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The crystalline or liquid character of the downward cusp statéséhectron parabolic quantum dots at high
magnetic fields is investigated using conditional probability distributions obtained from exact diagonalization.
These states are of crystalline character for fractional fillings covering both low and high values, unlike the
liquid Jastrow-Laughlin wave functions, but in remarkable agreement with the rotating-Wigner-molecule ones
[Phys. Rev. B66, 115315(2002]. The crystalline arrangement consists of concentric polygonal rings that
rotate independently of each other, with the electrons on each ring rotating coherently. We show that the
rotation stabilizes the Wigner molecule relative to #tatic one defined by the broken-symmetry unrestricted-
Hartree-Fock solution. We discuss the nonrigid behavior of the rotating Wigner molecule and pertinent features
of the excitation spectrum, including the occurrence of a gap between the ground and first-excited states that
underlies the incompressibility of the system. This leads us to conjecture that the rotating (enystabt the
static ong remains the relevant ground state for low fractional fillings even at the thermodynamic limit.
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[. INTRODUCTION particular for high angular momentaorresponding to low
fractional fillings.

Issues pertaining to the liquid or crystalline character of
. . ) ._the cusp states are significant in both the fields of QD’s and
function of angular momentum for a given high magneticy,o FoHE since the many-body wave functions in the low-
field (B), exhibits downward cusps at certain magic angu- est Landau levethigh B) obtained from exact diagonaliza-
lar momentgL,), corresponding to states with enhanced staz;gn, (EXD), the RWM wave functions, and the CF/JL ones
bility. For a give_n_value oB, one of theseLm’s_ corresponds  pave good angular momefita> L,=N(N-1)/2, their elec-
to the global minimum of the energy, that is to the groundy,, gensities areircularly symmetric. Therefore investiga-
state(the ground-state value bf, is denoted abyy). Varying  ion of the crystalline or liquid character of these states
the magnetic field causes the ground state and its angulatqires examination of the conditional probability distribu-
momentumLysto change. We note that due to their enhancedjng (cpDs, ie., the fully anisotropic pair correlation func-
stability, only cusp states can become ground states. Undefiyng These calculations were performed here under high
lying these properties is the inherent incompressibility of themagnetic field conditions for QD'¢in a disk geometrif)
cusp states in response to an external magnetic field. As @i N=6—9electrons, and for an extensive range of angular
result, the cusp states have been long recoghfzéds the 1 omenta. This allowed us to conclude that in all instances
finite-N precursors of the fractional quantum Hall states ingysmined here(corrresponding to 0.46% »>0.111) the
extended systems. In particular, the fractional filling&de-  ¢,5p states exhibit an unmistakably crystalline character, in
fined in the thermodynamic limitare related to the magic onrast to the long held perception in the FQHE literature,

The excitation energy spectrum of a two-dimensional
N-electron semiconductor quantum d@D), plotted as a

angular momenta of the finite-system as follows: with the RWM vyielding superior agreement with the exact-
N(N-1) diagonalization result® Furthermore, the RWM states are
v= oL (1) found to be energetically stabiliz¢de., exhibit gain in cor-
m

relation energy with respect to the correspondingtatic
(Henceforth, we will drop the subscript, unless necessayy. (symmetry-brokepWigner molecules, from which the mul-

In the literature of the fractional quantum Hall effect tideterminantal RWM wave functions are obtained through
(FQHBE), ever since the celebrated papdy Laughlin in  an angular-momentum projectiéh.We will present argu-
1983, the cusp states have been considered to be the antitnents that allow us to conjecture that the stabilization energy
esis of the Wigner crystal and to be described accurately bgf the cusp states in high remains nonvanishing even in the
liquidlike wave functions, such as the Jastrow-Laughith thermodynamic limit.

(JL) and composite-fermidi'2 (CF) ones. This view, how- In the beginning of Sec. Il, we display the Hamiltonian of
ever, has been recently challenfjedy the explicit deriva- the system under consideration and define the conditional
tion of trial wave functions for the cusp states that are assoprobability distributions. Subsequently, in the same section,
ciated with a rotating Wignetor electron molecule, RWM.  we present our main results pertaining to the structural prop-
As we discussetP earlier, the parameter-free RWM wave erties of the CPD’s. Possible improvementes of the RWM
functions!® which are by constructioarystallinein charac- wave functions are discussed in Sec. Il C. In Sec. Ill, we
ter, promise to provide a simpler, but yet improved and moreecapitulate the essential aspects of the two-step method of
consistent description of the properties of the cusp states, isymmetry breaking and symmetry restoration, calculate sta-
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RWM

bilization energies for the RWM, and discuss pertinent fea- N=6, L=135 (v=1/9)  N=6, L=105 (v=1/7)
tures of its excitation spectruim particular, the occurrence ‘ e

of this gap underlies the incompressibility of the systefm ‘
discussion pertaining to implications for the thermodynamic

