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The time development of a number of physical systems can be described in terms of the temporal passage
of the system through its allowable states. These states may correspond to spatial configurations, energy
levels, competing transition mechanisms, or correlated processes. The evolution of certain of these systems
can be analyzed by mapping onto a continuous-time random walk on a lattice whose unit cell may contain
several internal states. In addition, we study the influence of periodically placed defects, which modify
transition rates, on transport properties in several condensed-matter systems. A propagator formalism is
reviewed where the matrix propagator (whose dimensions equal the number of internal states in a unit cell) is
renormalized owing to the presence of defects. Knowledge of the propagator allows the evaluation of
observable quantities such as positional moments, diffusion coefficients, occupation probabilities of states,
and line shapes of scattering from diffusing particles. The formalism allows the study of diverse transport
systems in a unified manner. We study the multistate diffusion of particles and clusters (specifically dimers)
observed via field-ion microscopy on defective surfaces and derive expressions for observables pertinent to the
analysis of these experiments. The lattice structure dependence of particle diffusion in systems containing
defects which influence their neighbors is demonstrated. Next, the anomalous, non-Arrhenius behavior of the
vacancy diffusion constant, observed via tracer-diffusion measurements, is described in terms of competing
monovacancy mechanisms: nearest-neighbor and next-nearest-neighbor single jumps, and double jumps in
which two atoms jump almost simultaneously, collinearly, as suggested by recent molecular-dynamics studies.
We derive an analytic expression for the vacancy diffusion which provides a reinterpretation of fits to
experimental data. As a further application of our method we investigate non-Markovian transport due to
relaxation effects. Finally, we provide an analytic expression for the scattering law, S (&, ), of quasielastic
neutron scattering and demonstrate the non-Lorentzian line shape of the scattered intensity for systems
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containing defects and for correlated motion.

I. INTRODUCTION: TRANSPORT AND INTERNAL
STATES AND DEFECTS

Studies of transport phenomena in condensed-
matter systems provide information about the
physical parameters of the underlying mechanisms
governing the motion.! These parameters (ac-
tivation energies, transition-frequency factors,
structural factors, and correlation functions)
reflect both potential and structural character-
istics-of the system under study. The degree of
microscopic detail concerning the nature and the
mechanism of transport depends upon the experi-
mental resolution and range of data available and
upon the method of analysis. The above is in-
timately connected with such characteristic spatial
and temporal parameters of the system as cor-
relation lengths and relaxation times.

In order to achieve a level of description com-
patible with the experimental resolution it is often
convenient (and in fact sometimes necessary) to
decompose the transport process into kinetic
elementary steps. Often the stochastic evolution
of the system via transition between these steps
can be mapped onto a random-walk lattice with
multiple states in each unit cell (which we call the
internal states®3). The number and type of internal
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states reflect the degree of microscopic knowledge
of the process.

The mapping of kinetic steps onto a multiple-
internal-state random-walk lattice serves as a
unifying element in the analysis of adiverse variety
of transport and reaction phenomena. For exam-
ple, atomic and molecular clusters adsorbed on
crystalline surfaces are observed, by means of
field-ion microscopy (FIM), to exist in several
geometric configurations.? The cluster-centroid
motion traverses a random-walk lattice with sev-
eral internal states per unit cell representing the
allowed configurations. As discussed previ-
ously,*% ¢ a proper analysis of FIM diffusion data
(positional moments and configuration occupation
probabilities) allows a determination of the in-
dividual transition rates between configurations,
thus yielding a spectroscopy of the internal states
of the cluster. Analysis which disregards the ex-
istence of the above internal states (i.e., analysis
based upon the conventional semilogarithmic plot
of the cluster-centroid positional variance o2?(t)
versus 1/k,T) is inadequate for the determination
of the pertinent diffusion parameters.

The mapping onto a multiple-internal-state
random-walk lattice is not restricted to actual
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distinct physical spatial configurations, but may
represent states of the system in a generalized
sense. For example, in an early study of surface
diffusion by Lennard-Jones” a model has been
introduced based upon two states of the migrating
particle: one state in which the particle vibrates
about the equilibrium position and another in which
the particle migrates (the mobile state). This
model can be mapped onto a random-walk lattice
with two states in each unit cell (see Fig. 5, which
in addition to the two internal states includes a -
defect site). As a further application of our gen-
eral procedure, in Sec. IV we investigate dif-
fusionvia monovacancy mechanisms, We show that
the deviation from the Arrhenius behavior of the
diffusion constant at temperatures close to the
melting point of the material,®!* can be explained!?
by including several competing monovacancy
mechanisms which are activated at these elevated
temperatures. Again, the solution to this problem
is achieved via a mapping onto a multistate ran-
dom-walk lattice. As a final example we consider
(in Sec. V) a mode of transport in which correlation
between steps exists in the sense that the depar-
ture of a particle (or a propagating excitation)
from a site depends (in a time-dependent fashion)
upon its last jump [i.e, for a one-dimensional
system the particle would leave a site with (dif-
ferent) probabilities which depend upon whether

it arrived there from the left or right]. The ran-
dom-walk lattice for the correlated motion is ob-
tained by mapping the above events onto a lattice
(see Fig. 9). In Sec. VI we evaluate the quasi-
elastic neutron scattering line shape from dif-
fusing species whose motion is correlated.

Most crystalline systems contain imperfection
to various degrees, due to a variety of sources.
Defects occur either as an intrinsic property of
crystals (such as thermally activated point de-
fects, interstitials, and vacancies, which are
present in the equilibrium structure of crystals
at above-zero temperatures!®), or may be vol-

untarily or involuntarily (contamination) introduced.

Defects and impurities are known to alter par-
ticle transport in crystalline systems.!* In ad-
dition, they influence rates of surface-catalyzed
reactions’ and enter the theory of heterogeneous,
active site-catalyzed, processes.!® Thus it is of
importance to understand the physical mechanisms
involved in the above systems and to formulate
theoretical methods through which the charac-
teristics of the defects and transport processes
can be determined via the analysis of experi-
mental data (FIM, tracer diffusion, quasielastic
neutron scattering, Mdssbauer line shapes, and
excitation diffusion in molecular systems).

In the previous paper!? (which will hereafter

be referred to as Paper I), we have developed

the mathematical formalism of continuous-time
random walks in multistate systems which contain
a periodic arrangement of defects.!® Defects are
characterized by modified transition rates from
the allowable states compared to the ideal (defect-
free) host-lattice case. The change is expressed
in the distribution function governing transitions,
which reflects the potential characteristics of the
system. We show that the particle propagator is
“renormalized” owing to the presence of defects.
Knowledge of the propagator allows the derivation
of expressions for a number of observable quan-
tities [moments of particle or vacancy position,
equilibrium occupation probabilities of sites, and
quasielastic neutron scattering line shapes (Sec.
VID)], in a unified fashion.

The analysis presented in this study is for sys-
tems in which the defects form a (periodic) super-
lattice. Examples of physical systems in which
such structures occur are transport in ordered
alloy and multicomponent systems, ordered over-
layer assemblies,'® and ordered overlayer adsor-
ption-surface systems.?* For systems in which
defects occur randomly, the coherent-potential-
approximation (CPA) method may be applied.?!22

The paper is organized in the following manner:
A brief summary of pertinent expressions derived
in Paper I is given in Sec. II. In Sec. III we dis-
cuss several case studies of multistate diffusion
on defective lattices and calculate the effect of
defects and their concentration on the diffusion
constants and probabilities of occupation of sites.
We also show, in Sec. III B, that for systems in
which defects influence transition characteristics
of their nearest-neighbor sites, the diffusion con-
stant depends upon the lattice structure. In Sec.
IV we propose and analyze competing monovacancy
diffusion mechanisms as the origin of the observed
deviations from Arrhenius behavior of the dif-
fusion constant as a function of temperature.
Time-dependent correlated motion is studied in
Sec. V. In Sec. VI we derive a general formula
for the scattering law of neutrons scattered quasi-
elastically from diffusing species. We apply the
general formula to obtain non-Lorentzian line
shapes for single-particle diffusion in a three-di-
mensional (3D) defective crystal and for a time-
dependent correlated migration of a particle in
1D.

