
Excitation spectra of two correlated electrons 
in a quantum dot 

T. Dm*, C. Ellenberger*, K. Ensslin*, C. Yannouleasf, U. Landman^ D.C. Driscoll* 
and A.C. Gossard** 

* Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland 
^School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 

"Materials Department, University of California, Santa Barbara, CA 93106 

Abstract. Measurements and a theoretical interpretation of the excitation spectrum of a two-electron quantum dot fabricated 
on a parabolic Ga[Al] As quantum well are reported. Experimentally, excited states are found beyond the well-known lowest 
singlet- and triplet states. These states can be reproduced in an exact diagonalization calculation of a parabolic dot with 
moderate in-plane anisotropy. The calculated spectra are in reasonable quantitative agreement with the measurement, and 
suggest that correlations between the electrons play a significant role in this system. Comparison of the exact results with the 
restricted Hartree-Fock and the generalized Heitler-London approach shows that the latter is more appropriate for this system 
because it can account for the spatial correlation of the electron states. 
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Two-electron quantum dots (2eQDs) are the simplest 
man-made structures that allow to study the effects 
of electron-electron interaction including exchange and 
correlation. Pioneering experiments measuring the exci­
tation spectrum of such systems with finite bias spec­
troscopy have been reported on vertical few-electron 
quantum dots [1, 2]. Measurements on lateral dots be­
came possible [3,4, 5] driven by the potential use of such 
systems for the implementation of qubits [6]. 

Here we present finite bias spectroscopy measure­
ments performed on a system designed to have a ^-factor 
close to zero and a small lateral anisotropy. We find 
that the magnetic field dependent excited state spectrum 
found experimentally can be closely reproduced by ex­
act diagonalization calculations and is reasonably well 
described by a generalized Heitler-London (GHL) ap­
proach. The calculations suggest that electronic correla­
tions are significant at low magnetic field, leading to spa­
tially separated single-particle GHL orbitals, reminiscent 
of the formation of a Wigner molecule. 

The dot is fabricated with electron-beam lithography 
defined top-gates on a 55 nm wide parabolic Ga[Al]As 
quantum well. The aluminium concentration varies in 
growth direction and was chosen such that the Zeeman-
splitting of electronic levels is negligible. The particular 
gate geometry of the dot (see Fig. 1, inset) leads to a 
moderate spatial anisotropy of the confinement potential. 
Further details about the sample can be found in Ref. [5]. 

Measurements were performed in a dilution refriger­
ator with an electronic temperature of 300 mK as deter­
mined from the width of conductance resonances in the 

Coulomb blockade regime. Finite bias I(V) traces were 
recorded using standard DC current measurement tech­
niques. Later on the data was numerically differentiated 
to obtain the differential conductance dl/dVuas. 

The sample was tuned into the Coulomb-blockade 
regime in the region of the transitions between one and 
two, and two and three electrons on the dot. The electron 
number was confirmed by measurements of Coulomb-
blockade diamonds [5] and by using the on-chip quantum 
point contact as a charge detector. In this region, the 
dot had a single-particle level spacing of 5 meV and a 
charging energy of 6.9 meV. 

The magnetic field dependent excitation spectrum 
shown in 1 is measured employing tunneling spec­
troscopy with varying plunger gate voltage Vps at a fixed 
bias voltage of 2.5 mV. We plot the derivative dI/dVpg. 
Resonances in this quantity correspond to resonances in 
the differential conductance dl/dVuas. Two families of 
resonances can be seen corresponding to transitions be­
tween electron numbers N = I and 2, and N = 2 and 3. 

First we concentrate on the N = 1 and 2 region. At 
zero magnetic field we observe - in addition to the well-
known singlet ground state So and triplet excited state 
T+ that can be seen in Fig. 1 - an additional triplet state 
T_ split from the T+ state by the confinement anisotropy 
(not seen in the figure, see [5]). At finite magnetic fields 
we find an additional excited singlet state S2 (see Fig. 1) 
which shows an avoided crossing with So at a magnetic 
field beyond the singlet-triplet transition (at 4 T) in the 
ground state of the system. Another excited state T+ CM 
even higher in energy than S2 is found and attributed to 
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FIGURE 1. Measured excited state spectra as a function of 
magnetic field and plunger gate voltage. Inset: sample geome­
try. 

a triplet state combining an excitation in the relative and 
the center of mass motion (see below). In the transition 
region between N = 2 and 3 we observe resonances that 
correspond to transitions between the two-electron states 
So and T+ and the three-electron ground state. 

The experimental findings can be quantitatively in­
terpreted by comparing to the results of exact diago-
nalization (EXD) calculations for two electrons in an 
anisotropic harmonic confinement potential. Details of 
the model can be found in Ref. [5]. The calculated mag­
netic field dependent energy splitting J(B) = ET+ — E$o 
between the two lowest states So and T+ is found to be in 
remarkable agreement with the experiment. All the addi­
tional excited states observed in the experiment can be 
unambiguously identified with calculated excited states 
of the two-electron dot [5]. 

The EXD calculations give strong evidence for the 
importance of correlation effects. Closer inspection of 
the total electron densities and conditional probabilities 
(CPDs) reveals a strongly correlated ground state at zero 
magnetic field, in which the electrons do not occupy 
the same single-particle state. Already at magnetic fields 
below the singlet-triplet transition, the CPDs indicate 
localization of the two electrons and formation of a state 
resembling an H2-like Wigner molecule. 

We gain further insight into the importance of correla­
tions in the system by comparing the results for J(B) cal­
culated exactly and within different approximations. Fig­
ure 2 shows the predictions obtained from EXD calcu­
lations, restricted Hartree-Fock (RHF) calculations and 
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FIGURE 2. Comparison of J(B) calculated with different 
methods and the experimental results. Inset: single-particle 
orbitals (modulus square) of the GHL approach. 

from a generalized Heitler-London (GHL) approach in 
comparison with the measured data. Details about the ap­
proximative calculations can be found in [7]. The RHF 
and GHL schemes have the advantage that they mini­
mize the energy using single-particle orbitals. It is evi­
dent from Fig. 2 that the RHF method, which assumes 
that both electrons occupy the same single-particle or­
bital, is not able to reproduce the experimental findings. 
The GHL approach, which allows the two electrons to 
occupy two spatially separated states, appears to be a 
good approximation. Plotting the two single-particle or­
bitals resulting from this approach clearly demonstrates 
that the two electrons do not occupy the same spatial or­
bital, but rather fill single-particle states that are spatially 
separated significantly (inset). 
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