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Magnetic-field switching and blockade of quantum transport through three-dimensional metallic and semi-
metallic nanowires with a small number of conducting channels are proposed. Temperature enhancement of
magnetotransport in such wires is predicted.@S0163-1829~96!51620-6#

Early investigations of ballistic electronic transport
through microconstrictions led to the discovery of conduc-
tance quantization. Initially this phenomenon was observed
in two-dimensional semiconducting structures, manifesting
itself in 2e2/h steplike variations of the conductance as a
function of the transverse size of the narrowing~see review
in Ref. 1!. Underlying the phenomenon is the discrete char-
acter of the electronic modes~conducting channels! propa-
gating through the constriction. Theoretical analysis of the
generation and properties of small three-dimensional~3D!
constrictions and nanowires, including mechanical2,3 and
electrical~conductance quantization! ~Ref. 4! characteristics,
the applications of modern experimental techniques to inves-
tigations of such systems, and their fundamental as well as
potential technological significance, motivated intensifying
research efforts of such systems.5–13

In the absence of an applied magnetic field the number of
propagating modes, and thus the conductance in such struc-
tures, is determined by the minimum cross section of the
constriction. However, shifting of the electronic energy lev-
els under the influence of an applied magnetic field may lead
to significant changes in the conductance. Indeed, analysis of
the effect of a longitudinal magnetic field on quantum trans-
port in relatively wide wires, characterized by a large number
of conducting channels,14 described the appearance of step-
like fluctuations of the magnetoconductance of 3D micro-
wires, on a scale corresponding to a small fraction of the
magnetic flux quantumf05hc/e. It is likely that such fine
fluctuating features have been observed in recent
experiments.15,16

Most observations of well-defined quantized conductance
features have been reported for metallic nanowires with a
small number of conducting channels.5–11 In this paper we
investigate quantum magnetotransport in such systems, and
propose a magnetic switch effect and the occurrence of mag-
netic blockade of quantum transport in metallic and semime-
tallic nanowires. Additionally, we demonstrate that under ap-
propriate conditions~depending on parameters of the wire
and on the applied magnetic field!, an enhancement of the
magnetoconductance with increasing temperature may occur
in such systems. This effect originates from temperature
broadening of the Fermi distribution, which can result in an
increase of the number of conducting channels in a magnetic
field.

We consider ballistic electronic transport through 3D
nanowires~nanoconstrictions, see inset to Fig. 1! between
two bulk reservoirs. The cross sections of the nanowire per-

pendicular to the axis of the wire are taken for convenience
to be circles of radiia(z), with that in the narrowest part of
the constriction denoted bya05a(0). Weassume also that
the functiona(z) describing the shape of the wire is smooth
on the scale ofkF

21 ~wherekF is the Fermi wave vector; such
smoothness ofa(z) may be realized for constrictions with
large radii of curvature,R). The applied magnetic fieldH is
oriented parallel to the axis of the wire (z direction!.

The conductance of the wire,G, is determined by a
Landauer-type formula17,18

G5
2e2

h ( Tmn;m8n8, ~1!

whereTmn;m8n8 is the transmission probability for the inci-
dentmn channel and the sum extends over all incident and
transmitted channels. To calculate the transmission probabil-
ity we need to solve the single-particle Schro¨dinger equation
with a hard-wall boundary condition at the surface of the
wire, r5a(z). The slow variation of the functiona(z) de-
scribing the shape of the constriction@we assume that
a8(z), a(z)a9(z)!1] allows us to use the adiabatic method
of separation of transverse and longitudinal variables,19 and
the wave function can be written in the form

c5Rz~r !eimzZ~z!, ~2!

FIG. 1. Conductance (G, in units of 2e2/h) of a 3D wire vs
kFa0 with H50, plotted for two values ofR/a0 . Inset: geometry of
a nanowire.a0 is the radius of the narrowmost cross section and
R is the radius of curvature.
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where m is the magnetic quantum number (m50, 61,
62, . . . ), and theradial part of the wave function,Rz(r ),
obeys the equation
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with the boundary conditionRz@r5a(z)#50. Herem* is the
electron effective mass and for the vector potential we use
the cylindrical coordinate gaugeA5(Ar ,Af ,Az) with
Af5Hr /2 and Ar5Az50. The solutions to this equation
may be expressed in terms of the confluent hypergeometric
function,20
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Here j(r )5m*vcr
2/2\5Hpr 2/f0 , and vc5eH/m* c is

the cyclotron frequency. The transverse adiabatic energy lev-
els Emn(z) are expressed according to the boundary condi-
tion in terms of the zeros of the confluent hypergeometric
functionF~the zeros of this function are indexed byn) ~Ref.
21!.

