Relaxation dynamics following transition of solvated electrons
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Relaxation dynamics following an electronic transition of an excess solvated electron in
clusters and in bulk water is studied using an adiabatic simulation method. In this method the
solvent evolves classically and the electron is constrained to a specified state. The coupling
between the solvent and the excess electron is evaluated via the quantum expectation value of
the electron—water molecule interaction potential. The relaxation following excitation (or
deexcitation) is characterized by two time scales: (i) a very fast ( ~20-30 fs) one associated
with molecular rotations in the first solvation shell about the electron, and (ii) a slower stage
(~200 fs), which is of the order of the longitudinal dielectric relaxation time. The fast
relaxation stage exhibits an isotope effect. The spectroscopical consequences of the relaxation

dynamics are discussed.

I. INTRODUCTION

The dynamics of polar solvent reorganization associat-
ed with changes in the charge distribution of a solute species
has been an active area of research in the last two decades.'™
Such studies deal with the dynamics of solvent relaxation
associated with molecular excitation,* !> ionic solva-
tion, 416 electron transfer'’~2> and electron localization?5-3!
in polar solvents. Theoretical studies of these phenomena
have usually involved a continuum dielectric model for the
solvent, specified by its dielectric dispersion €(w).'****
More recently several studies where the molecular nature of
the solvent was accounted for in an approximate manner,
have been published.**~*° In particular, a combination of lin-
ear response theory with the dynamical mean spherical ap-
proximation (MSA), originally developed by Wolynes*’
and later further developed and applied by Rips, Klafter,
and Jortner*® and by Nichols and Calef,*® was recently
shown by Maroncelli and Fleming®® to account well for the
main trends in the experimental molecular fluorescence re-
sults.

An alternative approach to the dynamics of solvation
phenomena is provided by numerical simulations and sever-
al such studies have been published for aqueous solu-
tions.'>"'%5-33 Quch studies, in particular the very detailed
one by Maroncelli and Fleming'® have provided much in-
sight into the molecular nature of the solvation process.
Their relevance to the actual experimental systems depends
of course on the quality of the potential used. It should be
pointed out that such simulations of aqueous solutions are of
particular importance because the validity of simple models
such as the MSA '* is questionable for such a highly associat-
ed and highly structured solvent.

Technological advances in the creation and detection of
ultrashort optical signals have made it now possible to follow
solvation dynamics in such systems where the logitudinal
dielectric relaxation time 7, is $0.5 ps. In particular Migus
et al.”® have followed the subpicosecond evolution of the
electron absorption spectrum following electron injection
(by photoionization) in bulk water (following the ~ 100 fs
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ionization pulse) where absorption in the near IR which
seems to build up with a characteristic time of ~110fs,and a
subsequent decay of this signal and a buildup of absorption
in the A = 700-900 nm region on a time scale of ~240 fs
were observed. The absorption spectrum seems not to exhib-
it a continuous shift from the infrared to the visible, and the
authors propose that the absorptions in these two spectral
regimes correspond to two distinct electronic species: One
(the IR absorber) which forms on a time scale comparable
to the duration of the ionizing pulse, and the other which is
close to the fully hydrated electron.

Most recently Rossky and co-workers®~>* have per-
formed simulations of this system employing the SPC (sim-
ple point charge) water potential model and a pseudopoten-
tial for the electron-water interaction. The starting points of
these simulations are ground states of the electron calculated
for static water configurations selected from an equilibrium
ensemble obtained in the absence of the electron. Analysis of
the energy distribution associated with the ground and excit-
ed electronic states obtained for these neutral water configu-
rations yields an absorption line shape which is consistent
with the experimentally observed initial IR absorption. The
subsequent time evolution is performed assuming adiabatic
behavior, i.e., the electron is confined to stay in the ground
state corresponding to the instantaneous nuclear configura-
tion. This “ground-state dynamics” (GSD) evolution ex-
hibits the following characteristics.

(a) The excess electron localizes to nearly its equilibri-
um radius within ~ 30fs. Coincidentally the energy drops by
~2.5 eV. Further relaxation occurs on a larger time scale
(~200 ps) after most of the binding energy has already been
reached.

(b) The calculated spectra show a continuous blue shift
from the absorption in the IR at =0 to an absorption
peaked about 700 nm which is characteristic to a fully hy-
drated electron. The spectral shape and its peak position
become similar to that of the equilibrium absorption after
~40 fs.

Based on the discrepancy between these results and ex-
perimental observation of Migus et al.,”® Rossky and
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Schnitker have concluded that the ground-state dynamics
simulation is not adequate for the early stages of electron
solvation in water and that the first species observed after the
ionizing pulse in the Migus ef a/. experiment is a solvated
excited state. They propose that the rate determining step in
the subsequent evolution towards the fully hydrated electron
in its ground state is the nonadiabatic transition from the
excited to the ground state.

