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Variational calculation based on a continuum dielectric model, and numerical simulations
based on the RWK2-M water potential and on a pseudopotential for the electron—water
interaction, are used to evaluate excitation energies and optical spectra for bound interior
states of an excess electron in water clusters and in bulk water. Additionally, optical data for
surface states are obtained from numerical simulations. The simulation approach uses
adiabatic dynamics based on the quantum-classical time-dependent self-consistent field
(TDSCF) approximation and the fast-Fourier transform (FFT) algorithm for solving the
Schrédinger equation. Both approaches predict very weak or no cluster size dependence of the
excitation spectrum for clusters that support interior solvated electron states. For an electron
attached to the cluster in a surface localization mode, bound excited states exist for most
nuclear configurations of clusters down to (H,O) 3, and the corresponding excitation energy
is strongly shifted to the red relative to that associated with stable internal states in larger
clusters. Binding and excitation energies associated with surface states are about half the value
of these quantities for interior states. The present variational continuum dielectric theory is in
relatively good agreement with the simulation results on the size dependence of the relative
stability of interior states. However, it strongly underestimates the vertical excitation energy of

the solvated electron. It is suggested that optical spectroscopy of excess electrons in water
clusters could serve as a sensitive probe of the transition from surface to interior localization
modes as the number of water molecules in the cluster is increased.

I. INTRODUCTION

Nonreactive electron attachment to small clusters has
been a focus of many experimental''! and theoretical'*~'®
studies during the past few years, as part of the more general
effort to elucidate the energetics and dynamics of electron
solvation phenomena in molecular and ionic systems.'’"
Recent advances in numerical simulation techniques of dy-
namics in mixed quantum/classical systems'*'®'*° and
the development of reasonably reliable potentials for the wa-
ter—water interaction®'* and pseudopotentials for the wa-
ter—electrons interaction®*3® have made it possible to study
microscopic details of the localization modes, energy levels,
dynamics of the solvation process, and mobility and diffu-
sive behavior of the solvated electron. In particular, theoreti-
cal studies of these properties associated with the solvated
electron in water clusters, ranging in size from two to a few
hundreds water molecules, have lead to the following con-
clusions:

(1) The localization mode of an excess electron in water
clusters depends on the cluster size. For clusters (H,O)
with n 5 10 the electron is attached in a diffuse weakly bound
surface state. For 10 S n S 60 the ground electronic state is a
relatively strongly bound surface state while for n = 60 the
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most stable state of the excess electron is a solvated state in
the interior of the cluster.>

(2) The origin of the mode of localization (surface vs
internal states) is the balance between the excess electron
binding energy to the cluster and the water reorganization
energy associated with the electron attachment.>>~*” For the
smaller clusters the reorganization energy associated with
an interior state is larger than the binding energy of this
state, resulting in the preferred surface localization which
requires less cluster reorganization. The opposite is true for
the larger (n= 60) clusters which make the interior state
more stable. In intermediate size clusters (18 S n S 60) inte-
rior states appear as long lived metastable states. Similarly in
larger clusters surface states appear as long lived metasta-
bles. [A molecular dynamics study of the time evolution
from such a metastable surface state into the interior of a
(H,0)55¢ cluster was recently carried out.>” The surface
state was found to live for more than 1 ps before penetration
into the cluster’s interior begins. ]

(3) The electronic absorption spectrum associated with
the interior solvated electron state of the larger clusters (as
well as in bulk water) is weakly dependent on cluster size
and is characterized by the (overlapping) transitions from
the ground, s-like, electronic state to the three, p-like, lowest
excited states.”**® The calculated absorption peak obtained
from the simulation is at ~2.1 eV and its width of ~1 eV,
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compared to experimental results in bulk water — 1.72 and
0.92 eV, respectively.*’

(4) Vertical binding energies obtained from the simula-
tions for the surface states of the smaller clusters
(12<n<18) are in good agreement with results obtained
from photoelectron spectroscopy.*’

(5) The adiabatic dynamics of the electron solvation
process (starting from the electron localized in a pre-existing
trap of the neutral water), as well as the relaxation dynamics
following excitation of the solvated electron, is not strongly
sensitive to cluster size for clusters (n2 60) that support
internally bound states, and is characterized by two time
scales:'> 2™ (a) A fast one (20-30 fs), associated with a
rotational (librational) motion of the water molecules in the
first solvation shell about the electron and (b) a slower re-
laxation stage ( ~ 200 fs) which is of the order of the longitu-
dinal dielectric relaxation in water. Recent experimental re-
sults indicate however that two electronic states may be
involved*"*? with the corresponding nonadiabatic transi-
tion rate being ~ 580 fs.*

(6) Diffusion and mobility of the solvated electron are
characterized by a nonhopping, polaron-like mechan-
ism.2-2743 Simulations comparing “rigid” water mole-
cules (using the RWK2 potential, with all intramolecular
motion frozen at the equilibrium molecular configuration)
and “flexible” water molecules (using the RWK2-M poten-
tial with all degrees of freedom free to move) show that elec-
tron migration is faster in the rigid molecules system.** A
similar behavior was observed for the self-diffusion in wa-
ter,’** indicating that the flexible water system imposes
stronger restrictions on the motion than the rigid water one.
A related observation is that the reorganization energy is
higher in the flexible water solvent than in the rigid water
medium.*?

On the experimental side, the properties of negatively
charged water clusters have so far been studied using pho-
toemission techniques.*® From these, electron binding ener-
gies ( presumably vertical) are obtained as well as informa-
tion on the electron coupling to the water vibrational
motion.*>*¢ The recent analysis of the angular distribution
of photoejected electrons from (H,O) ; has shown the po-
tential of this method in exploring the shape and structure of
such negatively charged clusters.*’ In particular, in combi-
nation with theoretical analysis, this may be a way to experi-
mentally verify the existence of surface states predicted by
the theory.