of a gap between the ground state and the first excited state

that is not a mere consequence of finite size; the appearance

limit is presented in Sec. IV. Finally, a summary is given in

Sec. V. ‘ ‘ % ‘
A, g

II. CONDITIONAL PROBABILITY DISTRIBUTIONS

EXD

We are interested in wave functions which are exact so-

£
lutions (or good approximations to themof the two- 5 &b @
dimensional many-body problem defined by the Hamiltonian T - , °
H= 2 2m*< ) E _worz"' E 2 F FIG. 1. (Color onling Conditional probability distributions at
=1 =1 y= high B for N=6 electrons withL=135 (=3, left column and L
(2) =105(v—— right column). Top row: RWM case. Middle row: The

case of exact diagonalization. Bottom row: The Jastrow-Laughlin

Isi fined i boli ial of f case. It is apparent that the exact diagonalization and RWM wave
pulsion confined in a parabolic potential of frequenay functions have a pronouned crystalline character, corresponding to

and subjected to a perpendicular magnetic fiBjJdwhose  yhe (1 5) polygonal configuration of the rotating Wigner molecule.
vector potential is given in the symmetric gauge by In contrast, the Jastrow-Laughlin wave functions fail to capture this
_1 _1, . crystalline character, exhibiting a rather “liquid” character. The ob-
A(r) =3B X1 =3(=By,Bx0); S servation pointiidentified by a solid dgtwas placed at the maxi-
m* is the effective electron masg,is the dielectric constant mum of the outer ring of the radial electron densigef. 4 and 3
Of the semlconductor materlal anq:|rl r | For Sufﬂ_ of the EXD wave fUnCthn namely Elb 1723188 for L=135 and
ciently high magnetic field valugge., in the FQHE regime  o=6.442g for L=105. Here |g=(#c/eB)!"% The EXD Coulomb
the electrons are fully spin polarized and the Zeeman terrﬁwteractlon energiegin the lowest Landau levelare 1.6305 and
(not shown hergdoes not need to be considered. 1.8533€?/ klg for L=135 andL =105, respectively. The errors rela-
., ) tive to the corresponding EXD energies and the overlaps of the trial
In the B— o limit, the external confinemenb, can be ) ) .
neglected, andd can be restricted to operate in0 the Iowest]cunCtlonS with the EXD ones aré) for L=135, RWM.: 0.34%,
Landau Ie'veI(LLL) reducing to the form 0.860; JL: 0.50%, 0.665 angi) for L=105, RWM: 0.48%, 0.850;
' 9 JL: 0.46%, 0.710.

which describedN electrons(interacting via a Coulomb re-

hog
Hi = N— 2 E F (4) CPD’s for three types of many-body wave functions defined
=1 =1 in the lowest Landau leveli) the analytic rotating Wigner
wherew,=eB/(m*c) is the cyclotron frequency. molecule wave functionpp"™ (see also Sec. Ijf (i) the

For finite N, the solutions to the Schrédinger equationswave functiond"® obtained through exact diagonalization

corresponding to the Hamiltoniari®) and (4) must have a in the lowest Landau level; angii) the Jastrow-Laughlin
good angular momenturh. As described by us in detail in functions®}".
Refs. 4, 5, 16, and 1f%ee also Sec. Il beloythese solu- P(r,ro) is proportional to the conditional probability of
tions can be well approximated by a two-step method ofinding an electron at under the condition that a second
symmetry breaking at the unrestricted Hartree-FAdkiF)  electron is located aty. This quantity positions the observer
level and of subsequent symmetry restoration via poston the moving(intrinsic) frame of reference specified by the
Hartree-Fock projection techniques. As elaborated in our eacollective (coheren rotations that are associated with the
lier work,#516.17the two-step method describes the formationgood angular momenta of the cusp states.
and properties of rotating Wigner molecules in QD’s.

As indicated in the Introduction, probing of structural
characteristics in many-body wave functions with good an- The CPD'’s for cusp states corresponding to a lower filling
gular momentunt requires the use of the conditional prob- factor thanv—— calculated forlN=6 electrons withL=135

P . 1 1
A. Crystallinity in lower fractions g=swv<g

ability distributions defined by (v=¢g, left columr) and for N=6 with L=105 (=7, right
N N column), are displayed in Fig. 1. Figure 2 displays the CPD’s

P(r,ro) = (d 2 S Sri=1)8(r —rg)|d (D, | D). for the cusp states witN=6 electrons and. = 75(1/—3, left

° L|i:1j;&i ' . oli®L Lib column andN=7 andL= 105(1/—3, right column. In both

(5) figures, the top row depicts the RWM case. The EXD case is
given by the middle row, while the CF casgshich reduce
Here @ (rq,rp, ... ,ry) denotes the many-body wave func- to the JL wave functions for these fractiorse given by the
tion under consideration. In this paper, we calculate théottom row.
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N=6, L=75 (v=1/5) N=7, L=105 (v=1/5) N=7, RWM N=7, EXD
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FIG. 2. (Color onling Conditional probability distributions at FIG. 3. (Color onling Conditional probability distributions at
high B for N=6 electrons and-=75 (vzé, left column and for high B for N=7 electrons and.=69 (V:213:0_304>%, top row),
N=7 electrons and.=105 (again v=1, right columr). Top row: L=57 (1>,,:119:o_363>%, middle row, and L=45 (1>,,:1—75
RWM case. Middle row: The case of exact diagonalization. Bottom:0_467>%, bottom row. RWM case: Left column. The case of
row: The Jastrow-Laughlin case. The exact diagonalization angxact diagonalization is depicted in the right column. Even for these
RWM wave functions have a pronouned crystalline character, cortowy magic angular momentghigh fractional fillingy, both the
responding to th&1,5 polygonal configuration of the RWM for  exact-diagonalization and RWM wave functions have a pronouned
N=6, and to th&1,6) polygonal configuration foN=7. In contrast,  crystalline charactefcorresponding to thél,6) polygonal configu-