In order to gain further insight into the relaxation pro-
cesses associated with the solvated electron and of the solva-
tion process, we have performed adiabatic simulations of
negatively charged water clusters following transitions of
the excess electron between the ground electronic state and
the lowest excited electronic state. We have simulated the
cluster relaxation following a transition from the ground to
the excited electronic state, as well as simulations following
the reverse electronic transition, i.e., a deexcitation from the
excited to the ground state. Most relevant to the results dis-
cussed above is the second relaxation process, however, we
find that both of them behave quite similarly. In both cases
the relaxation is seen to proceed in a nonexponential fashion
with at least two time scales involved: a fast one ( ~20-30fs
for room-temperature clusters) during which the energy gap
between the two electronic states changes to about 60% of its
final value and the width of the electron wave function (the
electron “radius of gyration”) relaxes to approximately its
final value, and a relatively slow ( ~2501fs) time scale during
which the electronic energy gap becomes fully developed.
These time scales are not strongly sensitive to the cluster size
for (H,0); clusters which support internally bound
ground and excited electronic states {n % 60; actual simula-
tions were done with n = 64 and n = 128). They are, how-
ever, strongly sensitive to deuterium isotope substitution
and also depend on the cluster temperature.

Details of our simulation method are given in Sec. I and
in the Appendix. The results of our simulations are present-
ed and discussed in Sec. IIL

It. THE SIMULATION PROCEDURE

The simulation procedure has been described in detail in
previous publications,’**’ thus we give here only a short
summary. The water-water potential employed is the
RWK2-M potential®® which has been applied successfully in
calculations of equilibrium properties and vibrational spec-
tra of water and water clusters. The electron-water interac-
tion® is modeled by a pseudopotential which includes cou-
lomb, polarization, exclusion, and exchange contributions.
This electron—water molecule pseudopotential has been used
by us recently in studies of the cluster size dependence of the
energetics, mode of localization and solvation,*® migra-
tion,*” and spectra® of electrons in water clusters, yielding
results in agreement with available experimental data. The
water molecules are treated classically. The classical equa-
tion of motions are integrated using the velocity version of
the Verlet algorithm, and the quantum-mechanical evolu-
tion of the electronic wave function is performed using the
fast Fourier transform (FFT) split-operator algorithm.®' In
the present work the electron is restricted to stay in one elec-

tronic state (which evolves adiabatically with the nuclear
configuration). This adiabatic evolution is achieved by
propagating the wave function in imaginary time followed
by normalization until convergence is achieved. Such proce-
dure yields the ground electronic state, or, when accompa-
nied by a projection operator which removes lower elec-
tronic states after each imaginary timestep, the next lowest
excited state. For a brief formal description of the adiabatic
simulation method (ASM) see the Appendix.>=¢ (A differ-
ent adiabatic evolution method was recently described by
Sprik and Klein.%?) The electron-water interaction enters
into the electronic Hamiltonian as a potential which depends
on the instantaneous positions of the nuclei, and into the
classical equations of motion for the water molecules as an
expectation value over the instantaneous electronic wave
function. This wave function is the ground-state function
when ground-state dynamics is executed, and the lowest ex-
cited state function when adiabatic evolution on the excited
potential surface is explored. It should be pointed out that
restricting the excited state evolution to the lowest electronic
state is somewhat artificial: the energies of the three lowest p-
like excited states are not far apart (thus while the average
energy spacings between these states in the (H,O);; are
from our simulations ~0.3 ¢V, these energies fluctuate with
the cluster configurations and can become close to each oth-
er: We have observed typically 1-2 near crossing events,
AES kT for T'= 300K, between the first and second excited
state in 1 ps trajectories) so that nonadiabatic transitions
between them cannot be ruled out. However, such occur-
rences are rare on the simulation time scales discussed below
and should not have an appreciable effect on the observed
solvation dynamics.

The main technical details of the simulations are as fol-
lows: A timestep of 10 a.u. ( = 2.4 X 107 '¢s) is used for the
classical particles using the velocity version of the Verlet
algorithm. The grid used for the electronic wave functions of
the (H,0); cluster consists of 32* points with grid spacing
a = 1.2 a.u. and for the (H,0) 5 cluster a 16 grid is used
with @ = 1.5 a.u. The need for a larger grid for the (H,0),
cluster arises because the excited state wave function is rela-
tively extended and is not described well on the smaller grid
for this cluster size. The imaginary timestep for the elec-
tronic state relaxation was taken to be 0.6 a.u. Finally, our
simulations are performed at constant temperature (canoni-
cal ensemble) via employment of the stochastic collision
method where at each integration timestep of the classical
subsystem the velocities of randomly selected atoms are
thermalized according to a Maxwell-Boltzmann velocity
distribution corresponding to the desired temperature. We
have also run a few constant energy trajectories obtaining
similar result.

