Dynamics and spectra of a solvated electron in water clusters
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The dynamics and spectra of negatively charged water clusters, containing a single excess
electron, are investigated. In our calculations the atomic water constituents of the clusters are
treated classically while the excess electron is described quantum mechanically using the fast
Fourier transform algorithm to solve the Schrodinger equation. Information about ground and
excited electronic states corresponding to the equilibrium, finite temperature, ground-state
ensemble configurations can be obtained by solving for these states for given nuclear
configurations generated via quantum mechanical path-integral molecular dynamics
simulations. As an alternative, more efficient way, we introduce the adiabatic simulation
method which consists of propagating the nuclei in real time while concurrently annealing the
electronic wave functions to their correct values corresponding to the instantaneous,
dynamically generated nuclear configurations. The resulting trajectories can be used for
analyzing nuclear motion in the ground electronic state as well as for calculating energy
distributions for the ground and excited electronic states and the (vertical) excitation line
shape. We study the cluster size effect on these quantities, and in particular, by comparing
results for(H,0) ¢, and (H,0);4, we conclude that the vertical ionization potential increases
while the vertical excitation energy to the bound excited state decreases for larger cluster sizes.
For the smallest negatively charged water cluster (H,0); , where adiabatic separation of
electronic and nuclear motion does not hold, we simulate the time evolution in the TDSCF
approximation. The dynamics reveals the close correlation between the electronic binding
energy and the cluster dipole, and provides information on intramolecular and intermolecular
vibrational motion. Comparison of vibrational density of states evaluated from the nuclear
trajectories of the negatively charged and the neutral dimer shows that most of the modes
associated with intermolecular motions shift to the red upon electron attachment (a few
modes, possibly those associated directly with the magnitude of the total molecular dipole,

shift to the blue).

I. INTRODUCTION

Significant advances have been made recently in theo-
retical investigations of electron localization in ionic' and
polar® clusters, electron solvation in molten ionic salts,>®
polar liquids’'? and rare-gas fluids,'*'* and in studies of
quantum liquids'® and adsorption systems.'® Much of the
progress in these areas has been achieved via the develop-
ment of computer simulation methods which allow treat-
ment of the quantum aspects inherent to these systems.
These methods include the quantum Monte Carlo (QMC)
method,'”” quantum  path-integral Monte Carlo
(QPIMC),"® and quantum path-integral molecular dynam-
ics (QUPID) simulations,>'*!® which rest upon the Feyn-
man path-integral formulation of quantum statistical me-
chanics?” and the recently developed generalized molecular
dynamics (GMD)?' based on the density functional formal-
ism. In the context of electron solvation, recent path-integral
based simulations'>"~'*'¥ provided most valuable insights
about the ground-state thermal equilibrium energetics,
structure, stability, and excess electron localization modes in
small clusters and bulk liquid systems, as well as cluster iso-
merization processes induced by electron attachment.'
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While the quantum simulation methods mentioned
above open new avenues for investigations of the ground-
state and thermal equilibrium properties of many systems of
interest, they are not ideally suited for studies of real-time
dynamical processes. Nevertheless, recent progress toward
this goal, which may prove to be of practical value, has been
made.??">> An alternative approach is based on direct inves-
tigation of the time-dependent Schrédinger equation. In this
context, the development of the fast Fourier transform
(FFT) algorithm for integrating the time-dependent Schro-
dinger equation?>?” has led to several demonstrations of the
usefulness of this approach for solving quantum dynamical
problems involving small (one to four degrees of freedom)
quantum systems.?® Since, in this method, the computa-
tional effort increases exponentially with the number of de-
grees of freedom, approximate methods have to be used for
larger systems. Among those, the time-dependent self-con-
sistent-field (TDSCF) method®*~*' emerges as an important
tool due to its efficiency and the ease with which it can be
generalized and adapted to different complex situations. In
particular, the TDSCF approximation can be easily adapted
for the description of a quantum subsystem coupled to a
classical one,*'~>* in a scheme which conserves the quantum
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mechanical average of the total energy as well as other con-
stants of the motion. Consequently, the method can be used
in studies of the dynamics of solvation of quantum particles
in a medium of classical molecules.

In this paper, which extends a preliminary report,** we
discuss and demonstrate several modes of applications of the
FFT algorithm and the TDSCF method. In these investiga-
tions we focus on the attachment of a single excess electron
to small clusters, in particular water clusters. In addition to
demonstrating the feasibility and utility of the different
modes of calculation we provide new information on elec-
tron localization and solvation in small clusters, thus supple-
menting the equilibrium results obtained previously via QU-
PID simulations.'> The main results of our studies may be
summarized as follows:.

(1) Excited-state energies of the solvated electron are
obtained as functions of the cluster size. Most easily obtained
are vertical transition energies for transitions in which the
cluster configuration remains unchanged. Adiabatic transi-
tion energies (where the electronic transition is accompa-
nied by cluster reorganization) may also be obtained, in
principle, using a more complicated procedure. Moreover,
unbound resonance states of the excess electron may also be
identified. The vertical excitation energies may be averaged
over ground-state cluster configurations (sampled from an
equilibrium ensemble) to yield the absorption line shape. In
this case, the availability of equilibrium configurations ob-
tained from quantum mechanical path-integral simulations
is useful. Indeed such a procedure has been employed most
recently in calculations of the optical absorption spectra of
an electron solvated in bulk liquid water® and of an excess
electron in fluid helium.*® Alternatively, the adiabatic
simulation method described below may be used efficiently
for calculations of the absorption spectra.

(2) Ground- and excited-state wave functions for the
solvated electron in water clusters are obtained via an imagi-
nary time implementation of the FFT method. The same
procedure may also be used to verify results obtained for
ground-state and equilibrium clusters from the QUPID
method.>(®

(3) The full dynamics of the negative ion cluster can be
followed within the TDSCF approximation. The TDSCF
time evolution of the (H,0); ionis used to demonstrate this
mode of simulation. The results illustrate the dynamical cor-
relation between the molecular motions and the excess elec-
tron binding and the effect of electron attachment on the
vibrational spectrum of the host cluster.

(4) A combination of real and imaginary time imple-
mentations of the FFT method is introduced*? and used in a
novel way to follow the adiabatic, ground-state dynamics
(GSD), of NaCl~ and negatively charged water clusters. In
this adiabatic simulation method (ASM), the electron is re-
stricted, by repeated use of imaginary time evolution, to the
ground state corresponding to the instantaneous nuclear
configuration generated by real-time evolution of the nu-
clear motions on the self-consistently calculated electronic
ground-state potential energy surface. As will be discussed,
this method affords a significant reduction in computational
time for processes which are essentially adiabatic as com-

pared to the full dynamical evolution, and is not necessarily
limited to the electronic ground state. The calculated esti-
mate for the excess electron absorption bandwidth are in
close agreement with the experimental result for a solvated
electron in water.