the Jastrow-Laughlin wave functions exhibit a characteristic liquidration of the RWM forN=7 electrong The observation poiritden-
profile that depends smoothly on the numbeof electrons. The tified by a solid dot is located atro=4.753g for L=69, r,

observation point(identified by a solid dgtis located atr =4.278 for L=57, andr,=3.778 for L=45.
=5.431g for N=6 and L=75 andry=5.8835 for N=7 and L

=105. The EXD Coulomb interaction energi¢®west Landau .
gie (iii) For a finite number of electrons, pronounced crystal-

level) are 2.2018 and 2.914&/ «lg for N=6, L=75 andN=7, L inity of th read h her hiah
=105, respectively. The errors relative to the corresponding Edellty of the EXD states occurs already at the rather hig

energies and the overlaps of the trial functions with the EXD ones™ 5 Value(see Fig. 2 This finding is particularly interesting
are(i) for N=6, L=75, RWM: 0.85%, 0.817; JL: 0.32%, 0.837 and In light of expectation¥’ (based on comparisch¥? be-
(i) for N=7, L=105, RWM: 0.59%, 0.842; JL: 0.55%, 0.754. tween the JL states and the static bulk Wigner cryskedt a
o _ liquid-to-crystal phase transition may take place only at
There are three principal conclusions that can be drawfyyer fillings with V\%_
from an inspection of Figs. 1 and 2.
(i) The character of the EXD states is unmistakably crys-

. ; B. Crystallinity in higher fractions :<w<1
talline with the EXD CPD’s exhibiting a well developed mo- rystafinly in igher fractions =

lecular polygonal configuratiof{(1,5) for N=6 and(1,6) for Following the conclusion that the crystalline character of
N=7, with one electron at the centgein agreement with the the cusp states in QDs is already well developed for frac-
explicitly crystalline RWM case. tional fillings with the unexpected high value mt%, a natu-

(i) For all the examined instancesovering the frac- ral question arises concerning the presence or absence of
tional fillings g, 7, and i), the JL wave functions fail to crystallinity in cusp states corresponding to higher fractional
capture the intrinsic crystallinity of the EXD states. In con-fjllings, i.e., states withé<v<§, and even with§< r<1.
trast, they represent “liquid” states in agreement with anrg answer this question, we show in Fig. 3 the CPD’s for the
analysis that goes back to the original papétsy Laughlin. gy (left column) and EXD(right column) wave functions
In particular, Ref. 10 investigated the character of the Jit o case oN=7 electrons and for=69 (F<v=£%<3),

states through the use of a pair correlation funcfiosually (1l 1 (i 71 .
denoted byg(R)] that determines the probability of finding IIE)E?h(SE ;;rlg;tliz)’nzni(:ll_tﬁgslz(éﬁIIE}_Ii%g;tltzq;aLrJ]?c“hk?/vg]ri
another electron at the absolute relative distaRedr —r |

from the observation pointy,. Our anisotropic CPD of Eq. reasserted in two recent publicatiohsthe CPD's in Fig_. 3 .
(5) is of course more genergind more difficult to calculaje demonstrate that the character of the cusp states with high
than theg(R) function of Ref. 10. However, both oB(r ,r ) fractional fillings is not necessarily “liquidlike.” Indeed,
(for N=6 andN=7 electrong and the g(F\;) (for N=1000 these highr cusp states exhibit a well developed crystallinity
electrons, and fovz% andv= %) in Ref. 10 reveal a similar associated Wit.h thg1,6 polygonal configuration of the
characteristic liquid Tike and short-range-order behavior forX"WM, appropriate foN=7 eIectroqs. _

the JL states, eloquently described in Ref.(6e pp. 249  Of interest also is the case oF3. Indeed, for this frac-
and 25). Indeed, we remark that only the first-neighbor tional filling, the liquid JL function is expected to provide the
electrons on the outer rings can be distinguished as separd@st approximation, due to very high overlajmetter than
localized electrons in our CPD plots of the JL functigeee  0.99 with the exact wave functioff:?!In Fig. 4, we display
Figs. 1 and 2 the CPD’s forN=7 andL=63 (v=3), and for the three cases
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FIG. 4. (Color onling CPD’s at highB for N=7 andL=63 (v inner

=§). Top: RWM case. Middle: EXD case. Bottom: JL case. Unlike
the JL CPD (which is liquid, the CPD's for the exact-

diagonalization and RWM wave functions exhibit a well developed s N )
crystalline charactefcorresponding to thel,6) polygonal configu- sults: Left column. Results from exact diagonalization are depicted