The motion of the electron through the wire (z direction!
is described by the longitudinal part of the wave function,
which is the solution of
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1Emn@a~z!#Z~z!5EZ~z!. ~5!

Near the narrowmost part of the constriction,z50, the effec-
tive potentialEmn@a(z)# in Eq. ~5! may be expanded@as in
Ref. 19# to second order with respect to the variablez, i.e.,

Emn@a~z!#5Emn@a0#1
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where ]2Emn@a0#/]z
25(]Emn@a0#/]a)(]

2a0 /]z
2),0 ~the

inequality follows from numerical analysis of the spectrum!.
In this case the transmission probability has a diagonal form
~no modes mixing! ~Ref. 20!

Tmn;mn
21 511exp$22p@E2Emn~a0!#/@~2\2/m* !

3]2Emn~a0!/]z
2#1/2%. ~7!

In the absence of tunneling the transmission coefficient
transforms to a step function,u@E2Emn(a0)#, accordingly,
the threshold energy for each channel in the planez50 is
equal toEmn(a0). Channels with energiesE.Emn(a0) pass
through the wire with unit probability while others are re-
flected. Consequently, in this case the transmission probabil-
ity @and thus the conductance, see Eq.~1!# is a sharp step-
wise function of the transverse size of the constriction and
the magnetic-field strength.

In zero magnetic field Eq. 3 reduces to the Bessel equa-
tion and the transverse energy levelsEmn

(0) are given by the
expression

Emn
~0!5

\2gmn
2
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In this case the positions of the conductance steps are deter-
mined by the sequence of zeros of the Bessel function,
gmn , and the step heights~single or double! depend on the
m degeneracy of the energy levels;4 see Fig. 1, where the
conductance in units of 2e2/h is plotted versuskFa0 for two
values of the parameter (a0a09)

215R/a0 . Note the increased
smearing of the steps due to tunneling effects in the shorter
wire4 ~dashed line!.

To obtain the magnetic-field dependence of the conduc-
tance we compute the zeros of the confluent hypergeometric
function F$2@kmn

2 a0
2/4a2(umu1m11)/2#,umu11,a%,

wherekmn
2 52m*Emn(a0)/\

2, anda5pa0
2H/f0 is the mag-

netic flux through the narrowmost part of the constriction in
units off0 . The dependence of the conductance on the di-
mensionless fluxa for different values of the parameter
kFa0 ~i.e., for several values of the number of conducting
channels, see Fig. 1! is displayed in Fig. 2. The behavior of
the conductance demonstrates a ‘‘magnetic switch’’~on and
off! effect and ‘‘magnetic blockade’’ of the quantum elec-
tronic transport in wires with small values ofkFa0 ~i.e.,
small number of transport channels, see, for example, the
curves forkFa052.5 and 4 in Fig. 2!. Note that for a nano-
wire with the same geometry~i.e., sameR/a0) smearing of
the magnetic steps is larger~compare upper curve in Fig. 2
with the dashed line in Fig. 1!. This is due to the slow de-
pendence of the energy levels on the magnetic field resulting
in the increased role of tunneling effects.@The cause of the
local maximum neara;5.5 in the curve forkFa054 is
discussed below in the context of Fig. 4~a!.#

The magnetic-field behavior of the conductance~e.g., the
magnitude of the applied field for which a switch to a differ-
ent conductance level occurs! is very sensitive to the trans-
verse size of the constriction in the wire. Figure 3 portrays

FIG. 2. Conductance (G, in units of 2e2/h) of 3D wires vs the
dimensionless magnetic fluxa5f/f0 . The different curves corre-
spond to the marked values ofkFa0 . The four lower curves de-
scribe conductance behavior for long wires (R/a05400), and the
upper one corresponds to a shorter wire (R/a0525) where smear-
ing of the steps due to tunneling becomes significant.
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such a behavior for different but relatively close values of the
parameterkFa0 , illustrating that for wires characterized by
the same zero-field conductance switching may occur for a
broad range of magnetic-field strengths, depending on small
variations in the transverse dimensions of the wire.