Using this procedure we have generated nuclear trajec-
tories for motion either on the ground or on the excited po-
tential surface. The wave functions and the electronic ener-
gies associated with both electronic states are calculated
along these trajectories, yielding the adiabatic evolutions of
these quantities as well as related quantities such as the elec-
tronic vertical energy gap, the transition dipole moment
between the two electronic states and the electron gyration
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radius. Results of these caculations are presented and dis-
cussed in the next section.

{li. RESULTS AND DISCUSSION

The calculations described below are aimed at elucidat-
ing the details of the time evolution of the nuclear configura-
tions following a sudden switching from the ground to an
excited electronic state or from the excited to the ground
electronic state. To this end we have selected several equilib-
rium configurations of the (H,0), and the (H,0) 3, clus-
ters in the ground electronic state and followed the time evo-
lution of the nuclear configuration and the associated
electronic energies after switching, at time ¢ =0, from the
ground to the excited electronic state. Thus starting from a
ground-state configuration, the water molecules begin their
motion on the (lowest) excited electronic potential surface
and the subsequent evolutions of both the classical (water)
and quantum (electronic) subsystems are followed. Subse-
quently, after full relaxation of the system on the excited
state potential surface has been achieved, the electronic state
is switched back to the ground state, and the subsequent
relaxation to the ground-state configuration is observed.

Figure 1 depicts the time evolution of the ground (E;)

o
=]
S
o
(@
0
N e e m e L~
o._'/\ / - TN TN ="
~~ o - -
=] [}
So
~ 8_
ur ?
S
L 5_
o
[}
—T —T T T T
250 500 750 1000 1250
time (fs)
<
- NN/ \\/‘\\/, RN /1,/ ~ AN
= '\J
B e
N
wr
FE
T T L T
50.0 100.0 150.0 200.0
time (fs)

FIG. 1. Time evolution of the ground (E,, solid line) and the first excited
(E,, dashed line) state energies of the solvated electron in (H,0)¢, (a) and
in (H,0) 53 (b) following a sudden excitation (at ¢ = 0) from the ground

to the first excited state. The results, as well as those shown in Figs. 2-5, are
averaged over five runs in each case.
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FIG. 2. Time evolution of the energy gap AE = E, — E, for (H,0),
(dashed line) and (H,0) ;3 (solid line) following a sudden excitation from
(at t = 0) the ground to the first excited state.

and the first excited (E,) electronic energies of (H,0).
[Fig. 1(a)] and (H,0) 35 [Fig. 1(b)] clusters, following a
sudden switch from the ground to the first excited state. Fig-
ure 2 shows the corresponding evolutions of the energy gaps
(AE=E, — E;) in these clusters. The time-dependent
widths [gyration radia ((#*) — (r)?)"/?, where the expecta-
tion value is taken over the excess electron wave functions]
of the ground and excited electronic state configurations for
(H,0) ;5 are depicted in Fig. 3. The time evolution of the
transition dipols |, |> between the ground and excited elec-
tronic states for the larger cluster is shown in Fig. 4.

All these quantities exhibit a typical time evolution
characterized by a very fast initial relaxation on a timescale
of ~20-30 fs, folowed by a slower relaxation process on a
timescale of ~200-250 fs. A similar behavior is observed
after a sudden switching back to the ground electronic state,
shown for the state energies, the energy gap AE and the
ground and excited state widths in Figs. 5(a)-5(c), respec-
tively.

The slow (200-500 fs) component of the relaxtion pro-
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FIG. 3. The time evolution of the electron gyration radius v{~) — (r)2,
following (at ¢ = 0) transition from the ground to the first excited state for
(H,0) 35 Solid line: radius of the ground electronic state. Dashed line:
radius of the excited state.
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FIG. 4. Time evolution of the squared transition dipole, |, |*, between the
ground and first excited state following transition to the excited state in
(H,0) 3, The transition dipole corresponding to the excited state configu-
ration is larger because of the larger overlap between the corresponding
wave functions.