) _ _ 1
ration of the RWM forN=7 electrong The observation poirtden- " the right column. Top rowN=8 electrons and.=91 (5<v
o ) ; =2=0.308< ). Two bott N=9 elect d=101(3
tified by a solid dotis located at=4.568g. =13=0. 3/- 1wo bottom rows:N=9 electrons and.=10113

< v:%:0.356< 1, see text for explanatignEven for these low

. . . . magic angular momentéhigh fractional fillingg, both the exact-
of RWM, EXD, and JL wave functions. Again, even in this diagonalization and RWM wave functions have a pronouned crys-

m.ost favorable case, 'the CP'D_ of the JL function disagreeémne characteffcorresponding to thél,7) and (2,7) polygonal
with the EXD one, which exhibits clearly @,6) crystalline  ¢,nfigurations of the RWM foN=8 and 9 electrorjs The observa-

FIG. 5. (Color onling Additional CPD’s at highB. RWM re-

configuration in agreement with the RWM CPD. tion point (identified by a solid dotis located atry=5.108g for
Similar crystalline correlations at higher fractions weren=g, | =91, andr,=5.2185 (outep andry=1.6625 (innen for N
also found for QDs of a different size, e.g., with=6, N =9, L=101.

=8, andN=9 electrons. As illustrative examples for these

additional sizes, we display in Fig. 5 the CPD’s fér8 and  tion of Fig. 2(see in particular the errors in the energies for

L=91 (%<V:1i3<%) and forN=9 andL=101 (;<V:l%61 the RWM and JL functions relative to the exact energies

<1). Again, the CPD's(both for the RWM and the Exp 9iven at the end of the captign

; o : _ Close inspection of the humps in the CPD’s obtained from
wave functiony exh|p|t a well developed crystalline charac the RWM and through exact diagonalization reveals that the
ter in accordance with thel,7) and(2,7) polygonal configu-

. . RWM tends to somewhat overestimate the degree of crystal-
rations of the_ RWM, appropriate fdi=8 andN=9 elec- linity, i.e., the RWM humps are narrower anc? higr(ﬂnisy
trons, respectively. _ o _ tendency diminishes for larger values bf. Nevertheless,

The case oN=9 is of particuler significance. Indeed it o gegree of overall agreement between the exact results
represents the smallest number of electrons with a nontrivial,q those obtained through tparameter-freeRWM wave
concentric-ring arrangement, i.e., the inner ring has mor@ynctions is rather remarkable. Moreover, the high level of
than one electrons. As the two CPRQiflecting the choice agreement between the RWM and exact results extends to
of taking the observation poiiit, in Eg. (5)] on the outer or  other properties. This includes the zergefen called vorti-
the inner ring for N=9 reveal, the polygonal electron rings ceg of the many-body wave functions. Indeed, as recently
rotateindependentlyf each other. Thus, e.g., to an observershown in Ref. 22, the exact wave functigirs contrast to the
located on the inner ring, the outer ring will appear as uni-JL one$ havesimple zeroesvhose topology is in agreement
form, and vice versa. The fact that both the RWM and exactith that of the simple zeroes of the RWM functions.
wave functions share this property of independently rotating The above suggest that the RWM wave functions can
rings is a testament to the ability of the RWM theory to form the nucleus for constructing a whole class of rotating
capture the essential physics of QD’s in high crystalline functions with added variational freedom, which
will yield further quantitative energetic and structural im-
provements. For example, the RWM functions could be used
as the basis for constructing variational wave functions in

It is of importance to note here that the favorable com-diffusior?® and variation&* quantum Monte Carlo studies.
parison between the crystalline structure of the RWM andror a most recent investigation along these lines, see Ref. 25,
that of the exact wave functions, in contrast to the liquidlikewhere our RWM function is augmented by a Jastrow prefac-
character of the JL functions, persists even for cases whetgr with an exponent that is treated variationally. We remark,
the latter is found to have the advantagwer the RWN  however, that the variational wave function employed in Ref.
concerning total energies and wave function overlaps. A®5 has multiple zeroes due to the Jastrow factor, in disagree-
examples, we refer to the casemié discussed in the cap- ment with the exact diagonalization results.

C. Improvements of the RWM wave functions
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I1l. RESTORATION OF CIRCULAR SYMMETRY
-0.15
A. Correlated many-body wave functions

