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o and 7 plasmons in coaxial carbon nanotubes and multishell fullerenes are modeled in analogy with
coupled collective excitations in finite, layered, two-dimensional-electron-gas, planar semiconductor superlat-
tices. The curvature of the surface of these complex carbon clusters plays an important role in shaping the
dimensionality(one dimensional, two dimensional, or three dimensipoélthe plasmons. Direct crossover
from a one-dimensional to a three-dimensional regime is found under readily fulfilled conditions for carbon
nanotubes in the case of small finite longitudinal momentum trarfsfierwhile for g=0 bulk graphitic
plasmons fail to develop. For largg a two-dimensional behavior is found. The case of multishell fullerenes
resembles in all instances thie=0 behavior of carbon nanotubes. Such behavior correlates with the observed
systematic redshift of the strong interstellar absorption band as compared toglasmon of bulk oriented
graphite(i.e., the 5.7 eV position of the former compared to the 6.2 eV energy of the)ldtathermore, in
the case ofr plasmons in carbon nanotubes, a special surface mode can develop fog ladge to the
difference in the values of the dielectric constants between the graphitic structures and the surrounding me-
dium.

[. INTRODUCTION superlattices. In particular, we will show that a succession of
dimensionality crossovel®.g., from one-dimensiondlLD)
Collective electronic plasma excitations have been widelyto 3D, and then to 2Dmay occur in carbon nanotubes as a
studied in a variety of physical systems characterized byunction of the number of graphitic sheétsand of the lon-
various sizes and dimensionalities. Such excitations includgitudinal plasmon wavelengtf], and that such crossovers
bulk™? and surfac&® plasmons in three-dimensioné8D) may account for the main experimentally observed
infinite and semi-infinite media, respectively; plasma excitatrends?®~2°In contrast, multishell fullerenes, lacking the in-
tions of two-dimensional2D) electron gase@DEG’S), asin  finite longitudinal direction, fail to develop a bu(BD) plas-
inversion layers in semiconductdrand at the surface of mon. Rather, their behavior is similar to that of coaxial car-
liquid helium2 coupled plasmons in planéayered2DEG’s,  bon nanotubes in the limit ofj=0. Such behavior is of
as in artificial semiconductor superlatticed? as well as in particular interest, since it may underlie the systematic red-
bulk graphité® (considered as a stack of planar graphiticshift of the interstellar absorption band, believed to be asso-
sheets and in graphite intercalation compounds?and re-  ciated with multishell fullerenes, as compared to thelas-
cently plasma excitations in nanometer-scale systems, as imon in coaxial carbon nanotuf&sand in the bulk oriented
atoms®” metal clusterd®=2°and carbon clustets?? (i.e.,  graphité’ (the redshift amounts to 0.5 eV if the bulk plas-
the Cq fullerene molecul®). mon is taken at 6.2 eV according to Refs. 32 and 37
The present paper focuses on the coupled plasmons which Moreover, in the case ofr plasmons, we show that it is
can develop in carbon nanostructures made from grapheressential to account for the difference in the dielectric con-
sheets curved to form superlattices of cylindrical or sphericastants between the carbon structures gnd the surrounding
symmetries, namely, coaxial carbon nanotdb&sand con-  medium (¢,). In the case of carbon nanotubes, we predict
centric multishell fullerene&?’ which are the latest carbon- that for largeq this difference will result in a special surface
based materials experimentally synthesized. Moreover, replasmon, in analogy with the surface plasmons of semicon-
cent experimental work has observed plasma modes both iuctor supperlatticés'? and of semi-infinite graphite inter-
coaxial carbon nanotub®°[i.e., ¢ and = excitations by calation compound¥.
means of parallel electron energy loss spectroscopy Some earlier investigations by us of plasmons in co-
(PEELS] and in multishell fullerené? (i.e., = excitations  axial carbon nanotubes, using a semiclassical random-phase
by means of ultraviolet absorptipnlt has also been approximation(RPA) formulation (with the simplification
suggestett—**that the well known strong interstellar absorp- that e= e,=1), have been briefly discussed in Ref. 38. The
tion band®® centered at 217.5 nn6.7 eV) is related to  dispersion of coupled plasmons as a functiom dfi coaxial
multishell fullerenes. carbon nanotubes with<4 sheets has also been studied
The present work will show that the ability to prepare earlier’®*°As we discussed previousi§,such a small num-
such carbon structures with variable numbers of coaxiaber of tubules precludes the development of the bulk gra-
sheets(or concentric shel)soffers unique opportunities for phitic plasmon. Concerning dimensionality crossovers, such
exploration of the effects of dimensionality on the nature ofa small assembly exhibits strong similarities with the case of
collective excitations iturvedlow-dimensional electron-gas a single tubule, where only a 1D to 2D crossover can
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develog? [see also Fig. () in Ref. 38. oV
We further mention here another investigatfényhich Me—-=eVe(r=R), (1)
used a hydrodynamical approach in conjunction with a
model of multishell fullerenes consisting of concentric shells on
of finite width. Rich spectra of collective excitations were —l+ni0Vv‘=0, )
found for multishell fullerenes witiN=<40 shells, but the at
associated matrix equations were rather comfdiere to the
finite width of the shells and thus inhibited any investiga- A®(r)=0, r#R, ()

tions concerning the development of the bulk graphitic pIaSWhereme is the electronic mass, andis the velocity of the

mon and of the emergence, or not, of dimensionality CrOSSalectrons residing on thigh shell whose radius & . n, and
overs. i 0
Finally, we mention that Refs. 39, 40, and 42 have re_n'1 are the values of the equilibrium electronic dens#gso-
stricted their investigations to the sir'nple’st casee.—1. ciated with theth shel) and its small perturbation due to the
m=1.