In this context we remark that based on a generalization
of a dielectric continuum model of excess electron solvation
to finite clusters,’” it has been rigorously shown, and nu-
merically simulated, that for internally localized states (de-
scribed as a spherical electronic charge density in a cavity
centered in a uniform dielectric sphere) the electron vertical
binding energy (EVBE) varies linearly with n — /3, where n
is the number of molecules in the cluster. It was also found
from simulations®® that the surface states for smaller clus-
ters seem to obey such a linear relation but with a different
slope. (However no rigorous justification for such behavior
for the surface states is provided. ) This prediction motivated
analysis of recent experiments**® on hydrated electron

cluster anions, (H,0),” for 2<n<69, where it was suggest-
ed that while indeed in small water clusters excess electrons
are localized as surface states, evolving with the size of the
cluster into internal states, the transition between surface to
internal localization modes occurs by n~ 11, i.e., at smaller
sizes than predicted by theory. At the same time it was noted
that the experimental values for n = 12, 18, and 32 are in
agreement with those predicted theoretically for the surface
states of an excess electron in these clusters. We should em-
phasize that the above analysis of the experimental data**‘®

is based on a straight line fit of the measured peak maxima of
the photoelectron spectra, interpreted as the EVBE’s, vs
n~ ' over the entire range of 6<n<69, whereas as noted by
us before such fit is rigorously valid only for internally local-
ized states.

While further analysis of photoelectron spectroscopy
data and in particular for different photon energies and for
larger negatively charged (H,0), clusters (i.e., n>69)
may help to resolve this issue, we suggest that an alternative,
potentially useful way to obtain information on the states of
the solvated electron is via absorption spectroscopy or reso-
nant light scattering. This is particularly the case for cluster
systems since the excited states of the attached electron pro-
vide an effective means for probing the local molecular envi-
ronment and thus the excitation spectra could allow the dis-
tinction between surface versus interior localization modes.
As mentioned above, our preliminary studies of the absorp-
tion spectra associated with interior states of solvated elec-
trons in moderately large clusters (» > 60) indicate weak or
no dependence on cluster size.>**® However if excited states
of the surface bound electron exist, we expect that the corre-
sponding absorption spectra will be very different from those
predicted for interior states. Indeed we show in the present
work that bound excited surface states exist for (H,0)
clusters with #Z 18 and that the corresponding absorption
spectrum peaks at ~0.85 eV, about 1.25 eV lower than the
peak associated with the interior state. This difference is
large enough so it may be expected that once such experi-
ments become feasible they should be able to provide a direct
unequivocal verification of the existence of excess electron
surface states for clusters for which this is the stable mode of
electron localization.

In addition, we present in this paper vibrational density
of states spectra for neutral and negatively charged water
clusters. These are obtained by Fourier transforming the nu-
clear velocity time correlation functions and should approxi-
mately represent the expected ir absorption spectrum of
these clusters. Such “vibrational spectra” can be generated
in different ways which shed light on some details of the
cluster structure and the electron binding in the cluster. In
particular by analyzing the spectra associated with different
solvation shells about the electron we show that the solva-
tion process is associated with a small but significant blue
shift in the OH stretch frequency of the water molecules
nearest to the electron. Other small shifts are observed in the
intermolecular librational region of the spectrum.

Before turning to these numerical simulation studies of
electronic and nuclear dynamics spectra, we consider in the
next section the cluster size dependence of the electronic
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energy gap between the ground and excited states of the sol-
vated electron in a continuum dielectric model. This model,
in which the cluster is represented by a sphere of dielectric
function e(w) is a generalization of continuum theories of
bulk solvation. A simplified calculation using this model has
shown, under certain assumptions, that once the cluster is
big enough to support internal states, the electronic energy
spacing (in contrast to the absolute positions of the elec-
tronic levels) is not sensitive to the cluster size.*® The more
rigorous treatment of Sec. II results in a weak size depen-
dence, however this dependence is small relative to the sol-
vent induced statistical broadening of the energy levels, seen
in the simulations and reflected in the observed broad ab-
sorption. On the other hand, for surface states simple argu-
ments predict strong red shift (relative to interior states) of
both the absolute state energy and of the electronic energy
gap which are seen in the simulations.

In Sec. III we present and discuss our simulation results
of the electronic absorption spectra for the interior and sur-
face states of the solvated electron. In Sec. IV we discuss
different aspects of the vibrational spectra. Sec. V presents
our conclusions.

Il. DIELECTRIC THEORY

It has been demonstrated that continuum dielectric the-
ory can provide reasonable estimates for the adiabatic and
vertical binding energies of excess electrons in the interior
states of molecular clusters, represented by dielectric
spheres. In this section we use the same approach to esti-
mate: (a) the critical cluster size that may support an inter-
nal state, and (b) the cluster size dependence of the excita-
tion spectrum.

Consider a dielectric sphere of radius R, characterized
by a static dielectric constant ¢, and an optical dielectric
constant €_ . An electron solvated in this cluster is charac-
terized by a wave function ¥(r) and a charge distribution

p(r),
pr) =q|y(r)|?, (H

where ¢ is the electron charge.

The binding energy of the electron can be obtained as
the energy associated with assembling the charge density in
the dielectric medium. The latter is given by (relative to a
free electron with zero mpmentum in vacuum)

D
w =K+J—Jd3r(f SD(r)E(r)
4 o

Dg
—f 5D'0(r)°Eo(r)>, (2a)
(]
ﬁz
K= -——Jd3r P*(r)ViY(r). (2v)
2m

The first term is the kinetic energy of the solvated electron
(m is the electron mass) while the second is the difference
between the potential energies associated with assembling
the electron charge in the solvent and in vacuum.*® In the
ground state, and with the solvent at equilibrium, the dis-
placement vector D,, the electric field E,, the polarization

P,, and the charge distribution p,, are related to each other
by

P, =P, + Py =x.E, + x.E, = x.E,, (3a)
D, =E,; +47P, = ¢,E,, (3b)
VD, = 4mp,, (3¢c)
€, —1 €, — €, g —1
Xe=—417'_’ XdzT’ Xs = 4 . (3d)

x is the dielectric susceptibility, y, is associated with the
electronic response of the solvent (electronic polarizability
of the solvent molecules) while y, results from the orienta-
tion of permanent solvent dipoles and from the nuclear com-
ponent of the molecular polarizability. In vacuum y = O and
D, = E,. The increment 6D and 8D, are associated (via the
Poisson equation) with increments of the charge distribu-
tion Jp in the solvent and in vacuum. ¢, and € are the static
and optical dielectric constants, respectively.