Our two-step method for deriving the RWM wave func- -0.25
tion is anchored in the distinctibhbetween astatic and a
rotating Wigner molecule, with the rotation stabilizing the
latter relative to the former. Further elaboration on this point
requires generation of global ground states out of the cusp
states, achieved through incluséiof an external parabolic
confinementof frequencywyg). In the two-step method, the
static WM s first described by an unrestricted Hartree-Fock
(UHF) determinant that violates the circular symmefry. B (T)
Subsequently, the rotation of the WM is described by a post-
Hartree-Fock step of restoration of the broken circular sym-  FIG. 6. Stabilization energieAEZ" for N=6 (dashed curve
metry via projection techniqué8.We note that, in the limit andN=7 (solid curve fully polarized electrons in a parabolic QD
N— o, the static WM of the UHF develops to the extendedas a function oB. The troughs associated with the major fractional
two-dimensional Wigner cryst&land its more sophisticated fillings (3, £, and %) and the corresponding ground-state angular
variantst® momentgsee Eq(1)] are indicated with arrows. We have extended
In general, the localized broken symmetry orbitals of thethe calculations up tdB=120 T (not shown, and verified that
HF determinant are determined numerically via a self-AEg:m remains negative while its absolute value vanishesBas
consistent solution of the UHF equations. Since we focus—. The choice of parameters #8y,=3 meV (parabolic confine-
here on the case of higB, we can approximate the UHF men), m*=0.067m. (electron effective magsand«=12.9(dielec-
orbitals(first step of our proceduydyy (parameter freedis-  tric constant
placed Gaussian functions; namely, for an electron localized
atR; (Z;), we use the orbital orbital in Eq.(6) to lie entirely in the lowest Landau level,
5 and allows for the derivation of the analytic RWM
uzZ) = 1 p(— z-Zj| gz Z~'B)) (6) functions® We stress that while the initial trial wave function
(O 2 RN of the UHF equations consists of a single determinant, the
_ / _ projected wave function is a linear superposition of many
with A=\/m* Q, Q=\wi+wi/4, wherew;=eB/(m*c) is  determinants, as can be explicitly seen from the analytic
the cyclotron frequency. We have used complex numbers téorms of the RWM functions in Ref. 5.
represent the position variables, so thak+iy, Z;=X;+iY;. o
The phase guarantees gauge invariance in the presence of a B. Stabilization energy
perpendicular magnetic field and is given in the symmetric |n the case of finite8 (requiring the inclusion of confine-
gauge bye(z,Z;;B)=(xY;~yX)/213, with Ig=\/ic/eB. We  ment, i.e.,w,+0), the projected energy corresponding to a
only consider the case of fully polarized electrons, which issymmetry-restored RWM state with angular momentuiis
appropriate at highs. given [in the case of a singl¢0,N) or a (1,N-1) ring]
We take theZj's to coincide with the equilibrium positions  py16.17
[forming a structure of ccr)ncentric regular polygons denoted o o
as(ny,n,, ... ,n)] of N=2(_;n, classical point charges inside _ i i
an external parabolic co%fingment of frequengy Then we EerfL) = JO h(ye” dy/ fo n(yerdy, ®
proceed to construct the UHF determindrit™f[z] out of the

-0.35

045 | [/

Stabilization energy (meV)

-0.55

orbitals u(z,Z)’s, i=1, ... N. Correlated many-body states With h() =(W¥YHF(0)[H[ WY () and n(y)
with good total angular momentacan be extractéd®from  =(PY7(0) | WY (y)), where WY (y) is the original UHF
the UHF determinant using projection operators, i.e., determinant wittell the orbitalsrotated(collectively) by the
o o sameazimuthal angley. H is_ the many-body H_amiltonian in
(I)fwvw :f J dy, - dy Eq. (2). The UHF energies are simply given byye
0 0 =h(0)/n(0).

) We note that, unlike the UHF ground stgtiescribing a
UHE ) static Wigner moleculewhich does not have good angular
XU (-0 7)ex '2 Vq'-q)’ (7) " momentum, the ground states of the RWM exhibit good an-
*1 gular momentglabeled ad 4, as aforementiongdhat coin-
WhereL:E[Fqu andWUH 4] is the original UHF determi- cide with magic one$we denote the ground-state energy of
nant withall the orbitals of the qth ringotated(collectively, the RWM as E};=Epr{LgJ]. Note that in Fig. 6 the
i.e., coherently by the sameazimuthal angley,, and each ground-state magic angular momenta obey
ring is rotated independently of each other. Note that(Ey. _
can be written as a product of projection operators acting on Lgs=N(N-1)/2+k(N-1), ©)
the original UHF determinanfi.e., ¥Y"7(y,=0,...,%=0),  with k=0,1,2,...,.Such sequences, having as a period the
see Eqs(6) and(7) in Ref. 5. Setting\=1\2 restricts the number of eletrons on the crystalline polygonal rjBgand 6
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for the (1,5 and(1,6) RWMs corresponding ttN=6 andN g5l ¢ o gt T
=7], reflect directly the collective rotation and incompress-
ibilty of the RWM (see Sec. Il G. L oe oo ]
The stabilization energAEZs"=E3% ;- Eyn, of therotat- . .
ing WM relative to thestatic one (namely the fact that 849 « 0 b
E2r;<Euur see Fig. 6 is a purely quantum effect. This . . i
energy gainAESS", demonstrated here fdi=6 and 7 elec- ‘
trons, is in fact a general property of states projected out of
trial functions with broken symmetry. This is due to an “en-
ergy gain” theorerff stating that at least one of the projected
stateq(i.e., the ground stajédas an energy lower than that of
the original broken-symmetry trial functioge.g., the UHF
determinant considered abgve