cess seems to correspond to the longitudinal relaxation time
() of water, which is estimated to be in this range. The fast
relaxation component is not predicted by contivum dielec-
tric theories®*™? or by approximate methods (such as the
mean spherical approximation, MSA )***® which have been
used to account for the microscopic solvent structure. In this
context we note that that the behavior of the relaxation pro-
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cess seen in Figs. 1-5 bears close resemblance to the simula-
tion results of Schnitker and Rossky”* of an electron local-
ization process described in Sec. 1. This similarity is
emphasized in Fig. 6 where results of a simulation similar to
that of Ref. 53 but using our models for the water-water
interaction (RWK2-M) and for the eletron-water pseudo-
potential, are shown. Figure 6(a) (solid curve) shows the
time evolution of the ground-state energy of an electron
starting in a preexisting trap in neutral bulk water (256 wa-
ter molecules with periodic boundary conditions). In Fig,
6(b) (solid curve) we show the time evolution of the width
of the electronic wave function for this process. As evident

from Fig. 6(b), (r?) — {r)? reaches essentially its equilib-
rium value of ~4 a.u. after ~ 30 fs, We note that a similar
fast process was observed by us in a simulation of electron
localization at the surface of a large (256) water cluster.>” It
is interesting to note also that similar behavior is observed in
classical computer simulations of water relaxation about a
suddenly formed charge.'>-1¢>16>

To elucidate the nature of this fast relaxation process we
also show in Fig. 6 the relaxation behavior of D,0 during the
electron localization process (dashed curves). The two
curves corresponding to H,0 and D,0 in Fig. 6 start both
from the same initial configuration. While statistics are obvi-
ously poor, it appears that the fast relaxation time in D,0O is
longer by 2. This conclusion is emphasized by the dotted
lines in Figs. 6(a) and 6(b), where the results for D,O are
plotted versus time scaled by 27'/2, i.e., the hydrogen to
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FIG. S. Time evolution following a sudden transition (at ¢ = 0) from the
(equilibrated) first excited state to the ground electronic state. (a) Ground
and excited state energies. (b) Energy gap. (¢) Ground (solid line) and
excited (dashed line) widths.
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FIG. 6. (a) Time evolution of the ground-state energy of an excess electron
during an adiabatic localization process in bulk liquid water. At ¢ = 0 the
electron starts from a preexisting trap in a neutral water configuration. (b)
Time evolution of the width of the electronic wave functions
({P) — (mn*"’?, during the same localization process. Solid lines: H,O
(256 molecules with periodic boundary conditions). Dashed lines: D,0.
Both the H,O and the D,O trajectories start from the same initial configura-
tion. The dotted lines in (a) and (b) correspond to the D,O curve with the
time axis divided by /2 (i.e., the deuterium to hydrogen mass ratio).

deuterium mass ratio. Very similar behavior was obtained in
comparing the fast relaxation process following electronic
excitation in (H,0);; [Figs. 7(a) and 7(b)]. Due to the
very limited amount of statistical averaging used in this cal-
culation we could not determine whether the longer relaxa-
tion process shows a similar isotope effect. However, it is
experimentally known® that the Debye (as well as the longi-
tudinal) relaxation time in D,0 is longer by ~20% than the
corresponding times in H,O.

Further insight into the fast relaxation process is gained
from Figs. 8 and 9 where we have divided the water mole-
cules in the (H,0) 35 cluster into three groups: group a (sol-
id lines) includes those 6-7 molecules which at time ¢ =0,
when the excitation to the upper electronic state occurs,
were located within 7 a.u. from the center, {r), of the
(ground-state) electronic wave function; group b (dashed
lines) includes the 16-18 molecules which at z = 0 are locat-
ed between 7 and 10 a.u. from the electron center and group ¢
includes all the other molecules. The selection of the above
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FIG. 7. (a) Time evolution of the energy gap AE = E, — E, following sud-
den excitation at ¢ = O from the ground to the first excited state of the solvat-
ed electron in (H,0) 3; and (D,0) 3, clusters. (b) Time evolution of the
excited state width, ({r*) — (r)?)'/%, during the same relaxation process.
Solid lines: (H,0) ;5. Dashed lines: (D,0);;. Dotted lines: the (D,0) 3,
result with the time axis divided by v/2. These results, as well as those exhib-
ited in Figs. 8 and 9, were obtained by averaging the results of two simula-
tions starting from different initial configurations. Note the similarity (in
particular at short times following the excitation) between the results for
(H,0)3; in this figure and those shown in Figs. 2 and 3 which were ob-

tained by averaging over 5 trajectories. This comparison serves to indicate
the adequate level of statistical significance of the results.

shell radii was motivated by the solvation shell structure
obtained in our previous studies,**¢ of electron localization
in water clusters. The time evolution of the interaction ener-
gy between the electron and the water molecules (per water
molecule) and the water—water interaction potential energy
(per molecule) for molecules in groups a and b are depicted
in Figs. 8 and 9, respectively. Note that intermolecular inter-
action energy is calculated for the molecules in the group
with all the other cluster molecules. No systematic time vari-
ation beyond the statistical noise has been seen for these
quantities associated with the moecules in group c.