The approximate nature of the following calculation
should be emphasized. The use of continuum dielectric theo-
ry is an important assumption, especially for small clusters.
Taking a uniform dielectric function is a further approxima-
tion in view of our knowledge, based on the numerical simu-
lations, that the electron digs a fairly large cavity in the water
due to the strong repulsion from the charge density on the
oxygen atoms. Finally, for excited states, this cavity is not
necessarily spherical, making the choice of excited state trial
functions based on spherical symmetry (as we do below) not
optimal. Nevertheless we proceed in this way in order to get
a qualitative approximate description of the solvated elec-
tron and its excitations. Note that several important relative
quantities, such as the cluster size dependence of electronic
energies and energy differences between strongly bound
electronic states, depend mostly on the interaction between
the solvated electron and relatively distant solvent mole-
cules. For such properties the dielectric model should be
more adequate than for absolute quantities such as vertical
binding energies.

We assume that the ground state is described by a 1s
wave function and take as a convenient one parameter func-
tion

a3 172
¢g(r) =(__) e—(l/2)ar, (4)
8

where a is to be determined by variation theory. For the
adiabatic binding energy Eq. (2) takes the form

1
Wea =Ky + - [d3r(D,E, — [Eqf?)

=K, +—;—fd3rpg(r) [ (r) —Bp(r)], (5)

where ¢, and ¢,, are the potentials associated with the
charge distribution p, in the presence of the dielectric sphere
and in vacuum, respectively, and where p, = ¢|¢,[%. ¢(r),
the solution of the Poisson equation

—dap,(r), r>R
28 —
V¢g— ___jzr_pg(r)’ r<R, (6)

5
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can be expressed in terms of p(r) in the form™>

= g, (rr’&R)
G(r,r ;6,R) =4rw Z LA

/=0 2041
— 3.1 ’ ', ‘
¢(r) _.fd r P(r ) G(r,r ,€,R), (7) X Z me(9/¢')Y/m(9’¢)’ (83)
m= —/¢
with the Green’s function G given by and
}
((e—D(C+1) r7'C 1 1% (rr' <R)
e(el+ ¢+ 1) R¥1 1 € p/+1 e
2041 1o (r’<R<r)
’ = , 8b
g/(ryr ’E,R) ﬁ e/+/+1 r/v>+1 r<R<r, ( )
rf; /(6—1) R2/+1 ,
T el L1 p I (nr'>R).

o

For the charge distribution given by Egs. (1) and (4), Eq.
(7) canbe easily evaluated. Using the results for ¢, and ¢,
in Eq. (5) we obtain

#a*> 5 1)
= ——¢@gal 1l ——) f(aR), (9a)
T e 32 7 ( <)
16 1 16 ( 2 ) R
R)=l———+ —|1+4+—)e™ "
AaR) 5 aR 5 \ R
4 1 2 2 5 21 4 ) — 2aR
——|—=—a’R —aR+—+— Je .
5 (2 ¢ + 2 + 4 aR
(9b)
A minimum W,_, is obtained for a,,,, the solution of
Smg® ( 1 )
Qpin = ——— 1 — (aminR)! (loa)
8# €, g

gaR) =1 ——15—6—e‘“R(1 + aR)
+%e—m (4(aR)® + 14(aR)? + 22aR + 11) .
(10b)

Since g— 1 for R - «, Eq. (10a) for a,,;, can be cast in the
form

@ nin =abg(aminR)9 (11)
where the bulk limit, @, = a,,;, (R— «), is
5mq’ ( 1 )
a,=—>—|1——]. (12)
b 8% €,

Also, since f{R— « ) —1, Eq. (9a) leads to

Wi (R) = Wy () __S_qzamin(l _L>

32 ;
X (flapmnR) — 1), (13)
where the adiabatic binding energy in the bulk limit is
2 2
WgA(oo)=h8:lnb —%qzab(l—%). (14)
The explicit results for bulk water (e, = 80) are
a, =118 A, (15a)
12 \ 172 R
(r)H'V = (—2) =294 A, (15b)
a,
Wei(0) = —132 eV, (15¢)

I
and should be compared with the simulation result

(r?)"”? =2 A, and the experimental adiabatic binding en-
ergy ~ — 1.7 eV. It should be remembered that by the na-
ture of its derivation W, is only an upper bound to the
actual adiabatic binding energy of this model.

For large clusters (@,,, R— ), fla,,R) givenin Eq.
(9b) can be approximated by fla..R)
~1—(16/5)(1/a,;,R), and using this in Eq. (13) yields

q 1
WgA(R)=WgA(oo)+-27<l——) (16)

eS

which is identical to the result obtained previously by Bar-
nett et al.*®

Figures 1(a) and 1(b) show, as a function of the sphere
size, this upper bound to the ground state energy (in units of
its bulk value = — 1.32 eV) and the “localization param-
eter” @, (in units of a, = 1.18 A ), respectively. There
is no real solution for a,;, for R<R, ~4.5 A. Further-
more, for R<R, = 5.1 A, W, becomes positive, indicat-
ing that for clusters in this size range the interior s-like state
is unstable or metastable relative to the ground state of a free
electron. [ A second solution to Eq. (11) is marked by the
dotted line in Fig. 1. This is an unphysical solution for which
a— oo in the bulk limit.] Translated into number of water
molecules using R = 3a,n'"> (a, is the Bohr radius) yields
n, =22 and n, = 33, corresponding to R, and R,, re-
spectively. Note that these numbers are related to an interior
1s-like state, and do not reflect on the stability of a possible
surface state.

The limiting result given in Eq. (16) was obtained in
Ref. 48 under the assumptions that (a) the electron charge
distribution is spherical, and (b) that pe(r)=0for r>R.
Figure 2 shows that indeed for spherical clusters with RX 5
A more than 90% of the electron charge in the ground 1s
state is indeed localized within the cluster.

Consider now an abrupt change in the electron charge
distribution (p, (r) —p, (1)), following, e.g., an optical exci-
tation. Following this transition the electronic polarization
equilibrates quickly with the new charge distribution while
the nuclear polarization remains in its ground state val-
ue.’*? In the resulting nonequilibrium state we thus have

Px =Pex +de’
Pex =XeEx!