84.7 | ¢ L] 4

Energy (meV)

845 - b Lo L ]

L *111

o sl & L :
C. Excitation gap t 105 B=18.8T

The oscillations of the stabilization ener@yig. 6) reflect 96 100 104 108 112
the oscillatory behavior of the energy of the projected RWM L
states, as well as of the exact ones, since the mean-field .
energyE, ¢ varies smoothly witB (see Ref. 1y Underly- FIG. 7. Low-energy part of the spectrum of_the parabolic QD
ing the oscillatory behavior of the ground-state energies is ¥N0seé parameters are the same as those in Fig. 6, calculated as a
fundamental property of the spectrum of the system, namebﬁynctlon of the angul_ar momentul_nth'rough exact diagonalization
the appearance of special gaps due to the enhanced stabilfﬁf N=7 f'eCtrf)ntShW'.thta m?gggitﬁ {'16?:. 1?58 T WﬁbShEW Ze"?
of the cusp states. Indeed, for a given magnetic field, bot _elspec rum n the interva N (in the neighbor 10od 0
the ground statéspecified byL,), as well as the first excited v=%). The magic angular momentum values corresponding to cusp

o gsh = _ states are marke@®9, 105, and 111 and they are seen to be sepa-
state(specified byl ), are magigwith?® L,;=L s+ (N-1) for

v . 17— . _. rated from the rest of the spectrum. For the given valu®,athe

N=6-8]. As an example of this behavior, we display in Fig.

0 .2" global energy minimuntground statgoccurs forL4=105, and the
7 the low part of the EXD excitation spectrum for a QD with gap A to the first excited statéL=99) is indicated. The lowest
N=7, B=18.8 T, hwy=3 meV, andx=12.9. The states

energies for the differerit’s in the plotted range are connected by a
=99,L=105(the ground stafeandL =111 are demonstrated gashed line, as a guide to the eye. The zero of energy corresponds to
indeed to be cusp states of enhanced stalgdifythree states 770, where ) =(w3+w?/4)Y2 and w.=eB/(m* c). The horizontal
are well separated from the rest of the excited sjates arrow denotes the energy of the Laughlin quasihole=at12. It is

For the given magnetic fiel@=18.8 T, the first excited seen that the Laughlin quasihole is not the lowest excited state.
state corresponds th=99. However, asB increases, we
found that the state with=111 diminishes in energy relative Wigner molecule. The effect of disordér impuritieg de-

to that withL:9_9, _becoming itself the firs_t excited state, andpends on the size of the gap. For sufficiently weak disorder,
eventually(asB is increased furthereplacingL=105 as the |, i1, the excitation gap and the coherence of the magic

ground state. This sequence of changes occurs for all groung,,jar momentum states maintain, namely, the states sepa-
stategwith magic angular momenfaccessed through varia- a4eq by the gap experience orbgal disorder-induced per-
tion of the magnetic field. This results in the behavior of theturbations(i.e. they broadenand they remain conducting

excitation gapA =E*-E%, shown in Fig. gthe calculations (¢ee sec. |v beloy Obviously, for cases of a vanishing gap
here were performed with the RWM projected energies of; o ' petween the fractional fillings, see arrows in Fig. 8

Eq. (8)]. The gap in Fig. 8 separates states with similar in-g\ e \weak disorder can inducegtobal change in the char-

ternal structure, i.e., they exhibit the same polygonal conycier of the(perturbed wave functions by strongly mixing
figuration as reYea'ed througlh the CPD analysis Npr? the degeneraté s andL; cusp stategand often additional
eleqtrons(see Flgs. 2-¥ The internal structures of h|_gher nearby cusp states depending on the magnitudB)o&nd
excited states differ from that of the ground state, with they,is can lead to a state with a broken-symmetry electron den-

disparity increasing with the excitation energy. _sity having characteristics of a pinned Wigner crystafite.
The incompressibility of the cusp statéshich, as dis-

cussed above, correspond to magic angular momentan-
nected directly to the appearance of th.e mmscussed in IV. DISCUSSION: IMPLICATIONS FOR THE
the context of the FQHE in Ref)9The discussion presented

L . THERMODYNAMIC LIMIT
here about the nature of the excitation spectfamd in par-
ticular the existence of a gay) allows us to comment on the While our focus here is on the behavior of trial and exact
influence of impurities and disorder on the properties of thewave functions in(finite) QDs in high magnetic fields, it is
guantum dot. Naturally, we focus on the regime of small ornatural to inquire about possible implications of our findings
moderate disorder, since a high degree of disofdestrong to FQHE systems in the thermodynamic limit.
impuritie9 will destroy both the gaps in the spectrum, as We recall that appropriate trial wave functions for clean
well as the coherenfcollective nature of the rotating FQHE systems possess a good angular momeiterh,, a
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CPDs of the exact solution may exhibit with increasM@
transition from crystalline to liquid character, in agreement
with the JL function. However, at the moment, the existence
of such a transition remains an open theoretical subject.