Using a different approach, Lucas al3? have developed a plasma os_cillation,_ respectively. Finallyb(r) is_ the total _
model for multishell fullerenes witla# €., by assuming full electrostatic potential. We note that the equations of motion

transferability(or conformal invariance, see Ref.)28f the and continuity{Egs.(1) and(2)] are re;tricted to.the surface
dielectric tensor of bulK3D) planar graphite to the spatial gf each Sr}e."' ﬁmd thus ri?je velocity vectc: IS tWO'. |
dimensions and curved geometry of multishell carbon micro- imensiona '? E arfls\cter_, ar V@ represents the tangentia
structures. However, the richness of dimensionality regime§OMPonent of the electric field. We further note that the La-

(1D and 2D in addition to 3[Prevealed by our studies sug- g!acian'in t?ehPoisson equatiaB) is naturally of a three-
ests that such transferability of the bulk planar-graphite didimensional character.
9 y B grep To solve the system of Eqsl)—(3), we have to provide

electric tensor to the nanometer-scale multishell fullerenes is . ”
questionable. appropriate boundary conditions. We denot&bashe poten-

tial in the regionR, _;<r <R, between two successive shells
i—1 andi with i=2,... N. In the innermost region
Il. THEORY OF COUPLED PLASMONS IN CURVED r<R;, we denote the potential ab;, while in the outer-
FINITE SUPERLATTICES most regiorRy=<r, the potential is denoted &sy, ;. These

boundary conditions are given b
Plasmon modes are commonly described in the random- y g y

phase approximation method of the linear response tHeory. ®.(R)=D;,1(R), 4)
At the microscopic, atomistic and molecular, level, this

method® allows one to incorporate the particular atomic orand by

molecular structure of the ground state of the system, and has

been successfully applied to a variety of microsystems, such IPi 1 (R)  IPi(R)
as atoms®1” metallic cluster$® and the G, molecule?? ar a
However, the more complicated the electronic structure of

the ground state, the more computationally demanding the In writing Eq. (5), we assumed that the dielectric constant
associated RPA equations become. For multiunit structuresf the carbon microstructures) is equal to the dielectric
like coaxial carbon nanotubes and multishell fullerenes, foiconstant of the surrounding mediure.{), which is further
which the precise electronic structure of the ground state iassumed to be air or vacuum, i.e=¢e,=1. As will be
unknown, the computational treatment of the RPA equationglaborated later (Sec. 1B 3, the assumption that
describing the coupled plasmons is rather prohibitive. Cone=¢€,=1 is a valid approximation for the case of plas-
sequently, we have adopted a simple variant of the hydrodymons(for the case ofr plasmong! see below; the general-
namical method, which has been used in the field of planaized matrix equations foe# €, are given in the Appendjx
layered semiconductor superlattice$? Accordingly, we Assuming a harmonic dependence for all quantities as a
view each shell as a two-componentrved2DEG exhibiting  function of time[ ~exp(—iwt), wherew is the frequency of a

o- and 7 electron plasma modes. Since it neglects quantatoupled plasmol) we obtain from Eqgs(1) and(2) after the
size effectde.g., the influence of individual particle-hole ex- elimination of the velocity'

citations(Landau dampingor the effects of electronic spill- o

out, see e.g., Ref. 20this approach does not provide a com- Mew?n}=nyeAd(r=R;). (6)
plete description for each graphene shéet shel), but

nonetheless it becomes advantageous for the case of many Combining Eqs(3) and(6), and the boundary conditions
sheets(or shell, since it captures the essential features of(4) and(5), one can derive a secular eigenvalue equation for
the cggupling between shee(sr shell3 due to the Coulomb the coupled-plasmon frequencies in the form

field.

We model coaxial carbon nanotubes and multishell
fullerenes as two-dimensional cylindrical and spherical
electron-gas layers coupled through their mutual electric
fields. In such superlattices, undamped plasma excitationghere the indices andj denote different shells of the mul-
can be described by Newton's equation of motion for thetishell structure. Specific expressions for the mallixn the
electrons, in conjunction with the continuity and Poissoncases of coaxial carbon nanotubes and of multishell
equations. In the linear approximation, one has fullerenes will be derived in the next two subsections.

Amen). (5)

N
me(;)znil:jzl M”njl, (7)



A. Eigenvalue equation for coaxial carbon nanotubes

Due to the cylindrical symmetry of carbon nanotubes, one

can replace the quantitieré_ and® in Egs.(3) and (6) by
expressions of the form

ni(¢,2)=niexp(ime)expiqz), 8)

and

<I>(r,¢,z)=Ci)(r)exp(im¢)exp(iqz), 9

wherem is the integer azimuthal quantum number, anis
the longitudinal wave vector. After substitution, one finds

2

meo?fy = —nbe| T + 02| B(R), (10
i
and
PO 10> (m? |-

&7—+F?—(r7+q)d)—0, r#R;. (11

The solution of Eq(11) has the general form

® 1= Al n(ar),

Di=Aln(qr) +BKn(qr), i=23,...N,

®y41=By 1Kn(arn), (12)

wherel (x) andK,(x) are modified Bessel functioris.

The coefficients\; andB; in Eq. (12) can be expressed as
functions of the perturbation densities; by using the
boundary condition$4) and(5). A subsequent substitutith
for ®; in Eq. (10) yields the matrix eigenvalue quation,

N
2 _ tube
[0) nl—jzl MIJ ni,

(133

where the matrix elementd ,tj'b are given by the expression

m2

47nie?
tub__ 0 2

tub_ Ri| =5+
Rz

1 Mme j

Im(dR-)Kn(qR>).

(13b

In Eq. (13b), R-=min(R, R) andR-=maxR;, R).

In the case of a single tubulée., N=1) with labeli, it
follgws from Eg.(13) that the plasmon frequency is given
ad'

47-rni0e2R m?
| =+
me. \RETY

w5 = I(ARIKm(qR).  (14)

From Eq.(14), two different dimensionality regimes can
be distinguishetf*! depending on the limiting cases
qR>|m| and gR;<|m|. For this we use the well known
limiting forms of the modified Bessel functioi3namely,

x\m
X<1, E) ,

'm) = Fmr D)
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X
—|In §)+O.5772..l, m=0
K=Y [y (21 (15
LTI
2 X
>1m, |y,(X) e 1+0 l”
X> b H X _> - 1
m 2TX X
K e 1402 16

As a result of the limits displayed in E@L6), Eq. (14) in
the limit gR;>|m| yields

27nhe?