(17a)
(17v)
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FIG. 1. (a) The upper bound to the excess electron ground state energy (in
units of the bulk value [ E, (BULK) = — 1.32 '€V], versus cluster size [see
Eq. (16)]. (b) The optimal value of the “localization parameter” a,,;,, [see
Egs. (11) and (12)] in units of the bulk value [a(BULK) = 1.18 A"
versus cluster size. The physical solution is denoted by the solid line. Dotted
line corresponds to an unphysical solution for which a,,;, — o in the bulk

limit. The radius of the cluster (R) is given in A.

P = x.E,. (17¢)
D, =E, +47P, = (1 + 47wy, )E,

+ 47T/YdEg = 600 Ex + (es - 600 )Eg’ (17d)
VD, =4mp,, (17e)

where the subscripts g and x denote the ground and excited
state, respectively.
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FIG. 2. Fraction of the electron charge bound in a 1s ground state versus

cluster radius (in ).
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The energy difference between the initial equilibrium
state g and the final nonequilibrium state x is obtained from
an equation analogous to Eq. (2) (where §{ is replaced by
f 3;). This development is outlined in Appendix A. The re-
sult is

AE, ., =%fd3r<¢x + ) (0s —py)
1
—7fd3r<px¢m — pebee)

#
- f A r(PEVY, — AV, (18)

The electrostatic potentials ¢, and ¢,, are those associated
with the charge distribution p, in the presence of the sphere
and in vacuum, respectively. They can be obtained from the
Poisson equations

V.o = — 4mp, (1), (19a)
and
— 47p, (1), r>R
V2 x = 4 eac _65 .
¢ ——”(px(r) +—————Pg(!')), r<R
600 65
(19b)

The second of Egs. (19b) is obtained from V¢, = — V-E,
and Egs. (17).

A particular case of Eq. (18) is that in whichp, = 0. In
this case — AE,_, becomes the vertical binding energy of

the ground state

1
WgV =7Jd3rpg(¢x +¢g)
1 #
ey R R
1
=W, +7J.d3rpg¢x, (20)
with ¢, given by Eq. (19b) with p, = 0. The solution of Eq.

(19b) may be written in a form analogous to Egs. (7) and

(8)

é,(r) =Id3r'peﬁ(r "YG(r,r ;€€ ,R), 2n
with
€, — €,
P (1) = p, (1) + ———p, (1), (22)

€

ad g/(r,r’;Es,fw,R)
20+ 1

G(r,r ;6,6 ,R) =47
-/

Y%, (6.4')Y,,(6,4).

(23)

Evaluation of g, in Eq. (23) is performed in the same way
used i Ref. 50 to evaluate g, of Eq. (8a). This evaluation is
outlined, and explicit results for g, are given, in Appendix B.
In order to evaluate properties of the excited state of the
solvated electron we assume, following previous molecular
dynamics simulation results, that the excited state is repre-

M-~ &

X

m -/
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sented by a wave function of a 2p symmetry and choose as a
one parameter variational function the form

b 5

327
where the parameter b is to be determined. As a reference
consider the adiabatic situation where the excited state, Eq.
(24), is in equilibrium with the bulk solvent. Using Eq. (5),
with K, p,, ¢,, and ¢,, replacing the ground state (g)
quantities, leads to

2 2
W.,(R= o) =0 ——8—3—"—”(1—i), (25)

(24)

172
] re” %2 cos 6,

P (r) =

8m 288 2

which upon variation of b (to get the lowest energy state of
2p symmetry) yields

5

83  4m ¢ 1
byuik =E§§_+? %(1 _6_:) (26a)
~1.08 A~ ! (forg=1and ¢, = 80),
and
W, ()= —11¢V. (26b)

Thus, according to this dielectric theory the difference
between the adiabatic binding energies for the ground and
excited states is 0.2 eV [compare Egs. (15¢) and (26b) ].

The corresponding electron gyration radius in the excit-
ed state is given by

30 \12 Y

(r?yVr= (—) =507 A

b tz)ulk
As in the ground state [Eq. (15b)] this result is ~60%
larger than that obtained from the simulations, however the
ratio (r*)/%*/(r);*~1.7 is closer to the simulation result
(~L.5).

Consider now the vertical excitation energy in the
sphere, Eq. (18). Using p,(7) [Eqgs. (1) and (4)], p, ()
[Egs. (1) and (24)] and the potentials ¢, [Eqs. (7) and
(8)] and ¢, [Eqgs. (21)-(23) and Appendix B], Eq. (18)
can be evaluated. The algebra is quite tedious and will not be
given here. The results given below were obtained using two
simplifying approximations (which are shown to be valid by
the molecular dynamics simulations):

(1) For clusters that support an interior solvated elec-
tron state 1, and ¥, are nearly identical to their forms in the
bulk dielectric [for 1, this is seen from the plot of a(R)/a,
vs sphere radius in Fig. 1], so the main contribution to the
cluster size dependence of AE,_ , comes from the first term
of Eq. (18).

(2) For such clusters the charge distribution is .essen-
tially confined to the cluster volume. For p, we strictly as-
sume fope.d’rp (r) =g, while for p, we define

S[=(1/9) S phered’rp,(r) and neglect terms of order
(1-n=

We note in passing that using these approximations for
Pg in Eq. (20) leads to an expression for W, (R) obtained in
a previous study,*®

2 1 2
Wgyng,,(oo)+q—(1+———).

2R €. €
For AE,_, this procedure with these approximations

leads to the following result

(27)

(28)

AE, .(R)
2 fe, —1 48 ((rD,)?
=AE L i x
g“"(°°)+2R[ e. 2.+3 R*
i) (-2)
€ 4 €
(bR)* | (bR)*® | (bR)? )”
X bR + 1 ,(29
( 4 + 5 + 2 + bR + (29)
where
o, = arrye =2 (30)
sphere bz
and

1 , 5a 1 2 #
AE —dtp2afi L _2)V  # g p
g () 27 16( € e) 8m( “)

s

1, (1 83 Fa(l 1 )
rigp( ) B ge(l 1
27 (Gw )288 2 (e €.,

5

3 bg a? )
X(l-—— — . (31
2 (g+b)° (a+b)

These expressions, upon variation of b (to get the lowest
energy for a state of 2p symmetry) and using the ground
state results, yield AE, () =0.38 ¢V, for b= 1.18 A.
This is much smaller than the experimental result (~1.7
eV) and the simulation results (2.1 eV). The origin of this
discrepancy may lie either in the use of a continuum dielec-
tric theory, or in the possibly poor variational wave function
chosen for the excited state.