For thelow fractions the RWM theory raises still another
line of inquiry. Due to the specific form of the RWM wave
functions, computational limitatio”% prevent us at present
from making extrapolations of total energies at a giveas
N— o, Nevertheless, from the general theory of projection
operators, one can conclude that the RWM energies exhibit a
different trend compared to the JL ones, whose energies were
found?1912.1%0 be higher than the static Wigner crystal. In-
deed the rotating-Wigner-molecule wave functions remain
lower in energy than the correspondistgtic crystalline state
for all valuesof N and v, even in the thermodynamic limit.
This is due to the fact that the aforementioned energy-gain
theorem® (see Sec. Il applies for any number of electrons
N and for all values of the magnetic fieBl Naturally, the
RWM wave functions will be physically relevant compared
to those of the broken-symmetry crystal at the thermody-
namic limit if the energy gain does not vanish when- oo;
otherwise, one needs to consider the posssibility that the
static crystal is the relevant physical picture.

The discussion in the above paragraph may be recapitu-
lated by the following question: which state is the relevant
one in the thermodynamic limit(N—c)—the broken-
Symmetry ondi.e., the static Wigner crystabr the symme-

%ry restored(i.e., rotating crystalstate? This question, in the
dashed ling corresponds to the marked value of the angularcomext 9f bulk broken-symmetry systems, has been ad-
momentum—i.e., for the range of magnetic fields shown hege, dressed in the early work of Anders&hwho concluded that
=57(Z), 63(2), 69(Z), 75(%), and 81(%), with the correspond-  the broken-symmetry staiere the UHF static crystalline
ing value of the fractional filling/=N(N-1)/(2L4J given in paren- solution can be safely taken as the effective ground state. In
theses. The solid lines denote the ground-state energies, and tRENVINg at this conclusion Anderson invoked the concept of
dashed lines give the values of the first-excited-state energies. Nof@€neralizegirigidity. As a concrete example, one would ex-
that the gap between the ground and the first excited shat&’ pect a crystal to behave like macroscopicbody, whose
-ES%S oscillates as a function d. The arrows denote the values of Hamiltonian is that of éneavy rigid rotorwith a low-energy
B for which the gap vanishes, occuring between the fractional fill-excitation spectrura?/2.7, the moment of inertia7 being of
ings. The zero of energy corresponds (% ES|, where Q=(w] order N (macroscopically large wheiN—o). The low-
+w2/H)Y2 [with w.=eB/(m*c)] and E is the classical energy of energy excitation spectrum of this heavy rigid rotor above
the static Wigner moleculgsee Ref. 1y Bottom: The gap plotted  the ground-statéL=0) is essentially gaples§.e., continu-
versusB. ous. Thus although the formal ground state posseses con-
tinuous rotational symmetrg.e., L=0), “there is a manifold
property shared by both the CF/JL and RWM functiéfis'!  of other states, degenerate in tRe- limit, which can be
We also recall the previous findifigthat for large fractional recombined to give a very stable wave packet with essen-
fillings v> vy, the liquidlike (and circularly uniformy CF/JL  tially the nature®* of the broken-symmetry statg.e., the
function is in the thermodynamic limit energetically favored static Wigner crystal in our cageAs a consequence of the
compared'%121%o the broken-symmetry static Wigner crys- “macroscopic heaviness” &— o, one has the followingi)
tal (which has no good angular momentyrfor v<<v,, the  The energy gain due to symmetry restoratioa., the stabi-
static Wigner crystal becomes lower in energy. This findinglization energyAESS") vanishes adl— o and(ii) the relax-
was enabled by the form of the JL functions, which facili- ation of the system from the wave packet stat, the static
tated computations of total energies as a function of size fowigner crystal to the symmetrized onéi.e., the rotating
sufficiently largeN (e.g.,N=1000. crystah) becomes exceedingly long. This picture underlies the

A main finding of this paper is that thexact-numerical- aforementioned conclusion that in the thermodynamic limit
diagonalization wave functions of small systeifis<10) are  the broken-symmetry state may be used as the effective
crystalline in character for both low and high fractional fill- ground state.
ings. This finding contradicts earlier suggesti&fs®ethat, Consequently, in the following we will focus on issues
for high v's, small systems are accurately described by theertaining to the “rigidity” of the rotating Wigner molecule
liquidlike JL wave functions and their descendants, e.g., thén high magnetic fields. In particular, using our projection
composite-fermion ones. Of course, for the same high  method and exact diagonalization, we demonstrated explic-
our small-size results cannot exclude the possibility that thétly in previous publication¥3® that the rigid-rotor picture

Energy (meV)