II. SYNOPSIS OF MATHEMATICAL FORMALISM

The mathematical formalism of random walks
on periodic lattices with multiple internal states
has been described elsewhere.?*% In Ref. 2
(Sec. V) and Paper I we have discussed diffusion
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on lattices containing a periodic arrangement of
defects, treated as internal states. A different
method for treating propagation on periodic de-
fective lattices, one which facilitates the cal-
culations of basic transport quantities (in par-
ticular for small defect concentrations), via a
renormalized propagator, has also been discussed
by us in detail in Paper I. In this section we
briefly review the pertinent elements of the theory
of multistate transport on ideal and defective
periodic lattices.

The basic quantity of the theory, which char-
acterizes the temporal and spatial (structural)
dependence of transitions performed by the prop-
agating species is the waiting-time density func-
tion

v, ) =p 0 T, (1), (2.1)

where fdenotes a lattice-site location and j rep-
resents an internal state. ¥ ;. ,,(7)d7 is the prob-
ability that a transition will occur from (I’,5) in the
time interval (1,7 +d7), given that the particle
obtained (i7,7) at 7=0. This function is not an
explicit function of (I7,7), but is written in terms
of parameters which characterize the state (17,7).
These parameters reflect the potential character-
istics of the state (1’,7). In our studies we have
chosen the following form for the waiting-time
probability density function:

) E
POUT) =NV e T, b, (1) =x e (2.2)

where A\{”’, X, are the total transition rates for
leaving internal state j, associated with ideal and
defective sites, respectively; pij(f, 17) is the prob-
ability that, given the occurance of a transition
from state (T’,j), it will lead to the occupation of
state (I,7). In general, pij(f, I’) may also depend
on the time 7 at which the transition occurs (such
an example is discussed in Sec. V).

The semi-Markovian evolution of the transport
system can be studied in terms of the probability
propagator R (1, t]lo, 0), which is the probability
density of reachmg (1 i) exactly at time ¢, having
started at (10,]) at =0, independent of the number
of steps taken.

On an ideal lattice, with m internal states per
lattice site, we have found in matrix notation that

Rk, u|L, 0)
[1 P(O)(K)Z/)(O)(u ] ike 10 (2_3)

where the superscript (0) indicates that these
quantities are for a perfect lattice, the matrices
are of dimension m Xm, and the propagator has
been Fourier transformed over space (f- K) and
Laplace transformed over time (7 ~u) [see Eq.
(2.3) and Appendix A in Paper I].

For a lattice with a periodic arrangement of
defects, forming a defect superlattice of unit cell
size (al,, Bl,,vl,), wherel,, I , and I, are the host-
lattice unit-cell length and «, 8, and y are integers,
we have derived in Paper I the equation for the
probability propagator R [see Eqgs. (2.23) and (2.27)
of Paper I] valid for all k and « values. While the
complete expression for R is rather complicated,
it may be observed that for calculations of physical
quantities in the long-time (diffusion) limit a re-
duced form of the propagator can be used. The
probability propagator in its reduced form is given
as [see Eq. (2.28) in Paper I],

B (K,u32)]"
- QD(K,u)e T}t (2.4)

_I_Z(E, u;z) =

where the components of K are
0 st <2r/a, 0<K,<2m/8,
(aﬁylxlylz) ,

and the defect matrix D is given by

D(K,u;z2) = ZZ

(0) ( )¢,(0)(u)] (2.5)

where the sum extends over all defects in one of
the equivalent groups of defects which repeat
periodically (denoted by {d}). Equation (2.4) for
the probability propagator, in analogy to other
usages of propagator techniques, can be inter-
preted as a renormalization of the ideal-lattice
propagator R © (k, u; z) by a “self-energy” cor-
rection due to the differences between defective
and ideal lattice sites. The conditional probability
P of being at state (I,) at time ¢ [starting from
(10,]) at £=0] is related to the propagator R via

ij(]" t |10? O

¢ > T
=fo Ry, - Tllm 0) (1 —j; ba, i)(T’)dT’)dT

t
af Rt -7|T, 000 4 ,()dr, (2.6)
0

0<K,<2m/y,

b, ,)(K)ZP(, N

where the function @ 5 ;,(7), defined above, accounts
for the event that the system reached (I,7) at an
earlier time ¢ — 7 and remains there at time ¢.

Physical quantities of interest, such as spatial
and temporal moments of the probability distri-
bution and equilibrium occupation probabilities of
states, can be derived from the above as dis-
cussed in detail in Paper I [Eqgs. (2.33)-(2.42),
and Sec. III and IV of Paper I]. In the following
we investigate several physical transport systems
using the above method, and discuss methods of
analysis of experimental data.
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III. CASE STUDIES OF MULTISTATE DIFFUSION

In this section we discuss several condensed-
matter diffusion systems, and investigate the
effects of defects and internal states on the dif-
fusion mechanisms and implications of the above
in the analysis of experimental observations.

A. Single-particle diffusion on a 1D defective lattice

The migration of particles and clusters on solid
surfaces under controlled conditions can be ob-
served onanatomic scale, by means of the in-
genious methods of field-ion microscopy (FIM).*
These measurements provide quantitative data
about the diffusion process in terms of particle
(or cluster-centroid) spatial moments [mean po-
sition (in case of a biased experiment®®) and
variance] and the equilibrium occupation of sites
in the allowed configurations (in the case of a
migrating cluster). From FIM data, one can de-
termine such characteristic quantities of the
diffusion mechanism as activation energies, fre-
quency factors, diffusion constants, information
concerning pairwise interaction potentials between
adatoms, and cluster dissociation energies.23
Consequently, FIM constitutes a microscopic
spectroscopic tool for the investigation of solid
surfaces. ‘

Until now, most?* FIM diffusion studies have
been performed on perfect-crystal planes, and
the one-dimensional and two-dimensional motions
of particles and particle clusters of various sizes
have been studied. We have previously suggested
methods for the analysis of FIM data and have
given a procedure by which transition rates of
individual steps (between internal states) of the
migration mechanism can be extracted from the
experimental results.®® In the following we in-
vestigate the motion of a single particle on de-
fective periodic surfaces and suggest the possi-
bility of obtaining, from FIM measurements on
such surfaces, information about characteristic
parameters of the defects.

We consider first a one-dimensional (1D) motion
of a single particle [such as that observed in the
channeled motion of a W atom on the (211) face of
tungsten®®]. As seen from Eq. (12.53), the posi-
tion variance for particle diffusion on a 1D lattice
of spacing ! and transition rate a for jumping to
nearest-neighbor sites is given by o%(t) =al?. If
0%(¢) is measured for known ! for a sequence of
times, the rate a can be found. When the experi-
ment is performed at various temperatures and an
‘activated Arrhenius form is used for a (i.e.,
a=v,e ®e®BT  ywhere E, is the activation energy
for a transition and T is the absolute temperature),

E, and the frequency factor can be determined from
a plot of In 0®(¢; T) vs (R ,T).

When defects are introduced substitutionally?*
into the lattice in a periodic manner at locations
nl (where n is the period of the defect superlattice)

0%(t) =nl%abt/[b(n - 1) +a], (3.1)

where b is the rate of leaving a defect. (Note that
the effect of the defect has been assumed to be
localized, although more general cases can be
treated.) If the rate a is known from the perfect-
lattice case, b can be found from the relation

ao?(t)/[anl?t — - 1)0%(t)] =v,e Eo/*BT =p , (3.2)

Consequently, data obtained at different temper-
atures permit the determination of the defect pa-
rameters v, and E, [from a plot of the logarithm
of the left-hand side vs (k;7)"!]. Note that the
usual practice of plotting logo® vs (k,7)! will not
yield v, and E, as the intercept and slope of a
straight line, since only a and b, but not ¢2, are
in an activated form.