The dependence of AE,_, on R is displayed in Fig. 3.
While an interesting trend is observed, the most pronounced
feature seen in this figure is the very weak sensitivity to clus-
ter size for all sizes that support an interior state of the sol-
vated electron. In a previous study*® it was concluded that
the bound-bound absorption peak associated with such inte-
rior states will not depend on cluster size. This result was
derived under the assumption that the charge densities of the
bound states are spherical and are well contained within the
cluster. We see that our more rigorous treatment gives only a
small correction to that conclusion. This is particularly so in
view of the large statistical broadening observed in the com-

04

03
]

02

0.0 ol
] ] L

-0l

VERTICAL EXCITATION ENERGY (eV)

T I I T T I U T T T
50 60 70 80 90 10 10,20 BO KO BO
CLUSTER RADUS (N A)

FIG. 3. Variation of the vertica} excitation energy (in eV) from the ground
state versus cluster radius (in A). See Egs. (29)-(31).
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puter simulated spectra (see below) and associated with the
different cluster configurations.

Finally consider the surface states. Dielectric theories of
surface states®>>> usually assume that the binding of the
excess-electron to the surface does not distort the (assumed
spherical) shape of the cluster, resulting in a spherically
symmetric wave function. However such assumptions are
not valid for easily distortable molecular clusters (in fact
cluster isomerization upon electron attachment has been ob-
served also for small ionic clusters).”® Indeed simulations
show that the surface states are localized within what might
be called surface cavities. This destruction of spherical sym-
metry makes analysis by dielectric theory complicated. A
rule of thumb concerning surface state energetics is based on
the observation that in an interior state the electron is in
contact with twice as much dielectric medium as in the sur-
face state and therefore the magnitude of all surface energies
including the vertical excitation energy are roughly one half
their bulk value. Obviously if this statement was exact, there
would have been no transition from surface to bulk states as
the cluster size increases, in contrast to results of numerical
simulations. Still, as a rough approximation these estimates
are sometimes useful.

Next we present numerical simulation results of the
ground and excited states and for the absorption line shape
associated with the solvated electron in water clusters and in
bulk water (periodic boundary conditions).

Ill. MOLECULAR DYNAMICS SIMULATIONS OF
ELECTRONIC SPECTRA

Method. The technical aspects of our hydrated electron
simulations have been described before,'*'%%>?" therefore
we give here only a brief outline. The simulation is based on
the ground state dynamics (GSD) version of the quantum-
classical TDSCF approximation where the nuclei move ac-
cording to the classical Newtonian equations of motion un-
der the influence of their mutual forces and of the
expectation value (with the ground electronic state, some-
times called the Hellmann—Feynman force) of the force as-
sociated with the nuclei-electron pseudopotentials. The ex-
cess electron is restricted to be in the ground state by
propagating its wave function in imaginary time (using the
split operator FFT algorithm) after each nuclear time step.
At specific intervals along the nuclear trajectory obtained in
this way, the nuclear configuration is stored and for these
stored configurations higher electronic states and energies
(by imaginary time propagation in conjunction with projec-
tion of lower states) are calculated. Optical absorption spec-
tra are synthesized by constructing histograms for the fre-
quency of occurrence of energy differences between the
ground and excited electronic states, weighted by the abso-
lute square of the transition dipoles between these states.

The potentials used in these simulations are the RKW2
(rigid molecule) and RKW2-M (flexible molecules) poten-
tial*>? for the intra- and intermolecular water interactions,
and the pseudopotential developed by Barnett, Landman,
and Jortner for the electron—water interaction.**** For clus-
ter simulations these interactions are used as they are. For
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bulk (periodic boundary conditions) the interactions are cut
smoothly between the distances 17.5 and 18.5 a.u. The spec-
tra reported below are based on single trajectories, 2-6 ps
long, at 300 K (temperature is maintained using the stochas-
tic collision method®’ ). The classical time evolution is ob-
tained using the velocity form of the Verlet algorithm (with
an integration timestep 1.0365 fs for rigid water and 0.259 fs
for flexible water). The imaginary time evolution of the elec-
tronic wave function was carried on a grid of 16° points for
interior ground states and 32* points for surface states and
interior excited states. The grid spacing was 1.5a,. Care was
taken to center the wave function in the grid for both interior
and surface states.

Every 8 fs the instantaneous water configuration was
used to generate the three lowest excited states (contribution
of higher states to the oscillator strength of transitions from
the ground state was found to be small). For the interior
states these correspond to three 2p states whose degeneracy
is removed by the water molecules’ distribution. Typically
300-600 such configurations (200-300 for metastable
states) were used to generate each of the spectra shown be-
low.

Energy level statistics. Figure 4 shows the energy distri-
butions (N(E)) of the ground and three lowest excited
states for an excess electron localized in the interior of
n = 64, 128, and 256 water molecule clusters as well as for
electrons in a system containing 256 water molecules with
periodic boundary conditions (pbc) and with volume ad-
justed to have a mass density of 1 g/cm’. Also shown in Fig.
4 are similar distributions for the surface statesof n == 18, 32,
and 64 water molecule clusters®® (for n = 64 the result for
the metastable state is marked 64s*). When normalized to
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FIG. 4. Energy distributions N(E) versus energy for the ground and three
lowest excited states of an excess electron in water clusters, (H,0),, at 300
K. For n = 18 and 32 the stable localization mode is in a surface state while
for n 2 64 the electron is localized internally. For n = 64 N(E) for both a
metastable surface state (marked 64s”) and the stable internal state
(marked 64i) are shown. The result for bulk water (256 water molecules
with periodic boundary conditions) is shown at the bottom (see text).

J. Chem. Phys., Vol. 93, No. 8, 1 November 1990
Downloaded 09 Feb 2004 to 130.207.165.29. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Barnett ot a/.: Excess electrons in water clusters

unity these plots represent the probabilities to observe the
molecular ground and excited states with the given energies
when the water is in equilibrium with the ground state of the
solvated electron. For the ground state these distributions
give the predicted distributions of vertical binding energies
(see however below).