Figures 8 and 9 clearly show that the fast relaxation
process following electronic excitation of a solvated electron
is primarily dominated by molecules nearest to the center of
the excess electron distribution. Figure 9 further indicates
that the configurational changes that take place during this
time are associated with rotations or librations of these water
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FIG. 8. Time evolution of the interaction energy (per water molecule)
between the electron and the water molecules that were in the first solvation
shell (0-7 a.u., solid line) and in the second solvation shell (7-10 a.u.,
dashed line), following a sudden transition from the ground to the first ex-
cited state of the solvated electron in (H,0) ;.

molecules nearest to the electron. Thus, after the excitation,
the electronic charge distribution is more diffuse, resulting
ina weakening of the electron—-water interaction, leading toa
reorientational response of the molecules in the immediate
vicinity of the excess electron which is accomplished via ro-
tations of the molecules (involving motion of the hydrogen
atoms in an attempt to increase the degree of hydrogen bond-
ing and the magnitude of intermolecular interaction asso-
ciated with them). That hydrogen bonding is disrupted in
the first water molecules shell by the presence of the electron
is seen (Fig. 9) by the fact that the intermolecular interac-
tion (per molecule) associated with the molecules in the sec-
ond (7-10 a.u.) shell is considerably larger than that asso-
ciated with the first shell molecules. We note that Maroncelli
and Fleming'® have reached similar conclusions from the
analysis of their classical simulation data.

The isotope effect seen in Figs. 6 and 7 is indicative of the
nature of this rotational response mechanism. We recall®®
that the Debye dielectric relaxation time 7, obtained from a
model of rotational diffusion is in our case independent of
the rotator mass or its moment of inertia (7, = 4wya’/kT
where 7 is the solvent viscosity and an appropriate choice for
the “rotator radius” a is the OH bond length). On the other
hand, the rotational correlation function of free rotators in
thermal equilibrium decays in time as ~e ~*“*T/D where I is
the moment of inertia.®> We suggest that the dependence on

Jmp/my =2 seen from the isotope effect corresponds to
the inertial character of this short-time relaxation. It would
be interesting to check whether the temperature dependence
of the fast relaxation time scales like 7'~ '/2 as also suggested
by the free rotator model. However, in the present study we
did not accumulate enough statistics to make a reliable
check of this point.

Several other points concerning the observed relaxation
behavior should be noted.

{a) The dynamics of electron localization and Stokes
shift (reorganization energy) evolution are not sensitive to
the cluster size for the (relatively large) water clusters that
support an internally solvated electron (n 2 60), at least to
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FIG. 9. Time evolution of the intermolecular potential energy { per mole-
cule) between water molecules in the first solvation shell (0-7 a.u., full line)
and the second solvation shell (710 a.u., dashed line) following excitation
at t = 0 of (H,0) 3.

within the statistical accuracy of our result for the relaxation
time scales which we estimate to be approximately + 20%.
In contrast, the ground and excited state energies shift to
more negative values for larger clusters and therefore we
expect the IR absorption discussed below [see (g) and (h)]
to peak at higher frequencies for larger clusters.

(b) Figures 1 and 5(a) show that the excited state elec-
tronic energy is much less sensitive to the reorganization of
the surrounding water configuration than the ground-state
energy. This is in contrast to the pronounced change in the
widths (Fig. 3) of both the ground and excited electronic
states following the electronic excitation. Underlying the
water relaxation after transition to the excited electronic
state is the weaker interaction with the more diffuse excited
electronic charge distribution. Thus, the water molecules
change their orientation in order to lower the intermolecular
interaction energy. This water relaxation affects the elec-
tronic energy in two opposing ways: First, the electron-wa-
ter interaction energy (the electron potential energy) is
weakened (i.e., becomes less negative), secondly the elec-
tron kinetic energy associated with the more diffuse wave
function is smaller (less positive). The overall result is that
there is only a very small net effect on the total excited state
electronic energy.

(c¢) The similarity between the relaxation phenomena
observed in the present work, in the electron localization
simulation of Schnitker and Rossky,”® and in the classical
simulations of Refs. 15, 16, 51, and 63 is significant and sur-
prising in view of the fact that not only different processes
are studied but mainly because very different models of wa-
ter were used. We use the RWK2-M water-water potential®®
and the pseudopotential developed by Barnett, Landman,
and Jortner® for the water electron interaction. References
53 and 63 use the SPC water model while in Refs. 15 and 16
the ST2 water model was used. It appears that the inertial
regime seen in all these simulations is not very sensitive to
the details of the model used. This suggests that it is very
probable that this behavior will be found in real water and
perhaps in other associated solvents (with scaled character-
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istic times). It should be kept in mind, however, that all these
studies are characterized by a non-self-consistent treatment
of the electronic polarization of the solvent water molecules
and that including such many-body contributions®® may
have some effect on the short-time behavior.**