~ In what follows we first briefly review the FFT algo-
rithm for solving the time-dependent Schrodinger equation
and its use in conjunction with the TDSCF approximation.
Next we use the FFT method, for fixed nuclear configura-
tions, generated via path-integral simulations, to obtain in-
formation about ground, excited, and resonance states for
water clusters of various sizes and for the NaCl negative ion.
The ground-state energies are compared to those obtained
previously by QUPID simulations. Subsequently, the adia-
batic simulation method (ASM) is introduced and used for
evaluation of the ground-state dynamics and excitation spec-
tra of negatively charged water and NaCl clusters. Finally,
the TDSCF dynamics of the negatively charged water dimer
is evaluated and discussed. The interatomic interaction po-
tentials and those between the excess electron and the atomic
constituents of the clusters employed in these studies are the
same as those described and used in previous QUPID simu-
lations.?

Il. METHOD

For a system described by the Hamiltonian H=K +V,
where K and ¥ are the kinetic and potential energy opera-
tors, the time evolution of the wave function #(r,t) can be
performed by second-order differencing®” or by repeated ap-
plication of the split (for small time increments, Az) expo-
nential time-evolution operator?®

l/J(l',t + At) =e~ /R (K + AV)Atlp(r,t)

—e~ (l/2)(i/ﬁ)KAte — (i/R) VA

Xe~ (l/2)(i/ﬁ)kAt¢(r,t) + 0(At3). (1)

While both iteration methods are of the same formal accura-
cy [the error is of order (At)*], the exponential evolution is,
in our experience, more stable and therefore allows the use of
a bigger time step (At). Another advantage of the exponen-
tial method is that real and imaginary time evolutions can be
performed on equal footing, while second-order time differ-
encing diverges for imaginary time and thus first- (with cor-
responding loss of accuracy) or third-order differencing
have to be used. (We note however that differencing tech-
niques have their own advantages, in particular for multi-
configuration TDSCF computations.)

The fast Fourier transform (FFT) algorithm for the
evaluation of Eq. (1) is based on the fact that the kinetic
energy operator [K = — (#2/2m)V?] is diagonal in the mo-
mentum representation and thus expansion in a plane wave,
free particle, basis set yields

lﬁ(r,t-{— At) = ( 1 ?—(i/Zﬁ)kAte—(i/ﬁ)V(r)At

27)3
de 3k e~ ik~re— (k2 /am)Ar d 3rl elk-r"l,(r:’t)'

(2)
The Fourier transformations in the above equation are per-
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formed using the efficient FFT algorithm. Implementation
of the FFT procedure requires that the wave function #(r,?)
be defined on a grid, with periodic boundary conditions.
This is the main limitation of the method when applied to
small (one to four) quantum degrees of freedom. For larger
systems the method is further constrained mainly by com-
puter memory size requirements, and even with the largest
available vector machines one has to resort to approxima-
tions in order to treat more than two quantum particles.

In the TDSCF Hartree approximation®® the wave func-
tion for a system of N coupled quantum particles is written as
a product:

W(r,..ryt) =H¢,.(r,.,t)e“”(”, 3)

where the single particle wave functions ¢, (r,?) satisfy the
equations of motion

iﬁ&j =Hi¢j + (V({r})>j¢j G=1.,N), (4)
where a dot represents differentiation with respect to time,
H,(r;) is the single particle Hamiltonian for particle j, and
where V({r}) is the interparticle interaction. (¥({r})); de-
notes the quantum-mechanical expectation value of V over
all coordinates except r;. The phase 7 is given by

7= (Y V{rH|¢). (5)

Using this approximation leads to significant saving of com-
puting effort. While there is no systematic way to estimate
the accuracy of this approximation, there is a growing base
of evidence, including comparisons to exact results, support-
ing the adequacy of the approximation in many situations.
Failure of TDSCF procedures may often be traced to using a
wrong set of coordinates (to be made separable by the ap-
proximation) or to situations where multiple configurations
have to be explicitly taken into account. Various remedies
are being developed for such circumstances.?®*%’

A further simplification which leads to additional sav-
ing in computing effort is to limit the quantum dynamical
description to a small subsystem, while describing the dy-
namics of the rest of the system by classical (or sometimes
semiclassical) mechanics. The equations of motion for such
mixed quantum-classical systems are given by

Hip(roirc,t) = Ho(rc)d(roirc,t), (6a)
HQ(rc) = KQ + V(rerc), (6b)
. 3V(l’g,l'c)> aU(r,)
= — - , 6
Mclc < are ar, (6¢c)

wherer, and r denote collectively the sets of quantum and
classical coordinates, respectively, U is the interaction po-
tential between the classical constituents of the system, and
(V') is the expectation value of the quantum-classical cou-
pling potential taken with the instantaneous quantum wave
function.

An appealing feature of the mixed quantum-classical
TDSCEF description is that it makes it possible to include
temperature in the simulation.®**#° This is done by im-
posing thermal equilibration on the classical part of the sys-
tem in one of several possible ways. In the present work (as
in previous QUPID simulations'**) this was done by occa-
sionally randomizing the velocities of randomly chosen clas-

sical particles according to an appropriate Maxwellian dis-
tribution.*!

As mentioned above the FFT algorithm is a grid method
which implies the existence of limitations on the spatial and
temporal resolution that it can achieve, as well as on the
extent of the energy range that it can describe.?>** For our
present applications a matter for concern is the presence of
(roughly speaking) two length scales in the problem: (a) a
long distance scale associated with the Coulomb and polar-
ization (attractive) interactions and (b) a short range repul-
sion between the excess electron and the molecular electron
charge distribution, originating from the exchange and ex-
clusion terms in the interaction potential. This raises the
potential problem of having to use computationally prohibi-
tive large grids in order to accommodate both length scales.
In order to test this issue we have applied the FFT algorithm
for the solution of the one-dimensional time-dependent
Schrodinger equation for a particle moving in a model poten-
tial composed of a short range repulsive part and a long
range attractive component. The potential is defined by

r<R,=12'°4
—_ 2
Vir) = 46[(1) —(—4—)6] +¢€ r>R, ™
r

r

e BU—p) _ o= BRy—p),

with 4 = B =€ = 1, p = 3.5. These values are chosen such
that the potential is continuous. The Fourier transforms of
the time correlation functions {¥(0)#(z)) for grids of 16
and 64 points are shown in Fig. 1. The positions of peaks on
this plot correspond to the eigenvalue spectrum of the prob-
lem.?® It is evident that little difference is found in comparing
the results obtained with the two different size grids. The
origin of this apparent insensitivity to grid size lies in the fact
that at least for low lying states the wave functions do not
appreciably occupy the regions of strong repulsion, and
therefore the error incurred due to the low resolution of their
description in these regions is rather small. It will be seen
below that good agreement between our results and those

120 T T T T T T
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FIG. 1. Fourier spectra (transforms of the time correlation function)
($(0)¥(1)) for motion of a quantum particle in a model potential [Eq.
(7)]. The solid and dashed lines correspond to 16 and 64 point grids (for
the same length of calculational cell), respectively.
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obtained via QUPID simulations for the ground-state prop-
erties of excess electrons in water clusters is achieved in cal-
culations employing 16X 16X 16 grids, and an appropriate
size of the calculational cell.