(17)

W~

me a
which corresponds to a proper 2D behaffonamely, the
plasmon energy is proportional to the square roaf)efsince
the longitudinal momentum transféq is a continuous vari-
able.

In the opposite limitqR;<|m|, Eq. (14) yields with the
help of Eq.(15) for m#0

2mnhe? m
R;’

2

wd~ m+0, (18)

me

which may be viewed as 2D in character whenR;>1,
sincem/R; is then aquasicontinuou®ffective wave vector
along the perimeter of the cylinder. However, for small val-
ues of the discrete azimuthal quantum numimerthe right-
hand side(RHS) of Eq. (18) depends strongly on the radius
of the tube, unlike the case of E(L7) where the plasmon
frequency is independent of the dimensions of the tube. This
latter case cannot be properly characterized as 2D, and we
will adopt the convention of referring to it as a 1D case.

For m=0 andqR <1, the plasmon excitation has a tra-
ditional one-dimensional charact®® namely, it exhibits
(up to a slowly varying factor of the square root of a loga-
rithmic term a linear dependence an

4mnhe’R

'q2In(1.1234R), m=0. (19

W~

In the case of two coaxial tubes, naturally, there are two
modes with frequencies given by the expression

1 1
‘*’%2:5(‘”(2)1"' W) = \/Z(‘U(z)l_ w2)*+ F 105100,
(20)

where

:Im(qu)Km(qRZ)
(AR Kn(GRy)
Whenq(R,— R;)>1, the tubules decouplée.,F,,~0) and

oscillate independently of each other with frequencies
wl,2~ w1, Wo2 [See Eq(14)]

(21)
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In the special case when the longitudinal wave vector isng value forR;—cc. In this respect, the plasmons of single-

tub

zero (@=0), the matrix element$/;;> for the case ofN

tubules reduce to the expression

M(q=0)= ——

, m=#0.
me

(22

shell hollow fullerenes contrast with the surface plasmons of
metal clusteré® whose energy for large radii approaches the
classical Mie constant®? associated with a solid metallic
sphere.

We further notice that fot>1 andI/R;>1 (quasicon-
tinuum casg the plasmon frequencie@8¢ have a two-

As we will see below, this special case of the cylindrical gimensional character with respect to the effective wave vec-
symmetry has strong similarities to the spherical case assqqy |/R, , namely,

ciated with multishell fullerenes.

B. Eigenvalue equation for multishell fullerenes

,  2mnge® |
Wy T &

m R (29

Multishell fullerenes are modeled as concentric spherical

shells, in which case the density perturbatiarison each
shell and the electrostatic potential are of the form

ny(6,¢)=1Yim(6,8), (23)

D(r,0,)=D(r)Ym(6, ),

whereY,,, denote the spherical harmonics.
Using Egs.(23) and(24), we obtain from Eqs(6) and(3)

(24)

_ _ 1~
mew?R) = —ngel(l+1) F<1>(Ri), (25)
i
PD 2D a+1. - ”
e T =0 rER (20
The solutions of Eq(26) have the general form
C’i)l(r):Alrla
d,(r)=Ar'+Br'1 i=23,...N,
Dpoq(r)=Byear 27

The coefficients\; andB; in Eq. (27) can be expressed as
functions of the densitieg) by using the boundary condi-

tions (4) and (5). A subsequent substituti#hfor @ in Eq.
(25) yields the matrix equation

N
Wiy = > MIERL, (283
=1
where the matrix elements are given by
(Ri/R)'™Y,i<]
M{]yller: 2 (28b)

“O|(Ry/R)'*2, =],
with wg; the frequency of a single shellth shel) given by*

4mnhe? 1(1+1) 1
2l+1 R’

2 _
Woi =

P~ (280

It is seen that the matrix in Eq28) has a strong similarity

with the matrix in Eq(22) valid for coaxial nanotubes in the

limiting case ofg=0.

We note that expressioi28¢) for the plasmon frequency

of a single shell depends on the sphere raéluand that it

In the case of only two spherical shells, the plasma fre-
guencies are given by the same expression ag 2y, but
the constanf,, is now given by

Ffluzller:(Rl/Rz)ZlJrl_ (30)

In the limit R;<R,, or I>1, the two shells decouple and
oscillate independently of each other with frequencies given
by Eg. (280.

In the following sections, we will present an analysis of
coupled plasmons in coaxial carbon nanotubes and multishell
fullerenes withN>2 based on numerical solutions of the
eigenvalue equationd.3) and(28).

IIl. NUMERICAL INVESTIGATIONS

A. Qualitative considerations and interpretative framework

One of the aims of our investigation is to inquire whether
the matrix eigenvalue equatidii), specified for the cases of
coaxial carbon nanotubes and multishell fullerenes, can yield
among its multitude of solutions a volume plasmon identical
to the 3D plasmon of bulk graphite. For qualitative consid-
erations in this subsection, it will be sufficient to restrict the
presentation to the case of unscreenedplasmons with
e=€,=1 (for screenedo plasmon& with ¢=0.8 and
em=1, see the last paragraph of Sec. Il B Bhe dispersion
relation of the plasmon of bulk graphite is given by the ex-
pression

bulk

o(0)=wp"“+ o, (31
where the long-wavelength plasmon enefgy}™ is a con-
stant,

wp=[4me?n/(md)]*, (32)

and the proportionality coefficietftc=(3/16)2/ )™, ve
being the Fermi velocity of the 2DEG on each graphitic
sheet.