When the rate a cannot be determined indepen-
dently, a relation between the rates a and b, ob-
tained via detailed balance for occupation of sites,
[see Eqgs. (12.42a) and (12.42b)] can be used:

P, (defect) = QlimuR,(k =0,u)®,(u), (3.3)

u=0

where, in our case, 2=1/n. The above yields
1 . a 1
P, (defect) = - lulgl u[l il
« ( b a -1
b+u  a+u
a/n

= TR bA =1/ (3.4) .
Thus, if the equilibrium population of the defect
sites is recorded, the above relation supplements
the equation obtained from the measurement of the
variance in position, and ¢ and b can be deter-
mined from these two relationships.

B. Single-particle diffusion on defective 2D lattices
of different structures

- We examine now the diffusion of single particles
on two-dimensional square, hexagonal, face-
centered-square and -triangular lattices in the
presence of defects. We show that when a defect
influences the transition rates of its neighbors,

a structure (topology) dependence of the diffusion
rate emerges. If the defect does not influence its
neighbors, the diffusion rate on the different

~ lattices is the same as long as the transition rates

for leaving normal and defective sites are common
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to them, and the jump lengths and defect concen-
trations are the same.

To motivate our analysis we consider first ran-
dom walks of a single particle on perfect lattices
of different structure (with the same bond length
and the same rate of leaving sites). Obviously,
under these circumstances the probability for the
mean number of steps » taken in time ¢ is the same
for these lattices. The mean-square distance
traveled after »n steps is

n n

@n=(2 TR 5, (3.5)
i=1 j=1

where the average is over all possible paths, with

equal probability of jumps along connecting bonds,

and T, is the displacement caused by the ith step.

Since the jumps are uncorrelated,

<R,3>=<;zjl V§>=n(7’i>2=an (3.6)

independent of the lattice connectivity (structure).

If equivalent localized defects in equal concen-
trations are placed periodically in equal concen-
trations on these different lattices, then the dif-
fusion constant for particles on these lattices will
remain independent of lattice structure. This is
due to the fact that the probability of occupying a
defect site as ¢~ (the diffusion limit) is inde-
pendent of the lattice structure for the cases de-
scribed above, as can be seen from Eq. (3.3).
Thus, in the limit of #—~, the same number of
jumps occur on each lattice, with the defect- and
normal-site equilibrium occupation probabilities
being the same for each lattice. When the defects
effect their nearest neighbors, so the effective
defect concentrations are no longer equal, a
structural effect will appear, as shown in the
following examples.

a. Rectangular lattice. Consider a defective
rectangular lattice (Fig. 1) in which a migrating
particle leaves a defect site with rate D, the four
nearest neighbors to the defect site with rate B,

o5 O w1,
B B
$ <
B
Rly
L B
Ao, A
{\EXD.qu D D. e
B B B B
1%
Ve C\
A B |A B
ly
Iy - R
()t.|x

FIG. 1. Random-walk lattice for motion of a single
particle on a rectangular lattice with unit cell ¢,,!,).
The total rate to leave a normal site, denoted by e, is
A, with jump probabilities ¢, to the right or left and g,
for up and down transitions. Defect sites, denoted by m,
are substitutionally placed, forming a defect superlattice
with unit cell (al,,pl,). The total rate of leaving a de-
fect site is D. In addition, we consider that the nearest-
neighbor sites to defects, denoted by O, are influenced
and have a total rate of leaving of B. Diffusion on sev-
‘eral 2D lattices with the same bond lengths and the same
defect concentrations and characterizations is compared
in the text.

and any other site with rate A. In addition, the
defects are arranged periodically with a unit cell
of dimension (al,, 8l,) where « and 8 are integers
larger than 1, and /, and 7, are the perfect-lattice
unit-cell dimensions. The jump probabilities

q, and g, are not equal in general, and 2(qx+qy) =1.
For a square lattice I, =1, and ¢,=¢,=%. The tran-
sition function ¥ (I, 1’; 7) [see Eq. (2.1)] is given by

U(1,1757)=[Ae™* (1 =61 3) + (Be™® —Ae ") (0T (aj1,8m) + OT (as omen) + D™ —Ae™)07 oy om)]

xX[q.07_1 , 41,0 T 4,071, *(0,1)] s

where d represents sites with release rates B or
D and [See Eq. (14.10)]

mowo L, L(4, 1 5
}‘Lir(l)@(u)—A+aﬁ (B *5 —A>. ’ (3.8)

Using Eq. (I4.13) with the above, we get

(3.7)
an_o g2l 1 1./4 1 5\]7"
o‘r(t)—qulr[Z_+EE<E—+F_A)] (7_x;y)‘

(3.9

Notice that when the effect of the defects is loca-

lized to its site (i.e., when B=A), and the ratio
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between the rates of leaving a defect (D) and a
normal site (A) is denoted by e =D/A, then

a2 .() 14+ 1 1-¢

a2(t) af €
where the perfect-lattice diffusion is denoted by
03 4(t)=2q,AlZt. For defects inhibiting diffusion
(i.e., €<1),02(t)>02(t).

(3.10)

’
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b. Hexagonal lattice. For the hexagonal lattice
(see Fig. 2) we use the same designation of rates
as described for the square lattice. The periodic
unit cell in this case contains four atoms. The
transition matrix for the perfect lattice is given
by (see Step 4 in Sec.III of PaperI; we follow

the labeling in Fig. 2),

0 8T, 0,00+ 0%,(1,0)
3t,0,0 T OT(-1.0) 0
TOT,)=54e4
- 0 57 (0,0
6T,(o, 1) 0 BT.(

From an inspection of Fig. 2 it can be seen that
the defect (labeled 3 in the figure) affects three
neighboring sites. Two of these (sites 2 and 4)
are in the perfect-lattice unit cell (dashed line),
while the third one (state 4) is in a neighboring

0 57,(0,-1)
6-1.,(0.0) 0
0 010,00 + OT\(-1,0 (3.11)

0

0,0 T 0T,(1,0

r
unit cell. Thus the repeating-defect group {d} con-
sists of four atoms; the defect (3) and its three
neighbors (site 2, and the two equivalent sites, 4).
Consequently, the transformed defect matrix for
this system is given by Eq. (3.12a)

0 x(B,A)(1+etk)

0
0 0 x(D,A)
| ’
Dls,u)=31, x(B,A) 0
0 0 x(D,A)(1+ ettsix)

FIG. 2. Random-walk lattice for motion of a single
particle on a hexagonal lattice. The bond length is L .
Normal (@), defect ®m), and nearest-neighbor-to-a-
defect (O), sites have total transition rates for leaving
of A, D, and B, respectively. Transitions occur with
equal probabilities to nearest neighbors. The defect
sites (@) form a superlattice with unit cell (al,,f8l,)
where I, and !, describe a Cartesian unit cell (dashed
lines) with four internal states.

2(B,A)e™h)

0
2%(B,A)(1+et*') | (3.12a)
0 .
where
x(V,W)=V/(V+u) =W/W +u) . (3.12b)

Forming the propagator matrix R(k,u) =M/A
[Steps 5 and 6 of the procedure (see Sec. III in
Paper I)], and using Eq. (14.9), we obtain

z=__tl3-[L ___1__<_3._ 1 é_) o
"6 |a"2a8\BD "2 (8.133)
and
Hz[ 1 1 /3 1 4\
°3=T§[X+GE(E+B‘K)] ’ (8.13b)

where I, and [, are the Cartesian distances be-
tween equivalent points in neighboring unit cells.
Denoting the bond length of the hexagon by L, we
may write (see Fig. 2)

1,=V3L, 1,=3L,

[

(3.14)

4)]_1. (3.15)

vy

and thus

1. 1
A 4aB

L, s 1
B D

2

02=02=
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In order to allow a comparison between diffusion
on the square and hexagonal lattices we assume
equal bond lengths and equal defect concentra-
tions, which requires that 4(aB)nexagona = (¥B)square -
Under these conditions, equal bond lengths and
equal defect concentrations (of defects of type D),
it is observed that o, (t)>0% () if B>A, while
the reverse holds for B<A. Thus, in this ex-
ample, if the nearest neighbors to defects slow
the migration of particles, then the hexagonal
lattice is more “immune” to the presence of de-
fects than the square lattice. Note, however, that
when A =B, 02, (t)=0Z (t). It is only when the
range of influence of the defects extends to their
neighbors that the effect of structure is exhibited
in the diffusion constant.