(d) Another important difference between the (quan-
tum-mechanical) processes simulated in the present work
(and in Ref. 53) and the classical simulations of Refs. 15 and
16 is the fact that in the latter group of studies the charge
distribution is held fixed after its instantaneous formation at
t = O while in the electronic localization and relaxation stud-
ies the electronic charge distribution varies during the relax-
ation, mostly during the initial fast period. The fact that the
time scales obtained from the quantum-mechanical simula-
tions are similar to those seen in the classical, fixed charge,
studies again indicates that the dynamics is mainly driven by
the inertial motion of the water molecules and that this mo-
tion is in a sense rate determining also in the electronic relax-
ation and localization process. It should be emphasized that
the fact that the electron charge distribution relaxes to prac-
tically its final form during the initial fast part of the relaxa-
tion process justifies the use of fixed charge dielectric relaxa-
tion models for the longer time scales associated with
electron localization, solvation, and transfer processes.

(e) Rao and Berne'® and also Maroncelli and Fleming'®
have observed a very large jump of the average kinetic ener-
gy (temperature) of the classical atoms in the first solvation
shell following the sudden charge formation. This local heat-
ing persists for a relatively long time ( ~0.5 ps). In our simu-
lation where the sudden electronic excitation or relaxation
involves a relatively mild change in the charge distribution
no increase in the local temperature (beyond the noise level)
was observed.

(f) Participation of intramolecular vibrational modes
during the short-time stage of the relaxation processes dis-
cussed above cannot be ruled out. However, the similarity
between the results obtained using our flexible water model
and the other simulations which use rigid water molecules
indicate that this relaxation channel does not play a major
role in the process.

(g) Itis interesting to speculate on the relation between
the results obtained here and in Ref. 53 and the experimental
results of Migus et al.?® The fact that these authors do not
observe a continuous blue shift of the absorption spectrum
from the near IR to the 7000 A range during the electron
solvation process was interpreted by them (see also Ref. 53)
as an indication of the existence of two species, one that
absorbs in the near IR, and the other which is the fully sol-
vated electron. It is reasonable to assign the IR absorbing
species to the solvated electron in an excited state. Figure 10
gives a schematic view of the transitions involved. Our simu-
lation results®’ give the peak of the excitation profile of the
fully solvated electron at 2.2 eV and the vertical transition
between the first excited state and the delocalized contin-
uum at slightly above 1 eV. The experimental result®® for the
formeris 1.72 eV and for the latter, 0.92 eV. The fact that our
simulations tend to overestimate the transition energies lead
us to suggest that the vertical transition from the excited
states to the delocalized continuum may peak below 1eV. In

DELOCALIZED STATES

FIG. 10. A schematic description of a model for the time scales and energe-
tics associated with the dynamics of electron solvation and excitation in
water.

the present work we have determined the relaxation process
(a) and (b) of Fig. 10 to occur on similar time scales and to
involve at least two relaxation times ~ 30 and 200 fs. It is
likely that the 110 fs process that Migus et al. attribute to the
growth of the IR absorbing species actually reflects the evo-
lution of a blue shift of the IR absorption by the excited state
of the solvated electron, to the delocalized continuum, dur-
ing relaxation process (b). The time (240 fs) observed by
these workers for the decay of the IR absorbing species and
the buildup of the fully solvated electron is probably due to
the relaxation process (a) in Fig. 10, or to a radiationless
transition from the excited to the ground state (denoted by a
question mark in Fig. 10) or to a combination of both. It will
be highly desirable to determine from the theoretical model
the rate of this nonadiabatic radiationless process.

(h) The model described above and the simulation re-
sults of this paper lead us to predict that following excitation
of the solvated electron in water one should be able to ob-
serve a transient IR absorption that will peak below 1 eV and
will decay on the 240 fs time scale observed by Migus et al.
This absorption should in principle blue shift on a time scale
characterized by a 20-30 fs process and a slower ~200 fs
process [process (b) of Fig. 10]. The short-time blue shift
will be sensitive to deuterium isotope substitution of the wa-
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ter in the way described above. We should note, however,
that the very weak dependence of the excited state energy E,
on the solvent reorganization following the ground to excit-
ed state transition [see point (b) above] suggests that this
blue shift may be too weak to observe.

(i) A substantial part of the water relaxation in response
to the charge reorganization (electron excitation or localiza-
tion as well as classical charge formation) observed here and
in other works, is beyond the prediction of current theoreti-
cal treatments of solvation dynamics. It is highly significant
that the classical simulation by Maroncelli and Fleming*®
indicate that the essential features of this phenomenon can
be described within linear response theory. This suggests
that a linear response based calculation of the wave vector
and frequency-dependent dielectric response e(k,w) for as-
sociated liquids should be a sufficient theoretical framework
for describing this phenomenon. A recent calculation®® of
€(k,w) for a model of polarizable atoms on a lattice (as an
approximation for a nonassociated solvent) yields only the
(nonexponential ) slow time scale relaxation with character-
istic times between 7, and €, = (€_ /€,) 7. This indicates
the importance of structural reorganization within the first
solvation shell characteristic of associated solvents in the
initial fast stage of the relaxation.