In Eqg. (32), n is the areal electronic density on a planar
graphitic sheefwe taken to be equal to 0.31 2 for the
density of o electrong, andd is the interlayer distance of
planar graphite = 6.4a,). The ration/d defines an effec-
tive volume density, and therefore E(B2) represents the
corresponding voluméD) plasmor’'i° Using the above pa-
rameters for the densitias and interlayer distancd, one
finds that the bulk graphite, unscreeneglasmon energy in
our model is 21.53 e\the massn, is taken equal to the free

becomes smaller the larger the radius, approaching a vanisklectron mass
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The plasmon energies in the cases of a single tubale  §/R;<1), we can treat the magnitudes of all tubule radii as
spherical shejland of a pair of coupled tubulder spherical equal in the exponential prefactdisee Eq.(16)], and con-
shell§ were given in Sec. Il. We note that these energiessider only effects due to the length differences,
depend explicitly on the inner- and outermost radii of theR- —R-=—|R;—R;|, in the exponents. With the further ap-
assembly, unlike the bulk plasmdsee Eq.(32)], which ~ proximation that sufficiently many shells can be packed
must be independent of the geometric parameters of thWIthln the inner and outer radii.e., d/§<1, d is the inter-
curved superlatticeéwith the exception naturally of the in- tubule distance the limits over thg summation in Eq(13)
terlayer distance We further note that, when we calculate in can be extended from « to +c. Then under the additional
the next section the case of nanotubes or multishelfondition of g>m/R; Eq. (13) simplifies to the dispersion
fullerenes with an arbitrary numbey of shells, the areal relation
densities on each tulder shel) and the intertubuléor inter-
shel) distance will be kept equal to the corresponding quan- 1=[27e’ng/(Mmew?®)1S(q), (33
tities of planar graphitic sheets in agreement with experimen- S
tal evidence from carbon nanostructuf&s’ whereS(q) is given by

We first address the case of coaxial carbon nanotubes. In
investigating whether a 3D plasmon can emerge in coaxial S(q)=>, e dRi~RiI="" g-dli-ild (34)
carbon nanotubes, we will study the behavior of the solutions i j
of Eq. (13) in the following two ways.

(1) Starting with a single tubule, and keeping the longitu-
dinal wave vectolg constant, we will successively consider
additional tubules in order to study the evolution of the
coupled plasmon mode with a given azimuthal angular mo
mentumm as a function of the numbex of tubules.

(2) Keeping the numbeN of tubules in the assembly
constant, we will investigate the evolution of the coupled
plasmon mode for a givem as a function of the longitudinal
wave vector.

In the case of multishell fullerenes, the two possibilities
described above are reduced to the first one, since, in plac(éz)]' o i
of the pair of quantum numbers andg, the spherical sym- We note .that the above qualitative analysis for an assem-
metry allows the angular momentuihto solely control the b'Y of coaxial tubules recovered_ the results of Fetteb-
plasmon energy. Furthermore, from the similarities in thetalned for a planar geometry, since the wavelength of the
general form of the matrix elemertig;; between the spheri- plasmon\ =2m/q, was taken by us to be small compared to

cal symmetry and the cylindrical one in the limiting caseg:e |nrr]1erf_ra_1d|usRll (|.ef., ﬂR1>1) of the cyl|ndr|c_al all;ssem-
when the longitudinal wave vector is zero, namefy: 0, we y. The finite value of the curvature reasserts itself as soon

can surmise that the spherical case is closely related to th&> 9Rn<1, when the assembly reverts to a 1DEG behavior

special subcase of the cylindrical symmetry. Anticipating our S€€ the discussion below in connection with Fig. 1
results(see below, we mention here that a nonzero value of  While the analytic results demonsirating the emergence of
q is essential for the emergence of the bulk plasmon in cotl® volume plasmon in coaxial tubuléas well as a cross-

axial carbon nanotubes, and that such a bulk plasmon cann@Y€" from 1DEG to 3DEGwere obtained above for certain
be developed in multishell fullerenes. idealized circumstancesge.g., d<5<R;), our numerical

Before proceeding to describe actual numerical investigaStUdy (see the next subsectipof the solutions of Eq(13)

tions of the matrix equationd3) and(28) for curved geom- shows that similar behavior is maintained also for other sets
etries, it is useful to refer to earlier results obtained in conOf parameters corresponding to actual carbon nanotubes with
nection with planar semiconductor superlatti®In the & finite number of shells.
case of a finite planar lattice, an eigenvalue problem like Eq.
(7) yields a set oN modes organized in a ban#ithe plas- B. Numerical results
mon mode being the uppermost one whose energy converges
rapidly to the bulk value within a rather small humber of
planar sheet§thus when considering below the case of car- Figure 1 displays the solutions of E4.3) as a function of
bon nanotubes or multishell fullerenes we will naturally fo- the numberN of carbon tubules when the wave vector
cus on the behavior of the uppermost mode at the top of thg=0.02, " and the innermost radiug;=d (d=6.4a, is
corresponding band also the intertubule distanceFor this value ofg, one has
Quialitative insight into how the bulk plasmon can arise inqd=0.128 (strong coupling and the response of tubules
an assembly of coaxial carbon nanotubes can be gained bwyith only a few sheets approximates the response of a
considering certain idealized situations. Indeed, consideringDEG. Indeed, from Fig. (&), the value forN=1 and
plasmons with wavelength much smaller than the innermosin=1 isiw;=15.19 eV, in agreement with expressid8).
radiusR;, so thatgR;>1, we can apply the asymptotic ex- However, as the radiuBy=Nd of the outermost tubule in-
pansion(16) to all tubule indices andj. Additionally, as- creases, the produgRy becomes larger than unity, which as
suming that the widtt$ of the hollow cylindrical superlattice aforementioned would lead to a 2DEG behavior for indi-
is small compared to the innermost tubule radii®., vidual tubules[see Eq.(17), and the related discussion in

Furthermore, in this case, the summation ovéiom — o to
+ yields S(q) = coth@d'2).

Two limits can now be recognized. In the weak coupling
1imit,9 namely, whengqd>1, the tubules decouple, each
sheet responds independently with its own two-dimensional
plasmon, and the collective excitation of the assembly is
_given by Eq.(17). In the opposite strong coupling linit,
namely, whenmqd<<1, one has for the hyperbolic contagent
coth(d/2)~2/qd, and as a result the cylindrical superstruc-

ture develops a volume plasmon with enefgyy"* [see Eq.