In the above we discussed the conductance behavior of
long nanowires, where tunneling effects are small, and at
zero temperature. In shorter wires tunneling becomes more
important leading not only to ordinary ‘‘smearing’’ of the
conductance steps~see Fig. 2! but under some circumstances
to increase of the conductance. In Fig. 4~a! we plotted the
conductance versus the magnetic flux for wires with different
lengths. The increase of the conductance~maximum in the
vicinity of a'3) is related to the flux dependence of the
transverse energy levels@see Fig. 4~c!#. This behavior of the
conductance originates from a finite probability of tunneling
in a short wire of the second channel neara'3. Even more
remarkable is the influence of the temperature on the con-
ductance demonstrated in Fig. 4~b!, where the conductance
of a long wire ~where tunneling is insignificant! is plotted
versus flux for different temperatures. The predicted tem-
perature enhancement of the quantum transport is due in this
case to an increase of the transmission probability of a quan-
tum channel located in the vicinity of the top of the tempera-
ture broadened Fermi distribution. Consequently, through
variation of the applied magnetic field one may achieve con-
ditions that would result in enhancement of the conductance,
of tunneling or thermal origins.

We turn now to issues pertaining to experimental obser-
vations of the predicted magnetic switch and blockade ef-
fects in nanowires. As aforementioned, the sharp steps in the
conductance as a function ofH ~Fig. 2! are caused by shifts
of the electronic energy levels in the presence of a magnetic
field. The change in the magnetic flux required to shift en-
ergy levels by an amount of the order of the average spacing
between transverse energy levels in 3D wires of common
metals, i.e.,;eF /(kFa0)

2, may be large~e.g., about one flux
quantumf0), and consequently for wires with a small num-
ber of conducting channels may require excessively large
magnetic fields. This suggests semimetallic or semiconduct-

ing nanowires as the most suitable systems for observation of
the magnetic switch and blockade effects described above.
For example, in bismuth the Fermi wave vector is
;23106 cm21. For kFa052.5 ~i.e., a0;1026 cm!, corre-
sponding to a single conducting channel~see Fig. 1!, the
magnetic field needed to create a magnetic flux quantum in
the wire is aboutH5f0 /pa0

2;10–15 T, which is readily
accessible experimentally. For thicker wires with a larger
number of channels, observation of the switch effect would
require even lower fields. Note also that at low temperatures
the conditions for ballistic transport are readily satisfied in
bismuth wires and whiskers, even on the micron scale. Fi-
nally, for Bi the temperatures used in Fig. 4~b! describing the
temperature enhancement of the conductance range between
1 and 20 K.

The experimental situation becomes more complicated in
normal metallic nanowires. For typical metals, for example,
gold or sodium with well-defined conductance step
structures,6–9 the Fermi wave vector is;108 cm21. For
kFa058, corresponding to twelve conducting channels~Fig.
1!, the magnetic-field strength (;103 T! required in order to
create a flux quantum is beyond current normal capabilities.

FIG. 3. Conductance (G, in units of 2e2/h) of very long 3D
nanowires vsa5f/f0 . The different curves correspond to the
marked close values ofkFa0 .

FIG. 4. ~a! and ~b! Conductance (G, in units of 2e2/h) of 3D
nanowires vsa for kFa053.3 corresponding to one channel at zero
magnetic field~see Fig. 1!. In ~a! the different curves correspond to
various lengths of the nanowire~i.e., different values ofR/a0), as
denoted. In~b! the different curves correspond to various tempera-
tures, measured in units of 4eF /(kFa0)

2, where eF is the Fermi
energy. ~c! Dependence ofkmna0 @kmn

2 52m*Emn(a0)/\
2# as a

function of a for different values of the quantum numbersm and
n. The dotted line corresponds to the valuekFa0 used in~a! and~b!.
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Consequently we suggest that to observe magnetic-switch
steps in such systems it would be necessary to select wires
with the largest transverse energy level located near the
Fermi energy, corresponding to positions in Fig. 1 in the
vicinity of the thresholds for opening or closing of a quan-
tum conductance channel. This could be achieved by varying
slightly the wire’s cross-sectional radius~e.g., through me-
chanical manipulation of the wire, such as slight elongation

or compression!. In this case, as seen from Fig. 3, one may
find configurations for which magnetic switching and ther-
mal enhancement of the quantum transport can be reached
for accessible values of the applied magnetic field.
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