c. FCC lattice. For particle motion on square
fcc lattices of side I we consider nearest-neighbor
and next-nearest-neighbor jumps which, are as-
sumed to occur with a probability ratio ¢,/q,. The
defects are characterized by a transition rate D
for leaving, and its nearest neighbors by a transi-
tion rate B. The spacing between equivalent de-
fects is characterized by (al, 8l) (a,pB integers)
in the (x, y) directions, (see Fig. 3). Following
the procedure demonstrated above for the other
lattices we obtain (see Secs. III and IV in Paper I)

ool L (1,15
%‘133 @(u)-A+2aB <B+D —A) (3.16)
A
ly
A
A A A

FIG. 3. Random-walk lattice for motion of single par-

ticles on a face-centered-square lattice. The total transi-

tion rates for leaving normal sites, defect sites, and
nearest-neighbor sites are A, D, and B, respectively.
The lattice spacing between equivalent normal sites is L .
The probability of a transition to a nearest-neighbor site
is gy, and to a next-nearest-neighbor site is g,. The
defect sites ®) form a superlattice with unit cell

(L, BL).

and

2% (k)

— (3.17)

- —1
. =q,%4;=3 = 4,,
k=0

where 4(g,+q,)=1and 0s gq,<%, 0<g,<;. Finally,

. 1 1 (4 1 5\
0f,{t)=1%G —ql)[x +2_a6_(§ ;) -Xﬂ .

(3.18)

Note that for vanishing defect concentration, i.e.,
(aB)—~» and ¢,=0, the result for a square lattice
of side I with no defects is retreived. If 4, %,
we obtain the result obtained previously [Eq.
(3.9)] for a square lattice of side length IN2.
Note that o7 (¢) is always smaller than oZ(t), if
both are of the same bond length and there are no
defects, since on the fcc lattice one makes jumps
of length I/Y2. In addition, in order to consider
equal defect concentrations we must ascribe
2(aB),, = (aB)sg = 4(aB)yey -

d. Trviangular lattice. As a final example we
consider motion on a defective triangular lattice
(Fig. 4), with the same defect characterization
as in the previous examples. The defécts are
arranged in a periodic array, with spacing
(al, Bl,) in the x and y directions (with I,,1, as
shown in Fig. 4) and L denoting the bond length

of the lattice. Here we obtain

(3.19)

el L (6,1 T
11m<1>(u)—A+ <B+D _A)

u—>0 2ap

FIG. 4. Random-~walk lattice for motion of single par-
ticles on a triangular lattice. The bond length is L . The
total transition rates for leaving normal, defect, and
nearest-neighbor-to-a-defect sites are A, D, and B, re-
spectively. Transitions to nearest neighbors occur with
equal probabilities. "The defect sites (w) form a super-
lattice with a Cartesian unit cell (al,,pl,) where I, and
L, describe a unit cell with two states.
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and

2% (k)
9 k2

= % —8—-2- [2 cosk,L +2 cos(zky + k)L

2
ok
+2cos(k —k)L][7-,=3L2,
(3.20)

k=0

which yield

%1 1 ot
0f,@) =L—2t-[z +2%¢B(% +5 - %)] . (3.21)
To compare results, at equal defect concentration,
with the square lattice it is required that we set
(2aB), = (aB)sq. For equal defect concentrations
and bond lengths we see that if B <A then ¢%

<¢Z <o, where the equality holds if B=A, in-
dependent of D.

C. Two-state single-particle diffusion
on a defective 2D square lattice

As our next topic we study the diffusion of a

0 bay Gy

B+u A+u

Doy tu  ay, +u B+u A+u

Following the steps of the procedure listed above
(seeSec.II inPaperI), we obtainfor the position
variances in the x and y directions

03(0)=03(0) = 2L3(F/G), (3.232)
where
F=Za, (26)'1<%& —-‘f;fz—) (3.23b)
o[ vt (3 - 4]
“[am @ (o - 2]
e ew

Note that the above result reduces to the ideal-
lattice case

oi(t)= [2a50a,./ (@, +a,)|L% (r=x,y) (3.24)

for vanishing defect concentration, i.e., (aB)-w.
Also, if the rate of decay from the mobile state

(2) to the immobile state (1) vanishes (i.e., a,,=0),
the result for a state-1 particle is recovered

b b '
21 _ Gy 2( 22 Azp ) (cosk,L + cosk,L)

particle on a 2D square lattice which contains a
periodic array of defects. At each site the parti-
cle is assumed to be in one of two states: State 1,
in which the particle merely vibrates about the
minimum of the potential well associated with
that lattice site, and State 2, the mobile state,
which the particle achieves by absorbing sufficient .
energy to surmount the barrier for migration.
Such a model was first suggested by Lennard-
Jones” and analyzed using statistical-mechanical
(partition-function) methods. The random-walk
lattice for the above model is shown in Fig. 5.

On a normal site the rates of leaving states 1
and 2 are a,, and A =a,,+4a,,, respectively, and
the corresponding rates for a defect site are
b,, and B =4b ,+4b,,, respectively [each of the
individual rates is taken in the activated form,
i.e., ay;=ay; exp(- Ey;/kgT), by; =By exp(—e€y,;/ksT),
i,j=1,2]. By inspection of Fig. 5, we can con-
struct the following Fourier and Laplace trans-
formed defect matrix

(3.22)

r

[i-e., 02(t)=2a,,L%]. Furthermore, when transi-
tions from the mobile state are dominant (i.e.,
a0, by, are greater than other rates) and state 2
is highly populated (small activation energy to
achieve the mobile state, a,, large, and slow rate
of decay, a,, small),

02(t) = 2a,,[1+ (aB) " Mays/bsp — 1)] " L3% .  (3.25)

When the defects act as traps (i.e., a,,>b,,), it
is seen that the diffusion is decreased.

D. Dimer migration on 1D and 2D defective lattices

The observation and measurement of the cor-
related motion of adatoms on surfaces (cluster
migration) by means of field-ion-microscopy tech-
niques provide information about the adsorbate
particle-substrate and interparticle interactions.*
Such information is of fundamental interest to the
understanding of surface adsorption and related
phenomena such as thin-film growth, damage
annealing, and the mechanisms of certain surface
reactions. The surface systems described above
may contain defects (and most realistic systems
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FIG. 5. Random-walk lattice is shown in 2D for single-
particle motion where state 1 corresponds to an immobile
state and state 2 is an excited mobile state, as first pro-
posed by Lennard-Jones.” Defective sites [located at
(ajL,BmL) for j and m integer] assumed to form a
superlattice with unit cell (aL , BL) are denoted by
squares, while normal sites are denoted by circles.

The total transition rate out of a state is the sum of all
the transition rates leaving the site, e.g., the total rate
of leaving a normal state 2 isA =4a,,+a,,. The proba-
bility of going to a particular site is the rate of going to
that site divided by the total rate of leaving, e.g., the
probability to go from a normal site 2 to a particular
nearest neighbor 2 is @,y/A, and that of relaxing to the
immobile state 1 on a normal site is a;,/A4.

will undoubtedly contain defects to various de-
grees, depending upon operating conditions, sam-
ple treatment, etc.) which may exhibit themselves
in various ways. Defects may act as inhibitors or
promoters of surface migration.2’° In addition,
active sites for reactions may also be regarded
as defects.’® Finally, multicomponent surfaces
may also be viewed as defective systems. A char-
acterization of particle motion on such surfaces
requires the determination of parameters charac-
terizing the motion, of both normal and defective
sites.