Having made this observation, the FFT algorithm can
be used as a powerful and fast method to obtain ground- and
excited-state information for the excess electron for given
static cluster configurations. In such calculations (which do
not involve the TDSCF approximation) the cluster configu-
ration is given as a static structure and the quantum problem
becomes that of solving the (three-dimensional) single par-
ticle Schrodinger equation in a given potential. One can pro-
ceed along one of the following ways:

(a) Start with an arbitrary initial wave function and
integrate the time-dependent Schrédinger equation using
appropriate time increments as required by the energy scale
of interest and for a long enough time as implied by the re-
quired energy resolution. Using the resulting wave function
at time ¢ ¥(¢), form the correlation function
C(1)={¥(0)¥(2)) and Fourier transform it with respect to
time, i.e., I(E) = fC(¢t) exp( — iEt /h)dt. The peak posi-
tions in the resulting function of energy I( E) correspond to
the energy levels of the electron in the given potential. (Obvi-
ously only eigenvalues corresponding to eigenfunctions
which are not orthogonal to the chosen initial wave function
will be obtained in this way. This method can be therefore
used to map eigenvalues corresponding to different symme-
tries by choosing appropriate initial states.) As seen below,
this procedure, originally used by Feit ez al.,”® yields not only
bound-state energies but can also be used to obtain the ener-
gies associated with resonance states.

(b) Start with an arbitrary initial wave function and
integrate the time-dependent Schrddinger equation in imagi-
narytime? = — j#'fromf3’ = Qtoavaluef largeenoughso
that the expectation value E= (¢(B) H¢(B))/
(¥(B)¢¥(B)) converges to a constant value. The resulting
value of E is the ground-state energy, and the corresponding
() is the ground-state wave function, unless the initially
chosen wave function ¥(0) is orthogonal to the ground
state.*>*? In general this procedure will lead to the state of
lowest energy for any given initial symmetry.

(c) The procedure described in (b) may also be used*?
to obtain excited-state energies and wave functions after the
lower states have been found by projecting out lower (pre-
viously found) states during the (imaginary) time evolu-
tion.

In the context of our present problem, i.e., electron sol-
vation, the information obtained by either one of these meth-
ods corresponds to vertical transitions in which the cluster
molecular configuration is frozen during the electronic tran-
sition. A comprehensive analysis of the excess electron spec-
trum® can be made by using an ensemble of equilibrium clus-
ter configurations generated by QUPID simulations as input
for calculations of the spectra using the FFT technique (see
Sec. IV).

lll. THE ADIABATIC SIMULATION METHOD (ASM)

When the system is composed of two subsystems whose
dynamics are characterized by widely separated time scales,

we encounter a situation which is normally treated within
the adiabatic or Born—-Oppenheimer approximation. In this
case we also expect the TDSCF approximation, where the
total wave function is taken to be separable in the two subsys-
tems, to work well. However, this apparently favorable situ-
ation poses difficulties in numerical studies as in any system
involving widely separated time scales. In this section we
introduce and apply a new numerical method which exploits
this time scale separation and is optimally suited for numeri-
cal simulations. In fact, by construction, the method is a
numerical implementation of the adiabatic approximation
where the dynamics of the slow subsystem is followed while
the fast subsystem is constrained to stay in one state (which
changes adiabatically as the slow subsystem evolves in
time). This restriction is implemented by a repeated applica-
tion of the time evolution operation in imaginary time to the
wave function of the fast subsystem followed by appropriate
(numerical) projection operators.

We illustrate the method for a system consisting of an
electron and several (classical) molecules. Consider the mo-
tion of the classical subsystem when the electron is in its
ground state. We note first that the vertical excitation energy
of an electron in, say, (H,0)¢ is ~2 eV which is much
larger than both k7 at room temperature and the character-
istic vibrational energies of water. Consequently, the elec-
tron excitation energy and the nuclear kinetic energy are
well separated and the adiabatic approximation is valid. For
any given nuclear configuration the ground electronic state
may be found by the imaginary time evolution procedure as
described in Sec. II. The adiabatic simulation method (for
ground-state dynamics) proceeds from this configuration
via the following steps: .

(1) Integrate the (Newton) equations of motion for the
classical subsystem [Eq. (6c) ], keeping the electronic wave
function frozen, for a time interval At.

(2) Subsequent to the nuclear motion, the electron is
not in its exact ground state as was the case prior to that
motion. At this stage the electron is quenched to its ground
state by the quantum-mechanical imaginary-time evolution
operator, while keeping the nuclei fixed in their instanta-
neous (new) positions. No elapsed real time is counted for
this stage.

(3) Now that the electron is in its ground state for the
new nuclear configuration, classical time evolution is per-
formed for another At interval [step (1)] and the process
repeats.

This sequence of real-time evolution of the slow (in this
case classical) subsystem, followed by quenching of the
wave function using imaginary-time evolution in the fast
quantum system, constitutes the adiabatic simulation meth-
od (ASM). In most applications this procedure will be ap-
plied in the ground electronic state (ground-state dynamics,
GSD). To carry out the same procedure for any other elec-
tronic state, the imaginary-time relaxation (quenching)
should be done in conjunction with projecting out all lower
energy states as described in Sec. 1I.

An example of the adiabatic time evolution in the
(NaCl) ~ negative ion is shown in Fig. 2. In this calculation,
the interaction between the Na* and C1~ ions, the pseudo-
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FIG. 2. Dynamics of the internuclear distance (R), interionic potential en-
ergy (U), and energy of the electron (E, ), (a), (b), and (c), respectively,
for NaCl~ at 50 K. Distance in au. =1 a,=0.529 17 A, energy in
a.u. =27.2108 eV, and time in units of the atomic time unit
=2.4189x 107 s,

potential describing the interaction between the excess elec-
tron and the alkali cation and the repulsive interaction with
the negative chlorine anion are the same as those discussed
previously."** For this system the ground and excited elec-
tronic state are well separated as is seen from the eigenstate
spectrum shown in Fig. 3, in which we display the Fourier
transform I(E) of ((0)|#(¢)) obtained for a static nuclear
configuration at the equilibrium distance R, n, = 4.74 g, of
the (NaCl) ~ anion. It is evident that in the equilibrium con-
figuration the electronic ground state is ~1 eV (0.04 a.u.)
below the ionization threshold (E = 0) (in agreement with

40-
R
Lu' J
]
04
-04-0.2 0 02 04

E(au)

FIG. 3. Fourier transform spectra (in arbitrary units) of the time correla-
tion function (¥(0)#(#)) for NaCl~ showing a bound state at ~ — 0.04
a.u. and several resonances.
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previous QUPID calculation**), that no other bound excit-
ed states exist and that the first resonance state is at ~0.8 eV
(0.03 a.u.) above zero. Since in this system the variation in
the separation between the ground electronic state and all
other electronic states remains large relative to the nuclear
vibrational kinetic energy the application of the adiabatic
simulation method for a study of the dynamics of this system
is justified. In Fig. 2 we show the time variation of the inter-
ionic distance (R), interionic potential energy (U), and of
the electron binding energy (E,), vs time, obtained by an
adiabatic simulation of the system at 50 K. We observe that
the oscillations in the excess electron binding energy (E,)
occur with the same frequency at which the nuclei oscillate
and that E, achieves its (negative) extremum for the largest
internuclear separation (R) [compare Figs. 2(a) and 2(c) ].
The frequency of the nuclear vibrational motion of (NaCl) ~
obtained via this GSD simulation is 0.75X 10'* s~ in good
agreement with the measured* value of 0.794 X 10" s~'.
Comparison to the vibrational frequency of NaCl
(1.094 X 10" s~ ')* shows that the weakening of the inter-
ionic bond due to the attachment of an excess electron re-
sults in a softening of the vibrational motion.