CONCLUSIONS

We have simulated the dynamics of the solvated elec-
tron in water and in D,O following sudden transitions
between its ground and the first excited states. A very fast
(~20-30 fs) and a slower ( ~200 fs) relaxation processes
were observed. The short-time evolution is attributed to hy-
drogen atom rotation in the inertial regime, mostly associat-
ed with water molecules in the first solvation shell about the
electron. The longer time scales are of the same order as the
longitudinal dielectric relaxation time in water. A model
based on our results and on the experimental results of Mi-
gus et al. predicts that a transient IR absorption should be
observed following optical excitation of the solvated elec-
tron, that may blue shift and decay on the time scales 20-200
fs. The short (20-30 fs) time scale is predicted to depend on
deuterium isotope substitution of the water [(r(D,0)/
7(H,0) ~v2].
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APPENDIX
1. The adiabatic simulation method (ASM)

As mentioned in the introduction, while it is possible to
implement the time-dependent self-consistent-field
(TDSCF) formulation for studies of real-time dynamics of a
quantum subsystem coupled to dynamical classical degrees

of freedom,>>*¢ in our present investigations we limit our-

selves to the adiabatic time evolution of such a coupled quan-
tum—classical system (i.e., excess electron interacting with a
classical polar cluster). This adiabatic simulation meth-
0d*>*® (ASM, and its ground-state dynamics, GSD, ver-
sion) affords a significant reduction in computational time
for processes which are essentially adiabatic as compared to
the full real-time dynamical evolution. Clearly the method is
suited for situations where the subsystems, comprising the
system, are characterized by widely separated time scales,
such as the situations normally treated by the adiabatic or
Born—Oppenheimer approximation. In fact, by construction
the method is a numerical implementation of the adiabatic
approximation where the electron (fast subsystem) is as-
sumed (and is constrained) to remain at all times in a speci-
fied eigenstate of the Hamiltonian corresponding to the in-
stantaneous configuration of the classical particles (the slow
subsystem). Thus, denoting by {R, (#) } the collection of co-
ordinates of the classical particles, the Hamiltonian for the
excess electron can be written as

Ho =K+ VR, (D)), (A1)

where K and V are the kinetic and potential energy opera-
tors. The eigenstates of this Hamiltonian are the solutions to
the Schrodinger equation

HOWUR, () = E, 0 [¢({R, (D)), 1=0,12,....
(A2)

In the mixed quantum classical version of the TDSCF
approximation the dynamical evolution of the classical par-
ticles obeys Newton’s equations

M/ﬁl == Fj - VRiU({Ri})’ j= 19""Nc’ (A3)

where N, is the number of classical particles, U({R,}) is the
interparticle interaction potential, and the force F; is evalu-
ated via the Hellmann-Feynman theorem:

F, = —Jdrzﬁ;"

X [B{R (D} [ Ve ¥ (AR (0} ] (e AR, (D})],
(A4)

where the integration is over the electronic coordinates and
V is the interaction potential between the electron and the
atomic constituents.

The desired state |t/,(7)) (where the explicit depen-
dence on {Rj} has been dropped) can be obtained from an
arbitrary state |¢) (assuming that the two are not orthogo-
nal [i.e., (¥,(¢)|¢) #0] by the operation

lim &= 0B, (0)[9) = (i (0 |[9e "1, (0), (AS)

where the projection operator, ﬁ, (1), is given by
1—1

Bi=1= 3 [4nON¢n ()] (#0), (A6)
m=0

and ﬁo(t) =1 for the ground state (/ = 0, which is the case in
GSD). As seen from Eq. (AS), determination of an excited
state /, requires the prior determination of all the lower ener-
gy eigenstates. Note also that the operation in Eq. (AS5) can
be regarded as evolution of the wave function in imaginary
time ¢t = - iB. This fact is conveniently used in converting
the computer programs®*>® from performing real-time evo-
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lution of the wave function to the operation described by Eq.
(AS).