The migration of adatom clusters on surfaces
has been analyzed by us previously,®° yielding
expressions which allow the determination of in-
dividual transition rates for transitions between
cluster configurations involved in the migration

1-39®w -0

+J(e, E, g, E) -2H _(A, k)]

"'H-(A; k) - (1/'}’)[J(g1 E,e, E)

©O 0 ©6 0 0 0 O o o0
e 9
O,m O O 0,0 O =
) o_2e o_o

4! (a)
Yi-! Yj Yisl Yis2
————— e e SR A
| | |
b | b
SO S I S T o (Do —
a Ib d Id b al b
| | |
————— o
(b)

FIG. 6. (a) We illustrate the motion of a dimer (9--g)
in 1D with two allowable states: straight (1) and stag-
gered (2). The dimer migrates by alternating between
these two states. We consider the effect of substitu-
tional defects (M, located at yj! for integer j) forming
a superlattice with unit-cell dimension y! in the x direc~
tion. Nondefective sites are denoted by open circles
(O). (b) Centroid position of the dimer is mapped onto
a random-walk lattice with two states per unit cell. The
total transition rates to leave states 1 (straight) and 2
(staggered) are 2a and 2b respectively, from normal
sites, and g+ e and 2d for defective sites.

mechanism. Here we derive expressions for dimer
motion on certain 1D and 2D defective lattices.

a. Channeled motion on a 1D defective lattice.
As has been observed, on certain crystal faces
the motion of adparticles is one-dimensional.?*
We consider the 1D motion of an adatom dimer
on a substitutional periodic defective lattice (see
Fig. 6). The defects are located at yI (y = integer),
and the rates associated with the various transi-
tions are given in the caption to Fig. 6. The real-
space motion of the dimer [Fig. 6(a)] has been
mapped onto a defective random-walk lattice [see
Fig. 6(b)] with two states per unit cell (corres-
ponding to the two dimer configurations). By in-
spection cg Fig. 6(b) we construct the propagator
matrix R(k,u;z) [see Eq. (2.4)]:
where

X

ikl
X+u (1+e™™),

H*(x;k)=% (3.27)

X
Loy = (FA -2 Wee™), 6.29)

—H.,(B;k)~(1/2y)I,(D,B; k)
, (3.26)
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x x -
J(x1;x2;x3,x4; k)=x2:__u _x4:u e i“, (3.29)
A=2aq, B=2b, E=g+e, and D=2d. Using Eq.
(14.9), we find for the variance

1 1 1 1/2 1. 2 1\]*¢
20\ — g2 2 L 2f4a 2 a4 2
a?(t) 2lt[A+B+y<E+D i B)] .
(3.30)

Clearly, when the defect concentration vanishes
(i.e., y—~=), the result for the ideal 1D lattice is
recovered [see Eq. (3.14) in Ref. 2]. The above
expression, coupled with measurement of the
probabilities of occupation of the configurational
states of the cluster on normal and defect sites,
could be used for a complete determination of the
parameters characterizing migration in this sys-
tem.

b. 2D motion of a dimev on a defective lattice.
Consider a surface with substitutionally, periodi-
cally placed defects, forming a defect superstruc-
ture of unit cell [(v,/,,l), where I is the unit-cell
dimension of the substrate and y,, v, are integers].
The real-space motion of the dimer is shown in
Fig. 7(a). The dimer centroid performs a random
walk on a lattice with three internal states per
unit cell [see random-walk lattice in Fig. 7(b)].
The rate of leaving states 1 and 3 is denoted by
A, and that of leaving state 2 by B. When a de-
fect is placed in cell (y,j,yym), the transition
rates into and out of cells (v, j,yym), (vij+1,v,m),
and (v,j, yym — 1) are modified. The rate of leav-
ing states 1 and 3 near a defect site is denoted by
C, and the rate of leaving state 2 by D. Conse-
quently, the propagator on the ideal lattice is
determined from the transition matrix

1 —%H+(B, kx) 0
1-3O(k,u)=|-H_(A,k) 1 —H,(A,R)|. (3.31)
0 -3H_(B,k,) 0
Furthermore,
0 L [,(0,B, k) 0
zyx_yy + b >
D(E3u)= - by I-(C,A)kx) 0 - I+(C:A’ky) ’ (3'32)
xly
0 L 0,8, 0
T 2py, T
and the waiting-time‘ matrix is
At 20y,y,)HCT -ATY) 0 0
lim ®(u) = 0 B~ 4 (y,y,)" (D" =B7Y) 0 . (3.33)
u—>0
0 0 AT 4 2(yy,)"HCTH-ATY

Using the results in Paper I [Eq. (14.8)], we ob-
tain

lzt[l 2 (1 1
2 =2 — e —
=T |a 7, \C A)
1 /1 1\ 17
)= 3.34
+7x7y(D A)+B] ’ (3-34)

where (r =x,y). Again, for vanishing defect con-
centrations (i.e., ¥,v,—=), the result for motion
on a perfect lattice is recovered [see Egs. (3.24)
and (3.25), with d=a, in Ref, 2].

IV. MECHANISMS OF VACANCY DIFFUSION

In this section we apply our formalism to the
investigation of transport via vacancy mechanisms
in crystalline materials. A most useful method
for the measurement of diffusion in solids is via
the radio tracer technique.®~!! In this method a
thin layer of a radio tracer is deposited on the
surface of the solid and the specific activity of
the tracer monitored as a function of distance
from the surface is measured by successive sec-
tioning of the solid. For these experimental con-
ditions the solution to the diffusion equation is
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FIG. 7. (a) Two-dimensional dimer migration. (a)
Three possible spatial configurations of a dimer (large
filled circles connected by a dashed line) on a square 2D
lattice (small filled circles). The position of the dimer
centroid is denoted by a cross (X). The allowed equiva-
lent mirror-image configurations are not shown. Tran-
sitions involving a defect (denoted by a filled square)
are shown on the left. (b) Random-walk lattice corres-
ponding to the centroid motion indicated in (a). States
affected by the defect [whose location is at (y,jl,v,ml )]
are denoted by squares to distinguish from those which
are normal, denoted by circles. The arrows denote
allowed transitions and are labeled by the transition
rates. The total rate for leaving normal states 1 and 3
is A, and that of leaving a normal state 2 is B. The
corresponding total rates for transitions involving a
defect are C =g+ e for leaving states 1 and 3, and D for
leaving state 2.

Cx) = [S/(mDt)V/?| e -*2/420) | (4.1)

where C(x) is the specific activity of the tracer
at distance x from the surface, ¢ is the time of
anneal, S is the tracer concentration per unit
area atx=0 and {=0, and D is the sought-after
diffusion coefficient. Performing such measure-
ments for a number of temperatures T, we obtain
a plot of the diffusion coefficient vs 1/T. If the
diffusion coefficient is of a simple Arrhenius form
(D=Dg,e"E/*87) the above plot will yield a straight
line whose slope and intercept are E/kg and D,
respectively.

Over the past decade it has been observed that
self-diffusion in a number of metals (both bcc and
fce) exhibits non-Arrvhenius curved behavior®™!!
in certain temperature ranges. The two models
which have been suggested for explaining curved
Arrhenius plots in diffusion measurements are:
(i) temperature dependence of enthalpy and entropy
of defect formation and migration,’ and (ii) a
combination of single-vacancy and divacancy mi-
gration mechanisms.®®* Following the second
model, phenomenological two-exponential fits
(or three-exponential when an additional inter-
stitial mechanism is included) to the data have

“been attempted, yielding adequate agreement.

Recent molecular-dynamics studies® of trans-
port in Na (bce) and Al (fce) have shown the oc-
currance. of three monovacancy mechanisms :
single jumps (SJ), where the atom migrates to
a nearest-neighbor vacancy; second-nearest-
neighbor jumps (SNNJ), where an atom migrates
to a second-nearest-neighbor vacancy; and double
jumps (DJ) where two atoms, one nearest-neigh-
bor and the other second-nearest neighbor to a
vacancy, perform colinear jumps within a very
short time delay, thus leading to a double jump
of the vacancy to a non-nearest-neighboring site.
In this numerical study, the weighted contribution
from these three migration mechanisms (which
varies with temperature) has been suggested as
the origin of the “anomalous” non-Arrhenius
curved behavior of the diffusion coefficient. Fol-
lowing the above results, we model the diffusion
as a random walk with three states (states 1, 2,
and 3 corresponding to SJ, DJ, and SNNJ, re-
spectively) and evaluate an analytical expression
for the diffusion coefficient. As we proceed to
show, the diffusion coefficient which we derive
does exhibit non-Arrhenius behavior. Note, that
the model consists of competing monovacancy
mechanisms and does not invoke the occurance
of divacancies or other species (this does not
rule out, however, the possibility of contributions
from divacancies or from an inherent temperature
dependence of the activation energies and fre-
quency factors).