The manner in which the ASM is carried out in the
present study is tantamount to a classical molecular dynam-
ics simulation of the nuclear motion on a potential energy
surface which is evaluated concurrently quantum mechani-
cally. It is thus reminiscent of the recent work of Parrinello
and Car?®' (although that work was limited to equilibrium
simulations it can be extended to include nuclear classical
dynamics). More recently a TDSCF simulation (employing
the FFT algorithm) of an electron solvated in bulk molten
sodium chloride was performed.® As discussed by these
authors,® the dynamics in this system is adiabatic and this
simulation is therefore similar in nature to the one which we
discussed, though the ASM technique which we described
exploits the adiabatic nature of the electronic motion result-
ing in an improved efficiency of the calculation.

Before concluding this section we mention a technical
point concerning ASM simulations. Since the step involving
quenching of the electronic wave function to the ground
state (or any other selected state) involves a decrease in en-
ergy, a closed system (i.e., thermally isolated), followed in
this manner, will exhibit monotonous cooling in time. When
the adiabatic approximation holds, this cooling rate is very
small and can be neglected for all practical purposes for tra-
jectories of reasonable duration. However, in principle, this
effect may limit the length of the calculated trajectories. In
all the applications of the method reported in this paper,
problems related to this issue do not arise since our simula-
tions are performed at constant temperature.

In the following sections we focus on the energetics and
dynamics of an excess electron solvated in water clusters. In
these studies we employ the various modes of simulations
discussed above to determine ground- and excited-state
properties and dynamical characteristics of solvated elec-
tron in water clusters of different sizes. In addition we com-
pare the ground-state properties obtained via our calcula-
tions with previous results obtained via equilibrium
path-integral molecular dynamics (QUPID) simulations.>
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IV. GROUND AND EXCITED ELECTRONIC STATES OF
(H20); CLUSTERS: STATIC CONFIGURATIONS

The discoveries of nonreactive electron attachment of
electrons to small clusters of water*’—°
new dimension to the research of electron solvation in polar
fluids and of the general issues of size effects on chemical and
physical phenomena, pertaining to the questions of the
modes of electron localization and the minimal cluster sizes
which sustain bound states of an excess electron.!?*>! Re-
cent theoretical investigations using the path-integral molec-
ular dynamics (QUPID) method®* elucidated the micro-
scopic energetics and mechanisms which underlie electron
localization in these systems and the dependence of the local-
ization modes (surface and interior states) on the cluster
size and chemical constituents. These calculations employed
intermolecular interactions which provide an adequate de-
scription of water>? and ammonia,>® and a newly developed
electron—molecule pseudopotential® constructed in the spirit
of the density functional theory and consisting of Coulomb,
polarization, exclusion, and exchange interactions. The
main findings of these investigations may be summarized as
follows:

(1) The localization mode of an excess electron in a
polar molecular cluster depends on the cluster size and
chemical constituents. For water clusters (H,O), in the
size range 11<n <64 the electron is relatively strongly
bound in a surface state while for larger clusters a transition
to internal solvation occurs. Attachment of the excess elec-
tron to small clusters, n < 10 is in a diffuse weakly bound
surface state.

(2) The onset of stable well-bound electron attachment
to ammonia clusters (NH,),” occurs via internal localiza-
tion, requiring 7 2 32 molecules, and in contrast to the case
of the water clusters is not preceded by well-bound surface
states for smaller clusters. The critical sizes for electron
binding to water and ammonia clusters are in agreement
with experimental observations.*’~*"

(3) The mechanism underlying the mode of localization
(surface vs internal states) is a balance between the excess
electron binding energy to the cluster and the energy asso-
ciated with structural molecular reorganization in the clus-
ter upon electron attachment. In the small and medium size
water cluster regime (n < 64) and for all sizes of ammonia
clusters the cluster reorganization energy associated with
the formation of an internal electron state is large compared
to that which is gained via binding, resulting in surface local-
ization of the excess electron. The transition to internal lo-
calization is associated with a reversal of the balance be-
tween binding and reorganization energies.

(4) The vertical binding energies calculated via the QU-
PID simulations® for (H,O), clusters in the range
12<n< 18 are in good agreement with those available from
photoelectron spectroscopy experiments.*’

(5) The smallest water cluster which binds an electron
is thedimer | (H,0); ]. Thebinding occurs at low tempera-
ture (T<20 K), in a weak-binding (~3 meV) diffuse
state. 2

At this stage it is valuable to compare results obtained
by using the methods described in this paper with those ob-

and ammonia*®adda -

tained for the equilibrium ground state via QUPID simula-
tions, and provide additional information (which is not
accessible by other methods) about the excited-state spectra
and real-time dynamics of negatively charged clusters.
Results obtained for the equilibrium ground-state ener-
gies of (H,0), cluster by QUPID simulations and by using
the FFT algorithm averaged over randomly selected cluster
configurations taken from the QUPID generated equilibri-
um ensembles,>® are summarized in Table 1. Shown are the
electron potential (¥ ) and kinetic (K, ) energies, their sum
(E,), which is the vertical binding energy of the electron,
and the radii of gyration of the electron distribution R, . For
the temperatures at which the QUPID simulations were per-
formed (T = 20K forn =2,79K forn = 8, 12, and 18, and
300 K for n = 32, 64, and 128), kT is low relative to the
vertical transition between the lowest binding state and the
first excited state (except for the dimer where the two quan-
tities are comparable) thus assuring that the QUPID results

TABLE I Ground-state energies calculated via the FFT and QUPID meth-
ods, for (H,0),; clusters. (¥}, (K, ), and (E,) are the electron potential,
kinetic, and total quantum binding energies, respectively, in hartrees. (R,)
is the electron-distribution radius of gyration in a,. Temperatures in the
QUPID calculations were: n =2 at20K; n = 8,12, 18 at 70K; n = 32, 64,
128 at 300 K. For n = 2, 8, 12 the electron attachment is via a surface state.
For n = 18 both the surface (S) and bulk (B) states are given {the former
possesses a higher adiabatic electron affinity [Refs. 2(b) and 2(c)1}. For
n =32, 64, 128—bulk states. The FFT results are averaged over several
arbitrarily selected equilibrium configurations taken from the QUPID sim-
ulations. For n = 2 the molecular configurations were chosen to be those
which are similar to those found for the neutral cluster. Note that except for
n =2 the quantum energy (E,) corresponds to the ground-state energy
(E,) of Sec. V.