FIG. 8. Top: RWM projected energi¢see Eq(8)] calculated as
a function of the magnetic fielB for N=7 electrons in a parabolic
QD with the same parameters as those used in Figs. 6 and 7. Ea
of the parabolalike curve@nade partly of a solid and partly of a
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applies to arN-electron QD only whem=0. In contrast, in may conjecture that a transition at lower fractional fillings
the presence of a high magnetic field, we fot/nthat the  from a conducting state with good circular symmetry to an
electrons in the QD do not exhibit global rigidity and there-insulating Wigner crystal cannot occpontaneouslyfor

fore cannot be modeled as a macroscopic rotating crystatlean systems. Therefore, it should be possible to observe
Instead, a more appropriate model is that bfghly nonrigid ~ FQHE-type behavior at low fractional fillings in a clean
rotor whose moment of inertia depends strongly on the valugystem—a prediction that could explain the observations of
of the angular momenturb. _ Ref. 37, where FQHE behavior has been observed for low
_ The nonrigid rotor at higlB has several unique proper- gactional fillings typically associated with the formation of a
ties: (i) The ground state has angular momentg™0. (il)  gtatic Wigner crystal. In practice, however, impurities and
V_Vh||_e the rotating ele_ctron m_oI.ec';uIe.does not exhgibal defects may influence the properties of the rotating crystal
rigidity, it possesseazimuthalrigidity (i.e., all electrons on a (and its excitations depending on the magnitude of the ex-
given ring rotate coherentlywith the rings, however, rotat- citation gap discussed in the previous section. Thus one of

ing independently of each other. Furthermore, the radii of thet-he main challenges for FOHE observation at such low fill-

rings vary for different values df, unlike the case of a rigid . > . . ; :
rotor (see, for example, the locations igfin Fig. 1 and Fig.  N9S relates to fabrication of high mobilitpnearly impurity-
! ' ¢ free) samples’®39

3 for differentL valueg. (iii) The excitation spectra do no
vary asL?; instead they consist of terms that vary ais

+b/ /L [for the precise values of the constaatandb in the V. SUMMARY
case of(0,N) or (1,N-1) electron molecules, see Ref.]17

(ivl) The angul?r m‘ime”tzurm valueshare given by the _magi?/estigations(for 6=<N=9) of structural properties of cusp
values(see Ref. pL=Lo+Zq. Ky, Where(ny, Ny, ... . IS giateq in parabolic quantum dots at high magnetic fields. Our
the polygonal ring arrangement of the static Wigner moleculeyisqtropic conditional probability distributions from exact
(with ny the number of electrons on thggh ring) andky  giagonalization show that these states are crystalline in char-

<kp<--- <k are non-negative integers. These magis  ,cer for both low and high fractional fillings, unlike the
are associated with the cusp states which exhibit a relat'vﬁquidlike Jastrow-Laughlifl® wave functions, but in re-

energy gain with respect to neighboring excitations. Thus the, kable agreement with the recently proposed
low-energy excitation spectrum of the nonrigid rotor is NOtyotating-Wigner-molecuf® ones. The cusp states of
dense and exhibits gaps due to the occurrence of the magjg ejectron parabolic QDs are precursors to the extended
(cusp states(see Sec. Il Q. Furthermore, these gaps are factional quantum Hall state@nd not to the static Wigner
reflected in the oscillatory behavior & " (see, e.9., Fig.  ¢rysta) due to stabilization of theotating Wigner molecule

6) as a function o (or v). (having a good angular momentynelative to thestaticone

As N increases, more polygonal rings are successivelyina; exhibits broken symmefryThe rotating Wigner mol-
added, and since the polygonal rings rotate independently Qfcyje in highB does not exhibit global rigidity; instead, it

each othexsee, e.g., the case b=9 in Fig. 5, we expect  ,ossesseazimuthalrigidity (i.e., all electrons on a given
that the non-rigid-rotor picture remains valid even s  ying rotate coherently with the rings, however, rotating in-
—o0. As a result, it is plausible to conjecture the following dependently of each other.

properties at higlB in the thermodynamic limit(i) the os- Furthermore, we demonstrated pertinent features of the
cillatory character oﬂEgg'” will maintain, yielding nonvan- spectrum of quantum dots in higy, showing that both the
ishing stabilization energies at the fractional fillinggsee ground state and the first excited state correspond to magic
Eqg. (1)], and (ii) the low-energy excitation spectra of the angular momentgcusp states For a givenB, this leads to
system will still exhibit gaps.in the neighborhood of the o appearance of a special gap that is not a mere conse-
magic angular momentesee Fig. 8 Of course, these con-  g,ence of the finite size of the systeand thus it is expected
jectures need to be further supported through numerical caly, maintain in the thermodynamic limit, underlying the in-
culations for largeN. Nevertheless, the above discussion in-compressibility of the electron systenfFinally, we discussed
dicates that the question of which state is physically relevan{, qetail issues pertaining to the implications of the rotating-

for low fractions in the thgrmodynamic limit at higﬁ, ie., Wigner-molecule theory for FQHE systems at the thermody-
the broken-symmetry static crystal or the symmetrized rotaty, 5 mic limit (see Sec. IV,

ing crystal, remains open, and cannot be answered solely
following the path of Ref. 33.

The rotating Wigner crystal has properties characteristic
of FQHE states, i.e., it is incompressiljeonnected to the We thank M. Pustilnik for comments on the manuscript.
presence of an excitation gagnd carries a curreft(while ~ This research is supported by the U.S. DQ&rant No.
the broken-symmetry static crystal is insulajinghus, we FGO05-86ER45234

In summary, we have carried out the first systematic in-
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