It is seen that both for interior and for surface states the
energies of the ground and excited states shift to lower ener-
gies (larger magnitude) upon increasing the cluster size. In
general, the energies for the surface states are about one half
of the interior states values, as discussed above. The widths
of these distributions ( ~ 1 eV for internal states, ~0.5 eV for
surface states) arise from the dependence of the solvated
electron energy levels on the instantaneous equilibrium wa-
ter molecule configurations in the cluster. It should be kept
in mind that the excited state distributions represent over-
lapping peaks of the three lower excited states.

While our accumulated experience in studying these
spectra leads us to strongly believe that all energy differences
(widths, relative peak positions, line shift associated with
cluster size, etc.) are correctly represented (within the mod-
el) by these results, a measure of caution is required with
regard to the absolute energies. Consider, e.g., the average
ground state vertical binding energy. For bulk water simula-
tions Rossky and co-workers®>*® report this energy to be
~3 eV (using SPC intermolecular interaction, i.e., rigid
molecules, the electron-water pseudopotential from Ref. 36,
and 500 water molecules with periodic boundary condi-
tions), in good agreement with current experimental esti-
mates. We get a similar result in our bulk water simulations
(256 molecules with pbc’s and potential cutoff at ~18
a.u.).>® However it is seen from Fig, 4 that the shift to lower
energies does not saturate at system sizes of a few hundred
molecules. In fact dielectric continuum theory predicts that
the electron cluster interaction will behave like (1/R) for
large R and cluster simulation results confirm this expecta-
tion. For bulk simulations this (1/R) behavior can hold only
up to the cutoff applied to the electron water interaction and,
in any case, for distances no longer than half of the linear
dimension of the system’s periodically replicated calcula-
tional cell. In fact, using pbc’s disturbs the 1/R behavior also
for smaller distances because under such conditions the sol-
vent polarization vanishes at the boundary, implying that it
is artificially reduced also close to the boundary, inside the
system.

This is the main reason for the difference seen in Fig. 4
between the energy band positions of the (H,0);, cluster
and the electron solvated in a “bulk” composed of 256 water
molecules with pbc’s. A smaller contribution to this differ-
ence arises from the difference in molecular density in the
interior of the cluster (~1.07 g/cm?) and in the “Bulk”
(1 g/cm?).

One implication of the above discussion is that the prob-
lem of the actual magnitude of the EVBE [the electronic
(ground state) vertical binding energy] is not yet settled (as
we expect the results of Ref. 36 and 38 to be affected in the
same way as discussed above). Extrapolating the results ob-
tained from finite clusters to R — 0, using a fit to 1/R for
large R results in EVBE~ — 5.1 eV, considerably lower
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(larger magnitude) than current experimental estimates
based on photoelectron spectroscopy.*® This issue deserves
further study both on the experimental and the theoretical
side.

From the point of view of the present work, the impor-
tant fact is that energy differences are. not affected by the
above considerations. The reason for this is that the issue
discussed above is mainly associated with the solvent polar-
ization far from the electron. At such distances the magni-
tude of the electric field of the electron is simply ¢/77, inde-
pendent of the detailed shape of the electron charge
distribution. These long range effects are therefore canceled
in the calculation of energy spacings (i.e., absorption spec-
tra).

Electronic absorption spectra. Figure 5 displays the sim-
ulated (bound-bound) absorption spectra for the interior
states of (H,0), clusters (n = 64,128,256), for an electron
solvated in “bulk” water (defined above) and for surface
states in (H,0), clusters (n = 18,32,64).>® These results
emphasize three striking features already mentioned before:
(a) There exist excited bound surface states of negative wa-
ter clusters with n>18. (b) The absorption bands associated
with surface states peak at energies considerably lower than
those associated with interior states ( ~0.82 eV and ~2.1
eV, respectively). Within their localization categories (sur-
face or interior state spectra) the absorption bands are large-
ly insensitive to the cluster sizes.®

The very pronounced difference between the bound to
bound absorption bands of surface and interior states is po-
tentially a useful way for observing the predicted transition
from surface to bulk states as a function of cluster size. (In
this context we note that we have previously observed such a
marked blue shift in studies of electron penetration into large
clusters of water.?” ) Previous attempts to observe this tran-
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FIG. 5. Spectra A ( E) for surface and internal states of an excess electron in
(H,0), clusters, at 300 K as well as for an electron in bulk water (see
caption to Fig. 4).
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sition in the edge of photoelectron spectra have not given a
definite answer.

Finally, we note that as expected, the reported energy
distributions and absorption bands are not sensitive to
whether a rigid (RWK2) or a flexible (RWK2-M) model is
used to describe the water molecules.

IV. VIBRATIONAL DENSITY OF STATES

The normalized vibrational density of states is obtained
from the Fourier transform of the velocity time-correlation
function according to

g(@) = (7(0)) —‘f dt d(t)e, (32a)
where
N
() =3 mv,;(0)v, (1), (32b)

i=1

with m; and v, being the mass and velocity of atom 7 and
#(0) = n kT, where n, is the number of degrees of free-
dom (n, = 3N if no constraints are imposed on the mo-
tion). We can focus on the separate contributions,
& (w) and gy (@), of the oxygen and hydrogen atoms to
the density of states by limiting the sum in Eq. (32b) to
atoms of the particular species [thus g(w)
=1/3(2g, (@) + go(®)]. Furthermore the contribution
to the density of states associated with a particular group of
water molecules (e.g., a particular solvation shell about the
electron) can be obtained by limiting the sum in Eq. (32b) to
atoms in this group only.

The spectra shown in Figs. 6 and 7 are based on 15 ps
trajectories in systems of 256 water molecules. Figure 6
shows the vibrational densities of states associated with wa-
ter molecules in 3 different water solvation layers about the
solvated electron. Within the statistical errors of this calcu-
lation the spectrum associated with molecules further than
10 a.u. from the electron center, but not including those in
the outer periphery of the cluster, is the same as that ob-
tained in neutral bulk water. Therefore the difference be-
tween the spectrum obtained from the inner shell (dashed
line) and between that associated with the outer shell (full
line) reflect the effect of the solvated electron on the vibra-
tional motion of neighboring water molecules. Three main
effects are seen.