(H0), v (K,) (E,) (R,)
n=2 — 0.000 83 0.000 67 —0.000 16 56
QUPID —0.000 8 0.000 7 —0.0001 38
n=3_§ —0.0216 0.0137 —0.007 8 11.7
QUPID —0.0212 0.0137 —0.007 4 11
n=12 — 0.066 6 0.0344 —00323 6.9
QUPID —0.0745 0.038 2 —0.0363 6
n=18§ —0.0839 0.046 2 —0.0377 5.9
QUPID —0.0920 0.043 8 —0.0482 5.5
n=188 —0.148 6 0.078 1 —0.0705 4.2
QUPID —0.1543 0.0823 -~ 0.0720 4.1
n=32 —0.1667 0.0859 —0.0808 4.0
QUPID —0.1778 0.0869 —0.090 8 3.8
n=64 —0.1930 0.086 5 —0.106 5 4.0
QUPID —0.204 2 0.086 6 —0.1176 3.8
n=128 ~0.214 6 0.0852 —0.129 4 4.0
QUPID —02169 0.086 5 —0.1304 39
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may be safely associated with the ground electronic state.
The ground-state energies and wave functions for selected
cluster configurations were obtained by the method of evolu-
tion in imaginary time described in Sec. II, with the nuclei
held at fixed positions. Therefore, the values so obtained cor-
respond to the cluster configuration taken. Thus, although
for the (H,0) j; cluster binding in an interior state is strong-
er than in a surface state, this does not indicate that the
interior localization is favorable, since the mode of localiza-
tion is determined by the total energy balance of the cluster
(i.e., the adiabatic binding energy, which in addition to the
electron vertical binding energy includes the cluster reorga-
nization energy). As evident from Table I, the values ob-
tained by the two methods are in good agreement with each
other. The differences are within their corresponding limits
of uncertainty.

In addition to the ground state, the FFT calculations
(with imaginary-time evolution) can be used to obtain excit-
ed state energies and wave functions by requiring that the
wave function be orthogonal to wave functions correspond-
ing to lower energies as described in Sec. II. We use the
(H,0) ¢ cluster to demonstrate the results. For this system
the values obtained for the three lowest excited states (aver-
aged over the same randomly chosen equilibrium configura-
tionsasin TableI) are (E_ ) = — 0.84, — 0.45,and —0.29
eV and the corresponding widths [R, = ({) — (r)*)'?]
are 6.0, 8.1, and 8.6 a, (where a,, is the Bohr radius). These
results were obtained using a limited number of cluster con-
figurations. The corresponding values obtained for the excit-
ed states of the (H,0O) 35 cluster are: — 1.31, — 0.92, and

—0.65and for R,, 5.5, 5.6, and 5.9 a,. More accurate results
for the lowest excited state obtained via the adiabatic simula-
tion method which effectively averages over many configu-
rations are presented in Sec. V. Examples of contour plots of
the ground- and excited-state excess electron distributions
obtained for a randomly chosen cluster configuration of
(H,0), are shown in Fig. 4. The ground-state distribution
shown in Figs. 4(a) and 4(b) has s-like character while

ground state

Barnett, Landman, and Nitzan: Spectra in water clusters

those for the three lowest excited states [Figs. 4(c), 4(e),
and 4(f) ] are p-like [ the three-dimensional plot correspond-
ing to Fig. 4(c) is shown in Fig. 4(d) ]. Note, however, that
the marked deviations from spherical symmetry of the mo-
lecular environment of the excess electron are reflected in
the splitting of the excited-state energy levels and in the
shapes of the corresponding electron distributions (see also
Ref. 8). For aid in visualization we show in Figs. 5(a) and
5(b) three-dimensional images of a typical water cluster
configuration and electron densities for the ground and ex-
cited states in (H,0),, respectively. In these figures the
electron density |¢|* is represented by randomly distributing
dots in a given volume element, using the spatial distribution
|#(r)|* as a weight function.

An alternative way?® for calculating ground- and excit-
ed-state energies of a given static nuclear configuration is, as
described in Sec. I1, to evolve ¢(¢) in real time from a given,
arbitrary wave function #(0) and to compute the Fourier
transform of the correlation function (#(0)|¢(¢)). Exam-
ples of Fourier spectra obtained in this manner for four
(H,0) ¢, cluster configurations are shown in Fig. 6, demon-
strating the existence of bound ground and excited states. In
addition, the variations in the locations of the peaks (corre-
sponding to the excess electron energy levels) for different
cluster configurations [Figs. 6(a)-6(d) ] illustrate their de-
pendence on the structural fluctuation of the host cluster.
Similar calculations for smaller negatively charged (H,0),;
clusters show that the onset of a bound excited state in these
clusters occurs in the size range 32 S n < 64.

In order to extract from such calculations reliable state
distributions and spectroscopic data, extensive averaging
over cluster configurations is necessary. This was indeed
done recently for an electron solvated in the bulk water® and
in fiuid helium.® In Sec. V we present results of ground-state
dynamics (GSD) simulations for (H,0)e, and (H,0) 34
which achieve the same goal in a more efficient manner,
providing, in addition, information about the nuclear dy-
namics in these systems.

excited states

]

(e)
=

& \ FIG. 4. Two- and three-dimensional
\/_/ contours of the excess electron density in
the ground [ (a) and (b) ] and three low-

8 16 est excited states [(c)-(f)] in the
(H,0), cluster. The three-dimensional

contour in (d) corresponds to the two-
(f) dimensional one shown in (c). Note the

o p character of the excited states. All con-
AN/ tours are calculated in the xy plane at the
W ) middle of the z axis of the calculational
\/ cell. Distances are in atomic units.
S
8 16
X (au)
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FIG. 5. Images of a typical molecular configuration (large and small balls)
corresponding to oxygens and hydrogens, respectively, and excess electron
distribution (small dots) in (H,0),, obtained via an FFT solution to the
three-dimensional Schrodinger equation. Note the diffuseness of the excit-
ed-state electron distribution [shown in (b)] compared to the relatively
compact nature in the ground state [shown in (a)]. The molecular cluster
configuration was randomly chosen from QUIPD simulations [ Ref. 2(c)].