1. e=€,=1: o plasmons in coaxial carbon nanotubes
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FIG. 2. The uppermostr mode (coupled-plasmon moglefor
m= 2, 4, 6, 8, and 1@bottom curve to top one, respectivgland
FIG. 1. Eigenmode bands of excitations forq=0.02a5* ver-  for q=0.03%, " versus the number of sheef¥, in the carbon

sus the number of sheetl, in a coaxial carbon nanotube. The Nanotube. The innermost radiéy =20d, whered=6.43, is the
innermost radiusR, = 1d, whered=6.4a, is the intertubule dis- intertubule distance. Observe the strong convergence of all the

tance. Eigenmodes fdN=1 are denoted by a triangléa) The ~ Modes to 21.53 eV, which is the energy of the bulk graphitic
m=1 band.(b) Them=0 band. The choice of dielectric constants Plasmon in the unscreened approximation of the calculations pre-

for the carbon structuree] and the surrounding mediunxg) is ~ Sented here. Although only the discrete valuesiaire meaningful,
e=en=1. in plotting the curves, a continuous interpolation was used for rea-

sons of convenience. The top panel is a continuation of the bottom
1 A], and to the development of a 3D plasmon due to the®"® wit_h respect to the number of coaxial sheets. The choice of
intertubule couplings. The onset of such a crossover from glele_ctrlc con_stants for the carbon structueg 4nd the surrounding
1D to a 3D behavior is expected whéh reaches a value Medium En) is e=en=1.
such thagRy~1, orN~8 forq=0.02,'. ForN=30, the . .
N solutions of Eq(13) form a band, bounded between upperI|m|t|ng case whemg=0. Two d!fferent \_/alues of the inner-
and lower limits, independent of. As discussed in the case MOst radius have been considered, iR,=10d (dashed
of finite planar superlatticéésuch behavior is characteristic ineS andR;=20d (solid lines. One sees that, while several
of a 3DEG. The top of the band is the 3D plasmon andModes(those withm=10) converge as a function & to
carries most of the oscillator strength. Indeed, taking the arell recognizable limits, the%elkllm!ts are different from the
eal density of ther electrons to bev=0.31%;2, and ap- Value of the bulk plasmorfw;™, since(i) they depend on
plying the unscreened expressi(8®), the value of the bulk  the azimuthal angular momentum and(ii) they depend on
plasmori® is 21.53 eV(using the bare electron maswhich the value of the innermost radiu®;. In the case of the
practically coincide¥ with the value at the top of the band M=1 mode, no convergence is reached within the 200 tu-
[see Fig. 19)]. bules plotted here, and this remains true even for a larger
For m=0 andN=1[Fig. 1(b)], the one-dimensional be- number of tubules. o
havior described by Eq(19) is reproduced. Indeed, for We chus now on the second way described in Sec. III_A
N=1, the plasmon has a value close to zero, unlike the finitdor varying the parameters of the assembly, namely, keeping
value of them=1 case. In spite of the different behavior for N constant, but varyingj. This can be carried out for the
the first few tubules, both modes develop the same volumgase of coaxial nanotubes only.
band forN=30. In particular, the top and bottom limits in !N Fig. 4@, we exhibit the development of the 3D plas-
both bands are very similar in value. mon form=0 andN=30 sheets, as a function of the longi-
To illustrate the development of the bulk plasmon fortudinal wave vectorq, and for an innermost radius of
other modes with different azimuthal quantum numbers, wéR1=1d. Note that forg=<0.02a, *, the superlattice behaves
display in Fig. 2 the uppermost modes fae= 2, 4, 6, 8, and as a 1DEG, while in the region 0.85'<g<0.10,' a
10, and for a value oq:0_035351 (again a case of strong 3DEG develops, since the top of the band is very close to the
coupling when the innermost radius of the assembly of car-3D plasmon, i.e., 21.53 e{see Fig. 4b)]. For values
bon nanotubes iR;=20d.%® For all values ofm, these q>0.3a61, the coaxial tubules decouple from each other,
curves indeed converge to the bulk plasmon value at 21.53nd the superstructure exhibits th¥> behavior characteris-
eV. The convergence is almost reachedNer 30 sheets. For tic of a 2DEG.
N=100 sheets, the convergence is almost ideal. In Fig. 4(b), we further demonstrate the development of
Next we address cases when the bulk plasmon in cylinthe 3D plasmon by focusing on the range§<0.1(a, !,
drical assemblies fails to develop in spite of the strong couand by considering three cases with different numbers of
pling condition. Such is the case wher=0. Figure 3 dis- sheets, i.e.N=20, 60, and 10Qbut again with the same
plays the uppermost modes for= 1, 5, 10, and 15 in the innermost radiu®k;=1d and for the samen=0). One sees
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FIG. 3. The uppermost- mode (coupled-plasmon modieor 000 005 010
m= 1, 5, 10, and 1%bottom curves to top ones, respectiyelgnd g (1/00)
for g=0 versus the number of sheetd, in a carbon nanotube.
Results for two different innermost radii are plotted, namely, for G, 4. (a) Eigenmode band of excitations form=0 for a
R;=20d (solid lineg, and for R,=10d (dashed lines where  carhon nanotube with a fixed number of shebdts; 30, versus the
d=6.4, is the intertubule distance. The numbers 1 and 15 indicat§yngitudinal wave vector. The innermost radiu®, = 1d, where
the lowest and highest value af in this figure and label bottom  4—g 4a, is the intertubule distance. The dimensionalities of the
and top curves, respectively. These labels are placed below the rgrasmons are indicated at the tap) The uppermost- mode for
spective solid curves and above the corresponding dashed ong§—( and R,=1d for three nanotube assemblies with different
Although only the discrete values &f are meaningful, in plotting  nymper of layers, nameljy= 20, 60, and 100bottom curve to top

the curves, a continuous interpolation was used for reasons of coge, respectively The choice of dielectric constants for the carbon
venience. The top panel is a continuation of the bottom panel withyycture €) and the surrounding mediune ) is e= €= 1.