Consider a simple cubic (sc) lattice containing
a vacancy. The filling of the vacancy may occur
via three possible mechanisms of particle mi-
gration: SJ, DJ, and SNNJ, which we designate
as the three states of the vacancy (1, 2, and 3).
Each of the above processes (states) involves a
different type of atomic motion; thus they are
characterized by different transition rates q;;

[a;; = v;; < e~Eii/*8T ] with different preexponential
and activation energies. The probability that the

. vacancy be found in any of the three possible

states (i.e., that any of the three atomic migration
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processes occur) is determined by the rates a,,
=v,,e” 52187 and g, = v,,e”F31/#87 and thus the
contribution from DJ and SNNJ depends upon the
corresponding activation energies and frequency
factors and on temperature. Once in states 2 or 3,
migration occurs via a DJ or a SNNJ, with transi-
tion rates b, or c;, respectively. We will as-
sume (with no loss of generality) these transition
rates (b,,,c,;) to be large, so that the diffusion
mechanism is determined by the rates a,, and a,,
for populating the DJ and SNNJ states, and the
rate of performing SJ’s a,,=v,,e"F1/*87_ By in-
spection of the random-walk lattice (Fig. 8) we
construct the transition matrix for the model:

2¢,,

2a,, 2b,,

A+u G B+u C C+uc3
v (k,u)=| 22 0 0 (4.2)
—_\m A +u b
as,
A+u 0 0
where
A=6a, +as +as,, (4.32)
B=6b,,, (4.3D)
C=12c,,,  (4.3¢)
C,=cosk,l + cosk,l + cosk,l , (4.4a)
C,=cos2kl + cos2kyl + cos2k,l , (4.4b)

Cy=cos(kl + k) + cos(kl + k1)
+cos(kyl + k1) + cos(kl — kyl)
+cos(kl — k) +cos(kl - k,l), (4.4c¢)

where [ is the unit-cell dimension.

Using the waiting-time matrix ¥(k,u), we con-
struct the propagator matrix R=M/A [see Eq.
(2.4) and Step 6 in Sec. III of Paper I]. The de-
terminant A can be written as
_ 2a,, _ 25,0, C

A+u ' (A+u)B+u) 2

2

aagcw C..
(A +u)(C+u) 73

A=1

Following the method described in detail in Eq.
(14.9b), we write the variance as

9%A
oZ(t)=tl%1lim (A" )
" u—>0 ° 3k3 K=0’
where A, is defined in Eq. (14.6). The above
yields a general expression for the variance in
position for vacancy diffusion in a sc lattice
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FIG. 8. Motion of a monovacancy mapped onto a ran-
dom-walk lattice (2D section of a sc lattice is shown)
with three states per unit cell. State 1 corresponds to
an uncorrelated single atomic jump (SJ) into a vacancy
(single arrow). State 2 corresponds to two atoms jump-
ing colinearly, and nearly simultaneously, leading to a
double jump (DJ) of the vacancy (double arrows). State
3 corresponds to a single nearest-neighbor jump (SNNJ)
(dashed arrow). After any type of jump we assume that
the system relaxes immediately to state 1. If the rate~
limiting step is the transition from state 1 to states 1, 2,
or 3 (with ratesa;, @, anda 3, respectively), then
the resulting expression for the monovacancy diffusion
constant is a weighted sum of three terms, each of which
is an exponential if the transition rates are activated
(i-e., a;;=v;;e Fii /*T). The resulting expression de-
scribes the non-Arrhenius behavior of vacancy diffusion
near the melting temperature.

2a,,BC +3a, BC+%a; BC
a,,C+ay;B+BC :

or() =t

If the rates a,,, a,,, and a;, are the rate-limiting
steps (i.e., if the corresponding processes are
slower than other processes in the model), the
following expression is obtained:

O'Tz(t) = lzt(ZVlle‘Ell/kBT + %VZIe_EZI/kBT

+2v,,eFa/*8T) | (4.5)

for ¥ =x,y,z. Similarly, for a bcc solid we find
02(t) =1%(2v,,e~F1/*BT 4y, o~F21/kBT

+—§V31e_E31/hBT) > (4.6)

and for a fcc solid



6232 UZI LANDMAN AND MICHAEL F. SHLESINGER 19

0F(0) = 12wy e F 1/ BT 1 Sy, o~ Fai /BT
+Lp, e Ba/kBT) (4.7)

It is seen from the above that a three-exponential
expression is obtained for the variance in position.
However, we did not invoke the occurance of new
species (like divacancies or interstitials), de-
riving our results on the basis of competing mono-
vacancy mechanisms only. The relative contribu-
tions of the three processes involved depend upon
the relative magnitudes of the characteristic acti-
vation energies and frequency factors [(v,,, E,,)
for SJ, (v,,, E,,;) for DJ, and (v,,, E;,) for SNNJ],
and upon the temperature. In certain temperature
ranges, the contributions from two or more terms
may become significant and deviations from a
linear Arrhenius behavior will occur. It should

be noted that the diffusion coefficients derived
above are for the vacancy motion. The particle
(radio-tracer) diffusion D, is related to that of the
vacancy D, by?’

D,=([v]/[p])p, f,

where [v] and [p] are the vacancy and particle
concentrations and f is the correlation-function
factor. Thus the results obtained in the above
can be used in the analysis of radiotracer dif-
fusion measurements.

V. TIME-DEPENDENT CORRELATED MOTION

Microscopic models of mechanisms of particle
transport in solids are characterized by certain
time constants. These time constants are related
to the dynamic response of the solid (vibrational
frequencies, local-mode frequencies, saddle-
point crossing frequencies, and lattice relaxation
times). The relative magnitudes of the charac-
teristic time constants determine the contributions
of the corresponding modes of response of the
lattice to the transport mechanism. Consider an
activated migration of a particle between two
equivalent sites (1 and 2) in a solid. Starting at
site 1, the outcome of the migration step is when
the particle attains site 2. In the process of parti-
cle migration the host lattice may deform from its
equilibrium configuration. The return of the sys-
tem to its initial equilibrium configuration is
governed by a relaxation time 7',. In the event
that the time delay between particle jumps (T',)
is larger than the lattice relaxation time (T',), each
particle transition is uncorrelated from its
previous one. However, when T,>T,, a transition
of the particle will be correlated to its previous
position, and thus the stochastic evolution of the
particle position is non-Markovian. We empha-
size that the dynamic correlation effects dis-

cussed in this section should not be confused with
the spatial correlation associated with the motion
of a cluster, discussed in Sec. III. Correlations
of the type discussed here may occur in particle
or excitation (e.g., polaron) migration in con-
densed-matter systems. The effect of such cor-
relations on quasielastic neutron scattering line
shapes is discussed in Sec. VI.

Correlated random walks wheve time is not
involved and where only the statistics of the ran-
dom-walk path is considered have been studied
previously.?®®® If the system is not allowed to
return to its previous state on the next transition
then the problem is that of a random walk with a
restricted reversal. A generalization of this
correlated random walk is a forbidden return to
a previous state after a finite number of suceeding
transitions. These types of problems have been
treated first by Montroll®® and later by others®-33
as approximations to the restricted random walk
of polymer configurations where no polymer units
may overlap.