V. GROUND-STATE DYNAMICS (GSD) OF NEGATIVELY
CHARGED WATER CLUSTERS

The ground-state dynamics (GSD) method [or more
generally the adiabatic simulation method (ASM) ] where
the classical nuclear dynamics evolves on the adiabatic elec-
tronic potential energy surface (the adiabatic ground-state
surface in the GSD method) calculated quantum mechani-
cally for the time-dependent nuclear configurations, was de-
scribed in Sec. III. In Figs. 7-9 we present results of such
simulations for (H,0)., and (H,0) 3, clusters at 300 K,
which support both ground and excited bound electronic
states. As discussed by Schnitker et al.,® and in Sec. IV, the
lowest excited levels are three closely spaced p-type orbitals
(see Fig. 4), that would have been degenerate if spherical
symmetry applied. The results presented below pertaining to
the ground state and lowest excited state were obtained from
a simulation in which typically the classical dynamics was
followed for 2 X 10® time steps (A? = 10 a.u. = 2.4 10716
s). Every classical time step is followed by a quench to the
ground- and excited-state wave functions in the new nuclear

180

160

.3 9.3 93 00 41 03 063 06 0.0

180 1

KE) arb uni
o

o .4 43 03 €1 %8 Oa 0.3 0.3 34 OB

180 1

I
o

0
-0.4-0.2 0.0 0.2 0.4
E( au)

FIG. 6. Fourier spectra of the time correlation function (¥(0)¢¥(#)) de-
tailed via the FFT method, for four randomly chosen cluster configurations
of (H,0)., obtained via QUPID simulations [Ref. 2(c)] at 300 K. The
variations in the peak positions, corresponding to the energy levels of the
excess electron, demonstrate their dependence on the cluster molecular
configuration. Note that the peak corresponding to the excited state con-
tains the three unresolved (for the short trajectory used in this calculation)
p-like energy levels shown in Fig. 4. Energy in atomic units.

configuration. In the quench stage the wave functions are
evolved in imaginary time while keeping the excited-state
wave function orthogonal to that of the ground state. A typi-
cal imaginary time step used in this process was
At= —iAB= —0.5[ au. (where i=+y —1). Using
At = — 1.0/ did not result in significant differences. For the
ground- and excited-state quenches we have used 10 and 20
such steps, respectively, after each classical step. To check
that this quench time span was sufficient (particularly for
the excited state, i.e., that the quench of the wave function to
the lowest excited state was complete and that the two other
close lying excited states were annealed out) we performed
test simulations for the (H,0) ., clusters in which a longer
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FIG. 7. Excess electron energies of the ground (E, ) and excited (E, ) states
and their difference (AE) vs time, obtained via ground-state dynamics
(GSD) simulations of (H,0), clusters with n = 64 [shown in (a)] and
n = 128 [shown in (b)]. The simulations were performed at 300 K. Note
the stronger binding of the excess electron in the larger cluster, and that the
fluctuation in E, and E, occur largely in-phase resulting in relatively
smaller fluctuations of their difference (AE). Energy and time in atomic
units (a.u.).

quench time span was used for both the ground- and excited-
state wave functions.

The spatial grid used in these simulations consists of 16>
points in a cube with a linear dimension L = 24 a,. Doubling
the number of points along each direction (i.e., 32> point
grid) for fixed L did not affect the results in any significant
manner. Throughout the simulations the center and width of
the electronic wave functions were monitored to assure that
their spatial extent remains well within the calculational
grid. The computational time required for the generation of
a 2 X 10° classical time step trajectory was ~ 7.5 CPU hours
for (H,O), and 15 CPU hours for (H,0) ;3 on a CDC
CYBER 990 computer. For the (H,0) g cluster, several tra-
jectories were generated starting from different initial condi-
tions. All these yielded similar results thus indicating that
trajectories calculated for this time span (2000 classical
steps with Atz = 10 a.u.) perform an adequate sampling of
the accessible phase space resulting in good statistical distri-
butions and averages. Finally, both constant energy and con-
stant temperature (7" = 300 K) simulations were performed
yielding results with no significant difference when
E = (E), where E is the constant energy in the constant
energy simulation and (E ) the time averaged total energy in
the constant temperature one.

Barnett, Landman, and Nitzan: Spectra in water clusters
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FIG. 8. The kinetic (K,;) and potential (¥, ) energy contributions to the
ground-state energy (E, ) of the excess electronin (H,0) g [shownin (a)]
and (H,0);;, [shown in (b)] clusters vs time, obtained via GSD simula-
tions at 300 K. Note the larger fluctuation in the potential energy contribu-
tion. Energy and time are given in atomic units (a.u.).
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FIG. 9. Same as Fig. 8 for the kinetic (K, ) and potential (V) contribution
to the first excited-state energy (E, ).
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FIG. 10. Correlation diagram for the first excited-state energy (E, ) vs the
ground-state energy (E, ) for the (H,0); cluster, obtained via GSD simu-
lations. The strong correlation and approximate linear relationship between
the two energies is evident.

The energies of the electronic ground and excited states
and their difference vs time are shown in Figs. 7(a) and 7(b)
for (H,0)4, and (H,O) 34, respectively. In Figs. 8(a) and
8(b) we display the time evolution of the kinetic and poten-
tial energy contributions to the total electronic ground-state
energy for (H,0)q and (H,0) 3, respectively. Similar
data for the lowest excited state are shown in Figs. 9(a) and
9(b).

The stronger electron binding in the (H,0) ;5 cluster
relative to that in (H,0); is evident from Fig. 7. Figure 7
also shows that fluctuations in the ground (E, )- and excited
(E, )-state energies occur largely in phase, so that fluctu-
ation in their difference AE are considerably small. Another
way to demonstrate the correlated variations in E andE, is
to plot them against each other, as shown in Fig. 10 for the
(H,0) 35 cluster. From this figure we deduce that on the
average E, and E, are linearly related.

Figures 8 and 9 show pronounced fluctuations in the
instantaneous electron energies. Note, however, that the
fluctuation in the quantum kinetic energy K, are of smaller
amplitude than those of the potential energy contribution
E,, particularly in the ground state (Fig. 8). This implies (as
expected) that the electronic wave function is less sensitive
to the dynamical changes in the cluster configuration than
the interaction potential energy of the electron with the clus-
ter.

The mean ground and first excited-state energies (E,)
and (E, ) and the corresponding standard deviations o, and

o, (o= (E?) — (E)?) obtained from the GSD trajector-
ies for (H,0), 7, n = 32, 64, 128 are summarized in Table I1.
For (H,0);; no reliable excited-state data could be obtained
since the lowest excited state lies very close to the ionization
threshold (£ = 0) which made convergence to it prohibi-
tively slow. The (E, ) results presented here are more accu-
rate than those presented in Table I since many more config-
urations (the full GSD trajectory) are involved in the
averaging process. Nevertheless, the results in Table I ({£ )
values) compare favorably with those given in Table II.
The fluctuations in the electronic energy difference AE

TABLE I1. Mean ground ({E,))- and excited ({E, ) )-state energies of the
excess electron and the mean excitation energies (AE) = (E,) — (E,) for
(H,0), clusters at 300 K, calculated via ground-state dynamics simula-
tions. g,, o, and 0, are the variances of the corresponding quantities.
Energies are given in units of hartree (a.u.). The values of (E, ) correspond
to the equilibrium quantum energy E, in Table L.

