb
matrix elements,

Vijkl =
 
 dr1dr2ui
*�r1�uj

*�r2�
e2

�	r1 − r2	
uk�r1�ul�r2� , �B1�

between displaced Gaussians �see Eq. �1�� centered at four
arbitrary points Zi, Zj, Zk, and Zl.

One has

Vijkl =
e2

��
��

2
e�e−�I0��� , �B2�

with

� = −
ZiZi

* + ZjZj
* + ZkZk

* + ZlZl
*

2�2 + � + !" , �B3�

and

� = �� − !�� − "�/4, �B4�

where

� =
Zk + Zi

2�
+ #

Zk − Zi

2�
, �B5�

 =
Zi

* + Zk
*

2�
+ #

Zi
* − Zk

*

2�
, �B6�

! =
Zl + Zj

2�
+ #

Zl − Zj

2�
, �B7�

" =
Zj

* + Zl
*

2�
+ #

Zj
* − Zl

*

2�
. �B8�
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The magnetic-field dependence is expressed through the
parameter

# =
�2

2lB
2 . �B9�

The length parameters � and lB �magnetic length� are defined
in the text following Eq. �1�. Note that #=0 for B=0 and
#=1 for B→�. The latter offers an alternative way for cal-
culating REM energies and wave functions in the lowest
Landau level without using the analytic REM wave func-
tions presented in Ref. 7.
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