respect to the number of coaxial sheets. The choice of dielectric ) _

constants for the carbon structure) (and the surrounding medium 2. e=€y=1: o plasmons in multishell fullerenes

(€m) is e=en=1. We turn our attention now to the case @fplasmons in
multishell fullerenes. Figure 5 displays the uppermost modes
mode in all three cases rises very fast, from a vanishing valuf® innermost radius equal #8,=10d (solid lines. For
atq=0 to values close to 21.53 eV, which is the value of theCCMParison, the plasmon modes of an assembly of coaxial
bulk plasmon. The rise is fastéand correspondingly the nanotubes with similar parameters<|, R,=10d) and

. g=0 have also been drawn. As was anticipated in Secs. Il A
overlap with the value of the bulk plasmon becomes b)atterand Il B from an inspection of the form of coupling matrix

for a larger numbeN of graphitic sheets. However, even for gjements, the plasmons of multishell fullerenes resemble in
the rather small number df= 20 sheets, the energy of the their behavior the plasmons of coaxial nanotubes in the spe-
coupled plasmon comes very close to the value of 21.53 e\¢ial case of zero longitudinal momentum transfer. In particu-
although in a more restrictedy range (namely, for lar, one can infer that no bulk plasmon can be developed in
0.05%, '<q=0.07%, ) than the plasmons associated with multishell fullerenes. .

N=60 and N=100 sheets. This behavior of the [N Fig. 6 we further elaborate on the behavior of the

N=20-sheets assembly is in agreement with experimentd/~ 1 Mode. In this figure, the uppermost mode is displayed

. o8 . . as a function ofN for different innermost radii, i.e., for
ggﬁi&;\t’:t;ogi’lkﬁﬁggrgiggnt;nwmm a 29-layer tube already R,;=1d, 3d, 5d, and ™. One sees that this mode does not

. . , reach the value 21.53 eV of the unscreened laufdasmon
Figure 4 shows that, for a multishell nanotulveith suf-  gyen for multishell fullerenes with the rather large number of

ficiently largeN), a succession of dimensionality crossoversy =100 shells. A strong dependence of the plasmon energy
occurs as a function af, which is unique in the sense that on the value of the innermost radius of the multishell
no analogous behavior is exhibited by finite planarfullerene is also seen. Since the synthesized multishell
superlattice¥ (where a simple 2D to 3D crossover takes fullerene€’ have on the average 20 to 40 shelsructures
place. In particular, we find that the character of the collec-with up to 70 shells have also been obsejyéarther experi-

tive excitation changes from a 1D plasmon for small valueamental work should be able to demonstrate this nonbulk be-
of g to a 2D plasmon for largg (decoupling regime of the havior of thel =1 o excitation of multishell fullerenes.
excitations of individual layepswith the occurrence of a 3D
plasmon for a certain range of intermediate valuesg.on-
termediate 1D-2D and 3D-2D behavior also occurs for cor- In this subsection, we turn our attention to the caserof
responding ranges af. electrons, which have an areal electronic density equal to 1/3

3. €e* €y, : 7 plasmons in coaxial carbon nanotubes
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FIG. 5. The uppermost- mode (coupled-plasmon modgieor 00 02
I= 1, 5, 10, and 18bottom curve to top one, respectivelyersus q{/a)
the number of shelld\, in multishell fullereneqsolid lineg. The
innermost radiusR,=10d. For comparison, the corresponding
modes (= 1, 5, 10, and 1p for a carbon nanotubdwith FIG. 7. Eigenmode band of excitations form=0 for a carbon
R,=10d) wheng=0 are also plotteddashed lines The numbers hanotube with a fixed number of shee\s= 30, versus the longitu-
indicate values of (or m) and label respective pairs of curves, dinal wave vectorq. The innermost radiusk,=1d, where
Although only the discrete values df are meaningful, in plotting d=6-43¢ is the intertubule distance. The dimensionalities of the
the curves, a continuous interpolation was used for reasons of cofl@smons are indicated at the top. The choice of dielectric constants
venience. The top panel represents a continuation of the bottom orf@f the carbon structureej and the surrounding mediung ) are:
with respect to the numbeX of shells. The choice of dielectric (@ €=4 anden=4; (b) e=4 ande,=1 (ain. The dashed line
constants for the carbon structure) (and the surrounding medium Corresponds to the surface plasmon when the surrounding medium
(€r) is €= €y=1. is water n,=1.9); (c) e=4 ande,=10. Notice that the special

surface-plasmon mode appears above the banetfat, and below

s ) the band fore<e,.
of that of theo electrons, namelyn™=0.106, “. An im-

portant factor to be taken into account is that thelectrons
are strongly screened by the tightly boumcelectrons. This
effect can be mimicked by considering that theelectrons
move in an environment of dielectric constas# 1. The
natural choic& is e=4, so that the value of the screened
bulk graphite 7= plasmon, namely, o, =[44%mwe’n™/
(emed)]Y2, equals 6.2 eV, instead of 12.4 efor e=1).

Before proceeding to the numerical results, we refer the
reader to the Appendix for a listing of the relevant matrix
equations in the general case whehe,,, with €, being the
dielectric constant of the surrounding medium.

For the case=¢,=4, we exhibit in Fig. 7@ for m=0
the development of the 3D plasmon in nanotubes with
N=30 sheets, as a function of the longitudinal wave vector
g and for an innermost radiu’;=1d. The behavior of the
2 S - ' total band closely parallels that of the plasmon band in
Fig. 4(a).