(H,0); (E) o, {E)) Ty (AE) (/N
n=32 —0.0784 0.0084

n==64 —0.1073 00074 —0.0334 0.0069 0.0745 0.0034
n=128 -0.1339 0.0094 —0.0612 00094 00727 0.0027

(see Fig. 7) induced by the nuclear motions are the origin of
the broad absorption spectrum characteristic to the hydrat-
ed electron. Such spectroscopic information can be obtained
via ensemble averaging or equivalently via a single time tra-
jectory of sufficient time span to assure that the accessible
phase space is sampled adequately. The latter method was
used in our study. Accordingly, long records of the time
evolution of the ground and excited states obtained via a
GSD simulation (see Fig. 7) are used in order to construct
histograms of the number (frequency) of occurrences of dif-
ferent values of E,, E,, and AE vs energy. As mentioned,
care has been taken that the time span of the simulation was
long enough to achieve adequate (convergent) sampling of
the accessible phase space (i.e., effective equilibrium ensem-
ble averaging). Such histograms (obtained from the data in
Fig. 7) showing the distributions of E,, E, , and AE are dis-
played in Figs. 11 and 12 for (H,0)¢,; and (H,O) 35, respec-
tively. We remark that the absorption line shape corre-
sponds to the AE distribution weighted by the squared
transition-dipole matrix element |u,, |> between the two
electron states. We have found that this correction to line
shapes, given in Figs. 11(c) and 12(c), is very small. Several
features displayed in Figs. 11 and 12 should be noticed. First
the broad energy distributions in the ground- and excited-
state energies are an indication of the large sensitivity of the
electronic energy to the cluster configurations. As noted
above this sensitivity is due mostly to the potential energy
terms. The fact that the broadening is due more to fluctu-
ations in the interaction potential rather than to changes in
the wave function is probably the reason for the somewhat
narrower distributions associated with the excited-state en-
ergies.

Second, noted above, the fact that E, and E, fluctuate
largely in unison is the origin of the substantially narrower
distribution of the gap energy (AE). AE is seen to peak at
~0.075 hartree (~2.04 eV) for (H,0), with a small shift
to the red for (H,0) ;5. For an electron in bulk water the
peak of the absorption band is at 1.73 eV.

Finally, the widths of the AE distributions, Figs. 11(c)
and 12(c), are of the order of 0.01 hartree = 0.27 eV. The
experimentally observed width in bulk water is 0.8 eV. This
larger width reflects the fact that three nondegenerate p
states contribute to the line shape while in the above GSD
simulation we evaluated only the lowest of them for each
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FIG. 11. Histograms of the frequency of occurrence of different energy val-
ues, obtained from GSD simulations of (H,0); at 300 K for the ground
(E,)- and excited (E, )-state energies and the difference between them
(AE). The breadth of the energy distributions correspond to the widths of
the energy levels and that of AE corresponds to the width of the absorption
spectrum for the ground to first excited-state transition. The broadening of
the levels is due to time fluctuations (at finite temperature) in the cluster
molecular configuration. The mean values of these energy distributions are
given in Table II. Energy is given in atomic units.

configuration. Indeed, having observed (Sec. IV) that the
three lowest p-like excited states span an energy range of
~0.5-0.7 eV, and assuming that the width (of 0.27 eV) is
the same for all of them the theoretical estimate of the ab-
sorption bandwidth comes close to the experimental
one.”*[The small differences observed in our calculations of
the bandwidth results for the (H,0)¢, and (H,0) 35 clus-
ters suggest that finite size effects on these widths are small
in this cluster size range justifying the comparison to the
bulk water data.] We note that the calculation of Schnitker
et al.® overestimates this width by ~40%. The difference
between their results and ours are probably due to the differ-
ent potentials used for the description of the intra- and inter-
molecular interactions in water, the electron—water interac-
tion.

To conclude this section we note that the results of Fig. 8
provide an a posteriority justification for the use of the adia-
batic simulation method by showing that the energy separa-
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FIG. 12. Same as Fig. 11 for (H,0) ;3; at 300 K. The mean values ofE,,E,,
and AE are given in Table I1.

tion between the ground and excited states in these systems
remains always large relative to the nuclear energies. In Sec.
VI we consider an extreme case where this separation of
energies does not hold and where full dynamical simulation
(in the TDSCF approximation) has to be performed.

VL. TDSCF DYNAMICS OF (H,0);

The water dimer is the smallest water cluster known to
attach an electron, with an estimated*®>** binding energy
in the range of 3-25 MeV (depending on the molecular con-
figuration of the dimer*® ) which is of the same order as the
energy of the lowest intermolecular vibrational mode of the
neutral dimer.>? Since an adiabatic separation of the elec-
tronic and nuclear motions cannot be assumed here, the
ASM computational scheme cannot be used. Instead we
have simulated the full dynamical evolution of the (H,0);
in the TDSCF approximation, under the added assumption
that the water molecular motions can be treated, as before,
classically.

With regard to the first approximation we should note
that the structure of the negatively charged water dimer
(Fig. 13), with a very diffuse electron charge density weakly
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FIG. 13. Image of a typical low-dipole configuration generated in a TDSCF
dynamical simulation at 20 K of the (H,0); cluster (large and small balls

correspond to oxygens and hydrogens, respectively) and of the excess elec-
tron charge distribution (small dots). We note that this molecular configu-
ration is very similar to that of the neutral dimer. Note the diffuseness of the
electron distribution.

bound to the water dimer via primarily dipolar interactions,
supports the assertion that the TDSCF approximation may
be used in this situation. Separation of the electronic and
nuclear motions may be achieved here not because they
evolve on different time scales but because they occur on
different length scales.

Figure 14 shows, for (H,0); at T =20 K, the time
evolution of several quantities: the classical potential energy
U, the total classical energy E,,, the kinetic (K, ) potential
(V) and total (E,) quantum energies of the electron (V'is of
course the energy of interaction between the electron and the
classical system), the spatial spread of the electron charge
distribution [R, = ({r*) — (r)?)"/?], and the total dipole
of the water molecular dimer. In this calculation we used a
16> grid with grid unit equal to 9 a,, and have monitored the
position and width of the electron wave packet to make sure
that it remains well within the calculational grid throughout
the evolution.>® We remark that such a large grid cell is ap-
propriate for the description of the very diffuse, weakly
bound, electronic wave function. The time length of the tra-
jectory shown is 8 X 10* a.u. =2 ps.

The results in Fig. 14 clearly exhibit the correlation
between the nuclear motion and the electronic energies. In
particular the strong effect of the total cluster dipole on the
electron binding energy is evident. The electronic energy
fluctuates between values very close to zero and values below

— 8% 10~ * hartree (~ — 22 MeV) as the structure of the
cluster alternates between high- and low-dipole configura-
tions. The existence of such configurations of the negatively
charged water dimer at 20 K was already demonstrated by
the QUPID simulations.?® Inspection of Fig. 14 shows that
the transition time between the high- and low-dipole config-
urations is roughly in the range 0.1-1 ps.