In the following we illustrate the application of
our formalism to the study of correlated motions.
We consider a one-dimensional motion which is
mapped onto a random-walk lattice with two in-
ternal states per unit cell (see Fig. 9). The
particle achieves state 1 on site j when the transi-
tion is from the j —1 site.” When the jth site is
occupied by a transition originating from site
j+1, state 2 is obtained. Associated with the
above two states are the transition probabilities:
q(t) for return to the site where the previous jump
originated and p(¢) for propagation in the other
direction. These transition probabilities are
assumed to be of the form

+eet/TL (5.1)

1
2
qt)=3—cet/T, (5.2)

FIG. 9. Correlated non-Markovian motion of a random
walker in 1D mapped onto a lattice with two states in
each unit cell (dashed lines); state 1 corresponds to the
event that the lattice site was occupied as a result of a
transition from the left and is distinguished from state 2,
which is occupied when the transition to this lattice site
was from the right. The probability of the next jump
being in the same direction as the preceding one is de-
noted by p, and in the reverse direction it is denoted by
q. The generalization to correlations over more than
the preceding jump involve additional internal states.
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where € is a constant (positive or negative) such
that p(¢) and ¢(t) are smaller than unity. In the
limiting case that the average time between
particle jumps T, is much smaller than the
characteristic lattice relaxation time T, the
transition probabilities reduce to

p=3+€, q=3-¢. (5.3)

If, on the other hand, the reverse holds (i.e., T,
»>T,), p=q=3%, and the motion is uncorrelated.

The transition matrix for the above model is
given by

¥(l,t)= 1 v, P00y, at)dy,, . (5.4)
Ts a5, b1,

The inverse of the transformed propagator, R(k,«)
=[1-%(,u)I", is given by

[Ree, ) = (1 50"

—x.(u)e" , (5.5)

- iR

-x_(u)e * ik

1-x,)e

where A is the determinant of the matrixl - g(k, u),
and

1 1/T 1/T
%) =5 /T, vu* S T/T 41/ T v’ (5.6)
Using Eq. (2.10a) of Ref. 2, we get
2 i} 92R "& u)
)= £ 1<——U-———’
( ) Jil I‘Z'l akz k=0
xu1 - zp,(u)])p,, R (5.7)

where p,, is the initial probability that the particle
will occupy state j'(p, =p,=3 in the present case),
thus accounting for the two alternative ways in
which the particle starts its walk at £=0. Expres-
sing R(k,u)=M/A and using Eq. (2.24) of Ref. 2,
we obtain the general result

? 1+2¢+7T,/T 1 - ¢ B¢ E
()= = 21y, (1___*>,
T, 1-2¢+7,/T, ' E. E_Js.8)
where
E,=1/T,+(1+2¢)/T,. (5.9)

In the above expression the first term dominates
in the long-time (diffusion) limit.

For an uncorrelated walk (€=0 or T, < T,), the
expression for the variance reduces exactly to
0%(t)=1%/T,, which is the known result for simple-
particle diffusion on a 1D lattice. In the opposite
limit, for a system where particle jumps occur
before the lattice relaxes (T, > T,), we obtain

=2l L i -3) (L-e2t/Ty),  (5.10)
q 2q q

Note that in the limit of ¢ -0 (i.e., immediate

return to the previously occupied site is negligible)

the variance in position is given by

2t)~ (p/TORE +0(qt), (5.11)

which is not of diffusion character{i.e., o2(¢) < ¢].
However, for time ¢>» T,/2q, the first term in
Eq. (5.10), which is of diffusion character, domi-
nates.

VI. QUASIELASTIC NEUTRON SCATTERING
FROM DIFFUSING SPECIES

Neutron Scattering is a powerful method for
obtaining information about the structure and dyna-
mics of liquids and solids.’* The theoretically
sharp elastic zero-energy transfer line (7w
= 0,}7E¢0) is broadened by diffusive motion,
yielding the quasielastic neutron scattering line
shape S(k,w), where 7w and #k are the energy
and momentum transfers. This line shape con-
tains contributions from coherent scattering
from many different atoms and incoherent scat-
tering from individual atoms. For certain sys-
tems (e.g., hydrogen in metals such as niobium3%)
the large incoherent scattering cross section
dominates the coherent one. We will be inter-
ested in the incoherent quasielastic neutron scat-
tering (QNS) because it can yield information about
transition rates, diffusion constants, and struc-
tural positions of migrating interstitials in solids.
A similar analysis also applies to the diffusion-
ally broadened M0Ossbauer resonant absorption
line .36 ’

The incoherent scattering law was derived by
Van Hove®' in the form

> 1

S(k,w):i%—ffe“i";'“”G('f', Hdtdt, (6.1)

where G is a quantum correlation function. In
the high-temperature limit (k57T >%w) G(T, ¢) be-
comes®® 3 the classical correlation function for
a particle to be at position T at time ¢ if it was at
T =0 initially. This approximation holds for
times of £ 210713 sec. In our analysis the clas-
sical approximation will be employed.

For simple diffusion of a particle in a 3D sc
lattice where the particle makes transitions with
a rate g and with equal probability to its neigh-
bors a Lorentzian line shape is obtained® for
S(k, w):
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Sk, ) = (1/m) pR) /[p*(E) + 2], (6.2)

where

p(&) =1a(3 - cosk,l, — cosk,l, — cosk,l,) .

In the limit of small momentum transfer E,
Eq. (6.2) becomes Sk, w) = (1/m)T(F?+ w?)™,
where T = Dk?, with the diffusion coefficient D for
a sc lattice equal to Lal’.

We can determine the rate a by

lim7S(k,w=0)k*=gq. (6.3)
k-0

Thus a plot of S(K,w=0) vs (7k)"! for small kK
yields the transition rate ¢. In practice, the
diffusion constant D is extracted from data for the
width of the scattering cross section S(E,w) as

a function of k2.

The most studied system with QNS is the diffu-
sion of hydrogen in metals.?>%" It has been ob-
served that the data is non-Lorentzian and us- .
ually cannot be explained by the predictions of
simple jump models.” Thus more sophisticated
diffusion mechanisms and models are needed.!% 4!
We give here a general formula for S(E,w) which
includes the effects of internal states, clusters,
correlations, and periodic defects. We empha-
size that only for the simple example given above
[Eq. (6.2)] does a single Lorentzian line shape
occur. In other systems, the dynamics of the
system (i.e., correlations, cluster motion, and
internal states) and the heterogeneous character
of the medium (defects) would manifest them-
selves as deviations from a single Lorentzian
line shape. )

From Eq. (6.1), in the classical limit, we ob-
tain

M1 - 2€ cosk){AY[1+ 2¢ — (1 + 2¢) cosk] —w?} +2 w1 - (4 + ¢) cosk]

. 1 f feo .
k,w)=— 7 i(ker-wt)
S(k,w) - Re E dT A dte

myn

XP,(F,t|F=0,t=0)p, (6.4a)

1 > .
= ”—Re Z:P"m(k,zw)p,l

myn

= %Re ZRM(E,iw)(I—‘—‘”;g(i‘Q)p,, ,

(6.4b)

where we have averaged over initial positions n
and summed over final ones m.

Let us consider first the case of single-parti-
cle motion in 1D with temporal correlation, dis-
cussed in the previous section. We limit our
discussion to the case of 7,> T, i.e., the transi-
tion probabilities are p=3+¢€ andg=4%-¢
[see Eq. (5.3)]. For this case the matrix R(k,u)
given in Eq. (5.5) reduces to (with % in units of
inverse lattice spacing)

A R
- ~ik ik
Ry =a-if At e Nwute (6.5)
A+uqe-ik 1‘>\+u‘bene

where A=1/T; and A is given as

A A
A:1—2p7x+u COSk+(m) p-q). (6.6)

The term in large parentheses in Eq. (6.4b), for
an exponential waiting-time distribution y(#)
=2xe'™) is given by

@ (fw)=\+iw)! (6.7)
for m=1,2. The initial-state occupation prob-

abilities are taken to be equal, i.e., p;=p,=14.
Substituting into Eq. (6.4b), we obtain

S(k,w) =

In the event of no temporal correlation € =0, the
above result reduces to a Lorentzian [see Eq.
(6.2)], and

1 M1 - cosk)
7 [M1-cosk) P+ w? "

S(k,w) = (6.9)

Haus and Kehr?? have studied temporal correlated
motion, deriving coupled rate equations for

{1+ 2€ - (1+2¢) cosk] —w? + {22w[1 - (£ + €) cosk]V

(6.8)

P,.(k,w).