On the other hand, in Fig.(), we present a calculation
for the casee=4 ande,=1 (solid line9. This latter choice
closely models the actual case ef plasmons of coaxial
carbon nanotubes in air. The remaining paramefees, N
and R;) are the same as in Fig(&. The top of the band
L L . again develops into a bulk plasmon(6.2 eV) in the region

0 40 50 0.022,'<q=<0.10a, '. This is consistent with the experi-
N mental observation of a bulk plasmon in coaxial carbon
nanotubeg® However, forq=0.1a,*, the uppermost mode

FIG. 6. The uppermost- mode (coupled-plasmon modefor develops into a new branch which s_tron_gly rises above_ the
I= 1 versus the number of shell, in multishell fullerenes. Re- €St O_f the band. Such a branCh' which is due to the differ-
sults for four different innermost radii are presented, namely, foreNce in the values of ander,, is commonly referred to as a
R,=1d, 3d, 5d, and @ (top curve to bottom curve, respectively —Surface plasmof¥, and was studied by Giuliani and Quitin
Although only the discrete values df are meaningful, in plotting for the case of a semi-infinite, planar semiconductor super-
the curves, a continuous interpolation was used for reasons of coattice (see also Ref. J2Analogous surface modes have also
venience. The choice of dielectric constants for the carbon structurbeen predicted for semi-infinite graphite intercalation
(€) and the surrounding mediung{) is e=e,=1. compounds? The dashed line in Fig.(B) corresponds to the

Energy (V)
G
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FIG. 8. Eigenmode band of screenedxcitations fom=0 for
a carbon nanotube with a fixed number of sheldts, 30, versus the
longitudinal wave vectoq. The innermost radiu®,=1d, where
d=6.4a, is the intertubule distance. The dimensionalities of the
plasmons are indicated at the top. The choice of dielectric constants
for the carbon structure and the surrounding mediur=$.8 and
en=1. FIG. 9. The uppermosir mode (coupled-plasmon moglefor
= 1 versus the number of shelld, in multishell fullerenes. Re-
sults are shown for two choices of pairs of dielectric constants:
surface plasmon when the surrounding medium is watee=4 ande,=1 (vacuum, solid lines e=4 ande,=1.9 (water,
[en=1.9 in the high-frequency rangsee Ref. 22 in Ref. dashed lines For each choice of the dielectric constants, results are
31)]. Only the surface plasmon is plotted in this case, sincaiven for five values of the innermost radii of the multishell
the rest of the band remains essentially unaltered from th&illerenes, namely, foR,;=1d, 2d, 3d, 5d, and @ (top curve to
en,=1 case. bottom curve, respectively, for each casélthough only the dis-
In Fig. 7(c), we present results for the case=4 and a  crete values oN are meaningful, in plotting the curves, a continu-
surrounding medium characterized by a high value of the®us interpolation was used for reasons of convenience.
dielectric constant, e.ge,,=10. We see that the surface plas-
mon appears now below the band. Unlike the casee,
[see Fig. T)], however, it is uncertain that such a low- fullerenes in the interstellar dust consist of a rather large
energy surface plasmon can be observed, since commoniymber of graphitic shells.
the excitation strength concentrates in the uppermost mode. The dashed lines in Fig. 9 display the behavior of the
For completeness, we further present in Fig. 8 the evoludipole mode of ther plasmon in multishell fullerenes, but
tion of the band in the case=0.8 ande,=1, but for o  for the casee=4 ande,,=1.9. This last case corresponds to
plasmons. As seen from this figure, the small difference bethe case of ultraviolet absorption spectra of suspensions of
tween the dielectric constants results only in the renormalmultishell fullerenes in water, which were recently studted
ization of the value of the bulkr plasmon(namely, from in laboratory experiments. For hollow multishell resulting in
21.53 eV to 24.1 eV, which is the value observed in thefullerenes(i.e., those withR;=2d), one observes foN
experimerft), but has no other effect on the nature of the top<10 a stronger dependence on the innermost radius result-
of the band[compare with Fig. &) where results for ingin a strong redshift compared to the case of a surrounding
e=€n,=1 are showh In particular, a surface plasmon medium withe,,=1 (case of interstellar dustThis behavior
branch on top of the total band fails to develop, sinceis again consistent with the experimental observatitmat a
e<é€n. mixture of hollow multishell fullerenes lacking six to ten
innermost shell§while having a total of two to eight gra-
4. €+ €y m plasmons in multishell fullerenes phitic shellg exhibits an ultraviolet absorption band centered

In Fig. 9, we present the behavior of theplasmon dipole &t 4-7 €V(264 nm when suspended in water. Indeed, as seen
mode (=1) in multishell fullerenes associated with the re- from the dashed lines in Fig. 9, the centroid of the absorption

gion of ultraviolet absorption. In this figure, the uppermostP@nd for hollow multishell fullerenes with<10 is in the

mode is displayed as a function Nffor different innermost range of th? experimental value. Further comparison be-
radii, i.e., for R;=1d, 2d, 3d, 5d, and 7, from top to tween experimental results and our theory requires measure-

ments on clean samples selected according to the innermost
radii of the multishell fullerenes.

bottom.

The solid lines correspond to the case 4 ande,,=1,
which mimics the case of onionlike graphitic particles in the
mterstella@r dust. One sees that none of the solid lines reaches IV. CONCLUSIONS
asymptotically the bulkr plasmon value of 6.2 eV. Rather,
despite a moderate dependence on the innermost rRgius Adopting methodologies developed in investigations of
these lines group asymptotically around the value of 5.7 eMhe linear response of finite planar superlattit&sye used a
a behavior which is consistent with that of the observed in<lassical hydrodynamical approach to study the behavior of
terstellar absorption feature. This indicates that the multisheltoupledo and 7w plasmons in curved layered carbon micro-
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structures, namely, coaxial carbon nanotdb&sand muilti- ACKNOWLEDGMENTS
shell fullereneg’

Our findings can be summarized as follows.

(I In the case of coaxial carbon nanotubes and indepe
dently of the specific excitationo( or 7r) we found the fol-
lowing.

(@ For smallq, such thatqd<1 (strong coupling a
dimensionality crossover from a characteristic 1D to a 3D
bulk plasmon behavior may occur upon increase of the num- |n this appendix, we list the general matrix elements
ber of graphitic sheetsN) comprising the nanotubésee M andM{"®" in the case when the graphitic structures are
Figs. 1 and 2 characterized by a background dielectric constamind at

(b) For a multishell nanotubéwith a sufficiently large the same time are embedded in a medium of dielectric con-
number of sheetdl), the collective excitation changes from stante,,,.

a 1D plasmon to a 3D plasmon, and then to a 2D plasmon First we notice that from the set of original Eq$)—(5),
(decoupling of the excitations of individual sheeds a func-  only Eq. (5) for the boundary conditions concerning the de-

tion 0(; g‘e longitudinal momentum transféq (see Figs. 4, rivatives of the potential will change as follows:
7, and 8.