From the time records of the total interaction potential
energy (U), Fig. 14(a), between the atomic constituents of
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FIG. 14. Results obtained from TDSCF dynamical simulations of
(H,0); . The molecular potential energy ( U), total classical energy (E,, ),
kinetic energy of the excess electron (K, ), interaction energy between the
excess electron and the molecular cluster (¥), total energy of the excess
electron (E,), and total dipole moment of the water molecules (x) are
shown in (a)-(f). Time in a.u. = 2.4189 X 10~'" 5, and all quantities in
atomic units. Note the correlation between the increases in the magnitude of
the excess electron binding energy (E,) and the cluster dipole, as the nu-
clear configurations fluctuate.

the dimer and of the total (classical) energy [E,, Fig.
14(b) ] we observe that the structural transitions from the
low-dipole to high-dipole configurations are accompanied
by a decrease in the magnitude of the interatomic interac-
tions [compare Figs. 14(a), 14(b), and 14(f) ]. We remark
that the low-dipole configuration is the one closer to that of
the neutral water dimer.’*® Additional information about
the internal nuclear motions within the negatively charged,
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FIG. 15. Vibration density of states (D) spectra obtained from the velocity
autocorrelation function generated via a 1.73X 10" s classical molecular
dynamics simulation of the neutral (H,0); cluster at 20 K. The full spec-
tral range is shown in (a) and an expansion of the low-frequency range,
corresponding to intermolecular motions, is shown in (b). The density of
states and frequency are given in atomic units (the conversion to frequency
in cm ' is indicated at the top). Note in (a) the three spectral ranges dis-
cussed in the text.
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as well as neutral, water dimers can be obtained from the
nuclear frequencies which can be evaluated from the Fourier
transform of the nuclear velocity correlation functions. The
full vibrational density of state spectra obtained in this way
for the neutral dimer is displayed in Fig. 15. In the spectrum
shown in Fig. 15(a) three main frequency regimes can be
distinguished: the high-frequency regime with > 3000
cm™! corresponding to intramolecular stretching vibra-
tions, the medium frequency range with 1500 cm™'
< < 1700 cm ™! corresponding to intramolecular bending
vibration and a low-frequency regime with o < 800 cm™'
corresponding to intermolecular modes. An expanded view
of the spectrum in the low-frequency regime is shown in Fig.
15(b). While we did not perform a detailed assignment of
these spectra, the main features observed are in good agree-
ment with the normal mode analysis of Reimers and
Watts.>2(®

The neutral dimer spectra displayed in Fig. 15 were ob-
tained using 9 X 10* classical time steps to generate a trajec-
tory of duration 1.73X 10~ "' s. In Figs. 16 and 17 we show
similar spectra for the negatively charged dimer. These spec-
tra were generated as before using the nuclear velocities con-
tained in the TDSCEF trajectory. Here we use shorter trajec-
tories both because of the much larger computational time
involved and because the TDSCF trajectories can become
numerically unstable for very long times. The duration of
these trajectories was 1/6 of that used in Fig. 15. The resolu-
tion of the spectra in Figs. 16 and 17 is consequently consid-

2500 5000 cm™t
¥ T

L)

v 3

1 i
1 W
(a) 0
0 T -

0 ) - FIG. 16. Vibrational density of states (D)
spectra obtained from the velocity autocorre-
lation functions (VAF) generated via
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— ﬂ (a)-(c) ], and via classical molecular dynam-
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X i \[\ I A \ ! full spectral range is shown. (a) and (d) are
a ] FHE A \ ) ) partial density of states derived from the VAF
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erably lower. To provide a better basis for comparison
between the negatively charged and neutral cluster spectra
we also include in these figures results for the neutral dimer
with the same resolution (i.e., same trajectory length).

While the qualitative features in the neutral and the ne-
gatively charged dimer spectra are similar, comparison of
the results shown in Figs. 16 and 17 reveal some important
differences. First note that in the intramolecular frequency
regime (@ > 1500 cm ~') the peaks associated with (H,0);
are broader than the corresponding peaks in the neutral
dimer. Several features which are distinctly resolved in Figs.
16(f) and 16(g) are not well resolved in Figs. 16(b) and
16(c). On the other hand, no observable shift between the
spectra of the two clusters is seen (with our resolution) in
this regime.

Second, the electron attachment has a substantial effect
on the intermolecular low-frequency vibrations. Compari-
son of Figs. 17(a), 17(b), 17(c) and 17(f), 17(g), and
17 (h) shows considerable frequency shifts, with most of the
peaks in the (H,0), spectra shifting to the red while some
modes in the region 400-500 cm ™' shift to the blue. Al-
though detailed discussion of these effects is difficult because
of the low resolution, it is reasonable to expect that such
modes which strongly affect the total cluster molecular di-
pole will show a blue shift upon electron attachment because
they are influenced by the contribution of the electron
charge density to the force field. The in-plane intermolecular
bend [mode v, (a’') in Ref. 52(b) ] with frequency 483 cm ™'

in the neutral dimer may thus be the one responsible for the
observed blue shift. Other modes, not directly associated
with the cluster dipole will move to the red due to weakening
in molecular bonding caused by the electron attachment, a
similar effect to that seen in the (NaCl) ~ ion (Sec. IV).

VIi. CONCLUSIONS

In this paper we have employed the fast Fourier trans-
form (FFT) algorithm for solving the time-dependent
Schrédinger equation and used it, in conjunction with the
time-dependent self-consistent-field (TDSCF) approxima-
tion, to study the energetics, dynamical behavior, and spec-
troscopical properties of several negatively charged water
clusters. First we have discussed and illustrated the use of
the FFT method for obtaining eigenvalues and eigenfunc-
tions of an electron moving in the potential of a static atomic
configuration. We applied this method, using equilibrium
cluster configurations calculated via quantum path-integral
molecular dynamics (QUPID) simulations, to obtain ener-
getic and spectroscopic information. For the large (H,0) ;7
clusters (n>32) we have introduced and demonstrated the
applicability of the adiabatic simulation method (ASM), in
particular its ground-state dynamics (GSD) version. In this
method the nuclear real-time dynamics evolves via classical
mechanics, within the TDSCF approximation (i.e., under
the influence of the quantum mechanically averaged poten-
tial), and the electron is restricted (by repeated use of imagi-
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nary-time evolution) to the ground (or any other selected)
state corresponding to the instantaneous nuclear configura-
tion. Cluster size dependencies of ground- and excited-state
dynamics and spectra were obtained in this way in an effi-
cient manner. For the smallest negatively charged cluster,
(H,0); , we have used the TDSCF approximation to study
the time evolution of the excess electron as well as the asso-
ciated nuclear dynamics. The latter gave us, for the first
time, an access to the vibrational spectrum of this negatively
charged water cluster.
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