For a system with a periodic arrangement of
defects, an expression for S(k,w) given in Eq.
(6.4a) may be written explicitly. Using the ex-
pression on the right-hand side of Eq. (12.37)
[with =0 and without the indicated inverse La-
place transformation for P,,(E,w)], we find for
small w
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S(Ew) = TRe 2 [29(0) + 2 (@(16) - 2V (10) ]y {[E Eio) ! ~0DE,i0)] by (6.10)

myn

The above expression is appropriate for small &
values, and is useful for analysis of the diffusive
behavior from QNS measurements. Study of de-
tails of the motion in localized regions such as
the vicinity of defects requires an analysis of
S(E,w) for large k values, which can be accom-
plished by employing in the derivation of S(&,w)
the full propagator, which contains contributions
from k’s lying in all the Brillouin zones of the
defect superlattice [see Eqgs. (12.21)-(12.23)].

As an application of Eq. (6.10), consider the
QNS from an interstitial whose motion is on a
sc lattice with periodic defects, such as has been
discussed for the case of hydrogen diffusion in
niobium containing nitrogen traps.?*®™ Wwe as-
sume that the interstitial leaves normal sites
with a rate g and defect sites with a rate d, and
that the defect superlattice has a unit-cell
volume of 7!, Then

2V Gw) = (a+iw)?, @(iw)=d+iw,
D(&,iw) =d/(d+iw) - a/(a+iw),
zp‘°’(§,w)

=ala+iw) '5(cosk,l, + cosk,l,+ cosk,l,) .
Substituting into Eq. (6.10), we find as w -0
S(k,w)

=171Q7'(k,w) ([Q(a - d) +d] {ad[1 - c®] -w?%

+w¥a+d-Cc®[a-a-d]D,
(6.11)
where
Q(k,w) ={ad[1-C®]-w?
+o¥a1-Cc®(1-Q)]+d[1-che]?

and
ck = 3(cosk,l, + cosk,l,+ cosk,l,) .

Note that for ¢ =d we recover the Lorentzian
line shape. The elastic line (w =0) yields

S&,0)=n""[d+ Qa-D)/ad[1 -C®].  (6.12)

If the rate g is known from a system without de-
fects, then the rate d of leaving a defect can be
calculated from Eq. (6.12).

To obtain the diffusion constant, a measurement
of the scattering intensity versus energy transfer
of the scattered particle, for fixed momentum
transfer and temperature is performed, and the

full width at half-maximum (FWHM) is determined.

|
Obtaining such data for a number of 2 values, we

can make a plot of FWHM vs k. Subsequently,
one attempts to best fit the experimental observa-
tions by choosing the optimal set of parameters in
the theoretical expression (for the simple Lorent-
zian diffusion case a plot of I" vs k? yields a
straight line with slope D). Also, measurements
at different temperatures could be used in order to
obtain the activation energy E_ and frequency

_factor v, for the diffusion. In the case of a single-

state diffusion mechanism in a defect-free medi-
um such measurements yield a straight line (of
slope —E, and intercept v,) in a plot of In(I/%?)

vs 1/kgT. However, for multistate diffusion, cor-
related motion, and in the presence of defects, the
above simple method of analysis is not adequate to
fit the data and determine the characteristic dif-
fusion parameters. In these circumstances one
must best fit the experimental results with theo-
retical expressions derived from complex diffusion
mechanisms.

The detailed analysis of the incoherent scattering
law S(]Z, w) for diffusion systems where the diffu-
sants may be dimers or other clusters, may have
various internal states (e.g., mobile and immo-
bile), may have transitions correlated to previous
ones, and in the presence of various types of de-
fects, will be reported by us.

VII. TRANSITION RATES

In all the above examples from FIM, vacancy
diffusion, correlated motion, and QNS we have
calculated experimentally observable quantities
(diffusion distances, occupation probabilities of
different internal states, and line shapes) in terms
of assigned transition rates. We have given sev-
eral explicit examples and indications of how to
invert the data [Egs. (3.2), (3.30), (6.3), and (6.12)]
to find the individual transition rates between the
internal states of the system under study. In
general, if there are N transition rates then one
needs N equations to fully determine the individual
rates. If there are M internal states then M -1
detailed balance relations can be found. The other
N - M +1 equations may be found by considering
diffusion distances or line-shape parameters.
Other independent equations may be used, when
appropriate, to describe the data for NMR, M0ss-
bauer, and various reaction experiments. If
there are more possible equations than transition
rates then consistency checks can be made. It is
also possible that there are more transition rates
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than can be determined from the data. For ex-
ample, consider a dimer which can exist in three
states? (straight, staggered, and extended stag-
gered) undergoing a 1D motion on a surface. There
are four transition rates connecting the three
states. Detailed balance relations between the
three states yield two equations, and the position-.
al variance of the dimer centroid a third. It is
readily seen that an experiment with an electrical
bias to polarize the adatoms and favor motion in
one direction is necessary to yield a fourth equa-
tion for the centroid mean position, which then
allows a determination of the four transition rates.
Thus the degree of microscopicity one wishes to
obtain will determine the type of experiment that
should be performed. In addition, the data must
be plotted in a proper manner. For example, if
one, say for FIM data, simply plots the logarithm
of the variance of the centroid position of a cluster
vs 1/k T, the individual transition rates cannot
be determined and the plot will yield a curved non-
Arrhenius line because more than one transition
rate is involved.. Although in a limited temperature
range the curve may appear to be straight, its
slope and intercept do not characterize the indi-
vidual transition rates between the states of the
dimer. Thus further information, such as detailed
balance relationships as a function of temperature
and perhaps the mean motion from experiments
under electric basis will be necessary to calculate
individual transition rates.

VIII. PROSPECTIVES

In the present study we have employed mappings
of diverse transport systems and mechanisms onto
random-walk lattices with internal states and de-
fects. The systems and phenomena which we have
discussed are: (i) single-particle and dimer mo-
tion in one and two dimensions on periodically de-
fective lattices, as observed in field-ion-micro-
scopy experiments. (ii) Multistate diffusion of a
single particle in a two-dimensional defective lat-
tice. (iii) The lattice-structure dependence of the
diffusion constant for single particles on defective

lattices. (iv) The non-Arrhenius behavior of the
vacancy diffusion constant in certain metals, as
observed in radio-tracer experiments. (v) The
effect of temporal correlation on the diffusion con-
stant. (vi) The effect of defects, multistate mech-
anisms, and temporal and spatial correlations on
the quasielastic neutron scattering law S, w).
The solutions of the time development of the sys-
tems considered were obtained in a unified fashion
via a matrix Green’s-function propagator (to in-
clude internal states) which is renormalized by
the presence of defects.

Other systems in which transport is an essential
step and to which our formalism can be applied
are certain unimolecular and bimolecular reaction
systems. Examples include annealing of point de-
fects,*® electron scavenging in aqueous radiation
chemistry,* one-way flux of tracer ions through
nerve membrane during action potentials,* posi-
tron*® and muon*” trapping in solids, exciton trap-
ping and fusion,*® and bimolecular heterogeneous
reactions of the Langmuir-Hinshelwood mecha-
nism, catalyzed by active sites.!®

In the latter reactions, adsorbed reactants mi-
grate on a surface and reaction occurs upon the
coincidence of two reactants at an active site. The
reactants may possess internal states (energetic,
spin, orientational, etc.) which may determine the
reaction probability upon coincidence. The sur-
face may contain defects other than the active
sites, such as migration promotors and inhibitors.
The calculation of the rate of reaction proceeds
via a stochastic formalism, yielding expressions
for the probability distribution of reactive coinci-
dences at active sites. The random-walk propaga-
tors for the reactants were discussed in Paper I
Our results show surface structural dependence
of the reaction rates and their variation with ac-
tive-site concentration. We will publish these re-
sults'® and other reaction schemes in due course.
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