This research was supported by the U.S. Department of
Energy (Grant No. FG05-86ER-45234and the AFOSR.
"Studies were performed at the Georgia Institute of Technol-
ogy Center for Computational Materials Science.

APPENDIX

(c) A sufficiently small (namely, forqd<1, strong cou- P 1(R)  9Pi(Ry) i
pling), butfinite value ofq is necessary for the emergence of € ar T =4men (Ala)
the bulk plasmon. Foq=0, the coupled plasmons, for any )
number of sheetdl, exhibit a particular nonbulk behavior Of I<N—1 and
and have frequencies_dependent on the azimuthal angular oDy 1(Ry) FNGS) y
momemtumm and the innermost radiu’,; of the assembly €m —€ =4mem (Alb)
(see Fig. 3 This behavior contrasts with the properties of ar ar
the bulk plasmon. for i=N.

The results ofla) and(Ib) above suggest that systematic  Repeating the same steps as described earlier in Sec. Il A,
investigations of the nature of dimensionality crossovers ofve obtain for the case of coaxial carbon nanotubes
the plasmons in carbon nanotubes would require experimen-

tal energy-loss data as a function of the longitudinal momen- ., 47€°Ng z A= B+ C—D

tum transfer. Mij™= em, R; R_i2+q (AR ————,
(Il The cases of multishell fullerenes for bathand = (A23)

plasmons resemble strongly the corresponding cases of coa

axial carbon nanotubes whep=0 [case(lc) above, see Fig. where

5]. In particular, the dipolé=1 mode displays frequencies

significantly lower than the value of the bulk plasm@ee A= el [ (R Km(qRKm(AR>),

Figs. 6 and @ Since the dipole excitation mode associated

with the 7 electrons mediates the optical absorption in mul- L= eK(qRYK (AR I m(dR),

tishell fullerenes, such behavior correlates with the observed

systematic redshift of the interstellar absorption Baritlas 7= emKn(ARKn(GRW) I m(AR>),

compared to ther plasmon of bulk oriented graphité. )
(11 For hollow multishell fullerenes suspended in water, P=€nKin(AQRY)Km(GR-)Im(aRy),

our calculations for thé=1 7 plasmon exhibit an additional o

strong redshift in fair agreement with recent experimental Z=eln(aR)Km(GRy),

observation¥' (see Fig. 9. 7= enK (AR (GRy). (A2b)

(IV) Unlike the case ofr plasmons, the study af plas-
mons requires consideration of the different dielectric con-Observe that the primes indicate differentiation only with
stants between the carbon structures and the surrounding mespect to the argument of the modified Bessel functions, and
dium. Due to this difference, in the case of carbon nanotubethat R-.=min(R ,R)), R-=maxR ,R)), while Ry is the ra-
in air or vacuum, a special surface mode can develop fodius of the outermost tubule.
largeq (see Fig. 7. For the case of multishell fullerenes, we find

— (Ri/R) (el + €l + €m) + (€= €m) (1 + 1)(R; /Ry *1],  i]
Mir;'IUI:~

@ai (R /R [ (el + €l + €m) + (e— €m) (1 + 1)(Ri /R ], 1>, (A33)

whereRy, is the radius of the outermost shell, and



4mnie? I(1+1)
emy (21+1)(el+ el +€y) E,

~2 _
Wo; =

(A3Db)
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Notice that fore=¢,, the above Eq9A2) and(A3) reduce
to Egs.(13) and(28), apart of course, from an overall factor
1/e.
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(1982, and references therein.
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“8For the case of a solid cylindrical wire, see R.A. Ferrell, Phys. timate of the effects this screening has on shelasmons.
Rev. Lett.13, 330(1964. %4The contribution ofcq2 can be neglected, sincBéc=12.93
“OFor the case of a hollow cylindrical wire, see E.N. Bogachek and eV a3, so that one hasgq?=0.0052 eV forq=0.02a,*.
G.A. Gogadze, Zh. Esp. Teor. Fiz67, 621 (1974 [Sov. Phys.  55Thjs choice ofR; guarantees thag>m/R; [Ri=R;+(i—1)d]

i JETP40, 306 (1975]. _ for the majority of shells in the assembly, even for the largest
51G. Bgrton and C. Ebe_rlel.n, J. Chem. Phgs, 1512(1991). valuem= 10 considered in this calculatijsee text immediately
G. Mie, Ann. Phys(Leipzig) 25, 377(1908. preceding Eq.(33) in the subsection on qualitative consider-

52Using the Drude dielectric function, the Mie theory yields the ationg. Based on our numerical calculations, we note, however,

result Qyie=QpV1/(21+1) for the frequency of the surface ¢ this condition does not necessarily have to hold for the
plasmons of a solid metallic sphere, whéris the multipolarity innermost radiusi(=1) for the bulk plasmon to emerge.

. ;
and Q= 47rpe_/me is the frequency of the plasmon in the 56 Again this surface plasmon is different from the surface plasmon
bulk metal,p being the volume electron density of the metal.

For large values of, the Mie frequencyQ) ;. approaches the
frequency of the plasmon of glanar metal surfacéRef. 3.
53The experimental value, 24 eV, of the butkplasmon in oriented
graphite(Ref. 28 reflects the screening of theoscillations due
to the 7 electrons. In Secs. 1l B 1 and Il B 2, we neglect this
screening. However, see Sec. Il Blast paragraphfor an es-

that develops on the surface of a thick solid metallic cylinder
with the electric field perpendicular to the axis of symmetry and
with frequencyQp/\/E, where(}, is the frequency of the plas-
mon in the bulk metalRef. 52 [see C.F. Bohren and D.R.
Huffman, Absorption and Scattering of Light by Small Particles
(John Wiley, New York, 19843.