The above equations define the adiabatic simulation
method (ASM). For an alternative description see Refs. 55
and 56. The numerical implementation of the operation on
the left-hand side (LHS) of Eq. (AS5) is achieved by the
split-operator fast Fourier transform (FFT) method. st
First, denoting |4}, = P,(t) |, the LHS of Eq. (A5) canbe
written as

_BHW,)I: lim H (evﬁx/u — BV —33K;’21)|¢>

Jw fi
(A7)

Evaluation of the RHS of Eq. (A7) proceeds by performing
the X and V operations in the momentum and coordinate
spaces, respectively (since the kinetic energy operator is di-
agonal in the momentum representation and the potential
energy operator is diagonal in the coordinate representa-
tion). At this stage the wave function and potential are de-
fined on a grid with periodic boundary conditions, and the
FFT method is used to switch between the coordinate and
momentum representations of the wave function. In these
calculations an error proportional to A 3, where A = £ /J,

is introduced due to the noncommutativity of the kinetic and
potential energy operators. Also, in pracitcal applications,
the projection operation, Eq. (A6), is performed several
times during the imaginary time evolution, Eq. (A7), in or-
der to avoid the growth of lower state amplitudes due to
numerical errors. In addition we note that the grid represen-
tation, introduced in connection with the FFT, restricts the
spatial resolution (determined by the mesh size) and the
momentum (and thus the kinetic energy) range which can
be described.®

2. Application to finite systems

The introduction of the grid representation for the wave
function and interaction potential between the quantum par-
ticle and the atoms [ ¥(r,{R,}) ] implies a spatial periodic-
ity of these quantities determined by the dimensions of the
grid. In order to use the method for studies of a finite system
(or in general for systems characterized by nonperiodic po-
tentials) and in particular in studies of localized states, one
must assure that the amplitude of the wave function under
study as well as the amplitudes of the wave functions corre-
sponding to lower energy eigenvalues, vanish at the surface
of the grid. These conditions can be satisfied for any local-
ized state by simply assuring that the spatial extent of the
employed grid is large enough. This can be accomplished by
either increasing the number of grid points or by increasing
the grid spacing. However, an increase in the number of grid
points results in increased computation time, while increas-
ing the grid spacing decreases the spatial resolution and
(consequently) the energy range that can be accounted for.

In the problem we wish 1o study in this paper and in
studies of electron migration,®” the excess electron density,
p(r), is localized but its spatial extent and position may
change in time. To facilitate the application of the FFT~
GSD method to this problem we have developed an efficient
“moving grid” algorithm in which the position and spatial

extent of the density are monitored and the grid is adjusted
accordingly. The algorithm is outlined below.

(1) At time # we have the positions and velocities of the
atomic constituents of the molecular cluster, {R;(#)} and
R (1)}, and the wave function of the specified state /,
¥(r,t) =¢,(r;{R, (£)}) which is defined only at the grid
points. The grid point positions are denoted by r,,,
=1+ (/,m,n)A where A is the grid spacing and r, is the
vector defining the origin of the grid. The amplitude of the
wave functions at the grid points is ¢,,,, (¢), and the wave
function is normalized, i.e., 2, ,,, , Yl (DU, (1) = A3,

(2) Compute the center of density

re = A3 Z l-lmn ¢:nn wimn * (AS)
Lm,n
and the density weighted grid surface-to-volume ratio,
N/2—1
Y= 1— A3 ')l”l.:nn‘plmn‘ (Ag)
Imn= —N/2+2

(a) If y is larger than a cutoff value y,,, {chosen as
2.5% of the uniformly weighted grid surface to volume ratio
which for a cubic grid, containing N points, is given by
[N? — (N — 2)*]/N?) then the simulation is stopped and is
restarted with either a larger N or A. Conversely when
¥ <€ ¥max it is beneficial to decrease A and/or N.

(b) If any component of r, — r, is larger in magnitude
than A, the grid is moved by one grid spacing in the appropri-
ate direction and the new grid points (i.e., on the surface of
the grid) are assigned zero wave function amplitudes.

(3) Compute the electron-cluster interaction potential
at the grid point, ¥(r,,,, ) and the derivatives with respect to
nuclear coordinates, d¥(r,,,)/dR,. The potential felt by
the electron at time ¢ + At is estimated by

V(t+ Atr,, ) =V(tr,..) + 2

i=1

X [V(tX e ) /R, ] - R,AL. (A10)

The forces on nuclei resulting from the electron-molecule
interaction are obtained from Eq. (A4).

(4) The wave function at the grid points is updated to
Yimn (t + At) using Eqs. (AS) and (A7) [with ¢,,,(¢) in
place of the arbitrary function ¢) and using the estimated
potential V(s + Atr,,,. ).

(5) The intramolecular and intermolecular potentials
and forces are computed, and the nuclear positions and
forces are evolved to time ¢ + At, using Eq. (A3).

Note that the use of the estimated interaction potential
V(t+ A1), Eq. (A10), allows us to eliminate a separate loop
over grid points and molecules. Another alternative would
be to compute the forces on the nuclei at time ¢ from
(¢t — At), but this requires a much smaller time increment,
At, in order to conserve the total energy over a lengthy simu-
lation. The “moving grid” part of the algorithm [step (2)]
allows us to use a smaller grid spacing (A) and/or number of
grid points (N3).
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