(a) For the water molecules nearest to the electron, in-
tensity in the stretch spectral region (~3700 cm ') shifts
to the blue and a sharp peak is seen ~200 cm ~ ' higher than
the bulk peak [see Fig. 6(b) ]. The position of the sharp peak
is characteristic of the O~H stretch vibration in the free wa-
ter molecule and the 200 cm ~ ! red shift seen in bulk water is
due to the formation of the H-bonded network. This network
is partially destroyed in the first solvation shell about the
electron and as a result the intramolecular motion acquires a
free molecule character.

(b) In the region of the spectrum associated with libra-
tional motion (200 S 1000 cm ') intensity is shifted to
the red. This is seen more strongly in the partial spectrum
associated with the hydrogen atoms [Fig. 6(b)] which are
the main origin of this part of the spectrum.
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FIG. 6. Vibrational densities of state for the oxygens [g, (), in (a)] and
hydrogens [gy (@), in (b) ] of water in the presénce of a solvated electron in
a (H,0) 5, cluster, at 300 K. The vibration spectra for molecules in the first
and second solvation shells about the excess electron are denoted by dashed
and dotted lines, respectively, and those for water molecules beyond the
second solvation shell (but not including those at the periphery of the clus-
ter) are denoted by a solid line. g(®) in units of 10°/cm ~ ' and @ in units of
cm ™' (bottom axis) and fs ' (top axis).

(c) In the spectral region associated with translational
motion (@ S 100 cm ~!) intensity is shifted to the blue. This
is seen more clearly in Fig. 6(a) which displays the partial
spectrum associated with the oxygen atoms.

In Fig. 7 we compare the intermolecular part of the vi-
brational spectrum for neutral “bulk” water using rigid wa-
ter molecules (dashed line) and flexible water molecules
(full line). It is interesting to note that the two spectra are
similar indicating weak coupling between the intramolecu-
lar and intermolecular motions in water. This observation
justifies the use of rigid water models for simulation of ion
and electron solvation phenomena, however we note that in
recent work we*® as well as others* have found that the two
models give different transport coefficients both for the self-
diffusion of water** and for the mobility of the solvated elec-
tron.*
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FIG. 7. The intermolecular part of the vibrational spectrum for neutral bulk
water at 300 K, simulated by using rigid water molecules (dashed line) or
flexible ones (solid line). Since both spectra are normalized to unity and the
flexible system has 1.5 more modes than the rigid one, the spectrum for the
flexible system was multiplied by 1.5 to make the comparison easier. g(w)
in units of 10°/cm ~ ! and @ in units of cm ~ ! (bottom axis) and fs ™' (top
axis).

V. CONCLUSIONS

In this paper we have applied both continuum dielectric
theory and comparatively sophisticated simulation methods
based on state of the art interaction potentials to study the
cluster size dependence of excited states and excitation spec-
tra of an excess electron in water clusters. The continuum
dielectric theory was limited to interior electron states in
dielectric spheres, while numerical simulations where used
to study both interior states (in large enough clusters) and
surface states.

The main results of our numerical simulations are
(a) Surface states of an excess electron in water clusters,
(H,0), (n>18) support up to three excited states. [For
large clusters (n>64) the surface localization mode is meta-
stable. ]

(b) The stable interior ground electron states in clusters of
size 64 S n<256 correspond to cluster configurations which
support at least three excited (p-like) states.

(c) Excitation spectra associated with the ground interior
(surface) states show very weak or no dependence on the
cluster size. However large differences exist between surface
and interior state spectra. Surface state energies (and posi-
tions of spectral peaks) are roughly half the size of the interi-
or state values.

The results of continuum dielectric theory show many
qualitative similarities to those of the numerical simulations,
and in particular the loss of stability of interior states (rela-
tive to the neutral cluster) is predicted by this theory to be at
about 7 = 3040, similar to the simulation result. However
the dielectric theory supplemented by a quantum mechani-
cal variational calculation of the electron states strongly un-
derestimate the vertical transition energy from the s-like
ground electron state to the p-like lowest excited state. This

calculation also predicts a very weak cluster size dependence
of this excitation energy (a small blue shift when n increases
from n ~ 60 to the bulk limit). This effect is smaller than the
statistical uncertainty of our simulation results, and is prob-
ably also too small to be observed experimentally. On the
other hand the difference between the spectra of surface
states and of interior states is very pronounced and may po-
tentially be a way to distinguish unambiguously between
these types of electron binding to water clusters.
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APPENDIX A: VERTICAL EXCITATION ENERGIES

Consider a transition from a fully equilibrated ground
state to an excited state, where only the electronic polariza-
tion is in equilibrium with the excited state, while the nuclear
polarization remains in its ground state value.

The energy of the electron in the excited state may be
obtained from an equation analogous to Eq. (2) (relative to
a free electron with zero momentum),

1
W =K +—]|d*
x =t 47 f ’
DX Dx()
X [J. SD(r)-E(r) ——J 8Do(r)-Eo(r)] , (Ala)
0 (4]

2
K, = ~ﬁ—fd3r POV, (1), (Alb)
2m
where E, = D, is the field for e = 1.

The integral in Eq. (Ala) may be evaluated by consid-
ering the change in D to occur in two steps.”’ First D(r)
changes from zero throughout the dielectric to D, (r), which
is its value in the fully equilibrated ground state. Then it
changes from D, (r) to D, (r), which s its value in the ver-
tically excited state, under the constraint that the nuclear
polarization P,(r) remains unchanged and equal to its
ground state value P, ().

We may now write the energy of the excited state as

DX
W,=K, + L J d’r [f SD(r)E(r)
47 0

D,
+ J- 6D(r)-E(r)
Dg

Do

Do
—j 8Dy (r)Ey (r) — 5Do(r)-Eo(r)], (A2)
0

Dgo

where the prime in the second integral denotes integration
along a path with the constraint P, = P,,.

The vertical excitation energy AE,_ , is the difference
between the energy of the electron excited from the ground
state [given by (A2)] and the binding energy of the electron
in the ground state [given by Eq. (2)] and is equal to
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v,
AE, =K, K, + LJ d3r[ J SD(r)-E(r)
41 D,

D.o
- 6D, (r)°E, (r)] .
Do
From Eq. 17(d) wecan see that the constraint P, = P,,
throughout the transition means that
6D =€ _ 0K,

instead of 6D = €,6E.
The integral over 6D may now be performed to yield

1 P €,
I=2;J’d3"Lg 5D°E=§;fd3r[Ei(r) '—E;(r)] .

(A3)

(A4)

(A5)
Using the definitions
E, =—-Vé,, E, = —-V¢, (A6)
this integral may be rewritten
€
I= —8“;J.d3r(v¢x + V¢, ) (Vé, — Vé,)
. .
=22 [@rg, + 89, -V, (AD)

where the last transformation involves applying Green’s first
theorem. Using Eqgs. (6), (17d), and (17¢) we find that

1 1

4mp, (r)
Vig, = — L=y (— —~ 6—)4ng(1‘), (A8)
which may be inserted into the integral to find
1=%fd3r(¢x+¢g)(px—pg). (A9)

Thus the vertical excitation energy given by Eq. (A3) is
given explicitly as

BB, = [d*r(e, + 806, — )
1
—7fd3r(px¢xo — PgPe0)

_7 fd PPV, — UAV,).  (ALD)
2m
]

»
3

(A 4 B/ ) Yrm(9,5¢')Y/m(9a¢)

bor) = ey 20+ 1

47

Ms M

D, \Y7},(6'4)Y,,(6,4)
"/ 4 ) )
(C’ T 20+ 1

~
1l

0

Denoting the solution for 7> R as ¢, and for » < R as ¢,, the
boundary conditions (BC) are

BC I ¢,(r=R)=¢,(r=R), (B6a)

BCII: ¢,(r-» ) =0, (B6b)

BC III: —afl— = w—(z?i —4ﬂ'Pd|,.=R ,(B6¢)
r l.—r ar l,=r
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APPENDIX B: SOLUTION OF A POISSON TYPE
EQUATION IN THE NONEQUILIBRIUM CASE

The electric potential ¢, immediately after an optical
transition is the solution of a Poisson type equation [Eq.
(19b) ],

4mp, (r
qu})r — ——pL)——i-(—l——i)Mrpg(r). (Bl)
o0 ew eS
By rearranging the terms in (B1)
2 47

Vg, = _E_Peﬂ‘(r)’ (B2a)

(e, —€,)
Per () =p, (r) + ————p, (). (B2b)

s

This now has the usual form of a Poisson equation and may
be solved (as described in Ref. 50), subject to the boundary
conditions as detailed below.

As in the equilibrium case [Egs. (6)—(8)] the solution
is given by

é.(r) =Jd3r P (F)G*(rsr 's€,,€_, ,R). (B3)

The Green’s Function G * may be expanded in spherical har-
monics

g (rr'e,e,,R)

G*(r,r'ie e, R)y=4
¢ y=dm 2+ 1

/=0
14
>

m= —

Y. (6'4)Y,,(6,4). (B4)

The functions g7 (7,7 ';€,,€.. ,R) may be found explicitly by
solving for a point charge g at r .

Following Bottcher™ we seek a solution for ¢, of the
form

(r>R)
. (B5)
(r<R)
— 2
€, — € €. —€
P, == 2E, = ——= z £, (B6d
¢ ar ¢ 41 or (Béd)

where ¢, is the electric potential in the ground state at equi-
librium.

The rhs of the third BC [Eq. (B6)] is derived from the
requirement that the perpendicular element of the electric
displacement be continuous at the interface. Inside the di-
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electric sphere the electric displacement is given by Eq.
(17d) as

D, = (1 + 47a,)E, + 4ma E,
= an Ex + 47TadEg

= —€,V¢, — (6, —€,)Vd,, (B7)
d
D, = —€, 99+ — (e, —€,) b . (B8)
or l,=r [

Following the discussion in Bottcher®® we find for the
caser'<r<R

74
D=9 (B9)

and from Eq. (B6b) we find 4, = 0. Using Eq. (B6a),

6237
(e, — D+ 1) gr
¢ = 20+ 1
e (e + L+ 1) R¥T
a
—8,5(€, —€. a2 %% | (B12b)
' ar r=R

These results may be generalized for the case r <7’ <R by
replacing r' by r_ and r by _ in Egs. (BS5), (B8), and
(B12). 7_ refers to the smaller of (r,# ') and 7 tothelarger
of the pair.

Next, consider the case where 7' > R, i.e., the charge g is
outside the dielectric sphere. The boundary conditions I and
III remains unchanged, while Eq. (B6b) is replaced by the
requirement that ¢ is well behaved throughout the sphere
and in particular at = 0. This requirement yields

2 . D,=0. (B13)
2 /:L -=C,R g9 (B10)  In an analogous manner to the previous case of 7' <R we
w find
and finally, from Eq. (B6), A, =L, (Bl4a)
rr/+l
—(/+ DB R (/+1)qr’”] A€, —1) gR¥+!
R/{*2 ® e R/+2 B/= —
= (€ ¢+ ¢+ 1) p/+1
+4m(e, —€,,) 9%y B (B11) 94
T g e —8,0(€, — €, )4TR> —= , (B14b)
r r=R
Equations (B10) and (B11) may now be solved to find C — 2+ 1) q
the coefficients B, and C,. The results are T e # T pl it
a
—&8,0(e, — €, )4mR P (Bl4c)
Q+n 2 9, or lr=x
= gr' —§,,(6, —€_)4TR* —— , , ,
e+ F+1 ’ or tr_r The function g7 (.7 ";¢,,€ . ,R) from Eq. (B4) may now
(B12a) be obtained using Egs. (B5), (B8), (B12)-(B14) yielding
J
—D(£f+1 (ot a3 4
( (ew )( + ) rr —5/0(65—600) 47R [V, ¢g(r) ]+ < (r’rl<R) (B15a)
€ (e f+1+1) R¥*! ' Pep(r”) ar |._=r e rr!
204+ D), a
O e i —bnle—e )R [y, D] ] (r'<R<r) (Blsb)
(e, C+1+1)r ! 1p.5(r") ar 1,-r
- g
2741 a
e D 50(e —e,) 2R [V,r % (1) ] (r<R<r) (Bl5c)
(e, ¢+ 1+ 1)r ! Per(r) or ir=r
7 A —1 2041 ) — 47R*?
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where as before r refers to the smaller of » and »’ while 7
refers to the larger.
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