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Graphene’s isolation launched explorations of fundamental relativistic physics originating from the planar
honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in
nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs,
open avenues for studies of electrical transport, coherence, and interference effects in metallic,
semiconducting, and mixed GNRs, with different edge terminations. Conceptual and practical
understanding of electric transport through SGNRs is gained through nonequilibrium Green’s function
(NEGF) conductance calculations and a Dirac continuum model that absorbs the valence-to-conductance
energy gaps as position-dependent masses, including topological-in-origin mass-barriers at the contacts
between segments. The continuum model reproduces the NEGF results, including optical Dirac Fabry-Pérot
(FP) equidistant oscillations for massless relativistic carriers in metallic armchair SGNRs, and an
unequally-spaced FP pattern for mixed armchair-zigzag SGNRs where carriers transit from a relativistic
(armchair) to a nonrelativistic (zigzag) regime. This provides a unifying framework for analysis of coherent
transport phenomena and interpretation of forthcoming experiments in SGNRs.

G
raphene, a single-atom-thin plane of graphite, has been the focus of intensive research endeavors since its
isolation in 20041. The high degree of interest in this material originates from its outstanding electronic,
mechanical, and physical properties that result from the planar arrangement of the carbon atoms in a

honeycomb lattice. Indeed graphene is considered both as a vehicle for exploring fundamental relativistic physics,
as well as a promising material for potential technological applications in nanoscale electronics and optics2.

However, the absence of an electronic energy gap between the valence and conduction bands of 2D graphene
casts doubts on its use in nanoelectronic devices. Nevertheless, theoretical studies had predicted that narrow
graphene nanoribbons (GNRs) can have a large band gap, comparable to silicon (,1 eV), depending on the
ribbon’s width W and edge geometry (as well as possible doping at controlled positions). Pertinent to our work,
we note that these predictions were made3–7 for GNRs that have atomically precise armchair edges with widths W
# 2 nm. Consequently, the most recent advent and growing availability of bottom-up fabricated atomically-
precise narrow graphene nanoribbons8–12, including segmented13 armchair graphene nanoribbons (SaGNRs),
opens promising avenues for graphene nanoelectronics and for detailed explorations of coherent electrical
transport in nanoribbon-based graphene wires, nanoconstrictions, and quantum-point contacts.

Here we report on the unique apects of transport through segmented GNRs obtained from tight-binding non-
equilibrium Green’s function14 (TB-NEGF) calculations in conjunction with an analysis based on a one-dimen-
sional (1D) relativistic Dirac model. This model is referred to by us as the Dirac-Fabry-Pérot (DFP) theory (see
below for the choice of name). In particular, it is shown that the valence-to-conduction energy gap in armchair
GNR (aGNR) segments, as well as the barriers at the interfaces between nanoribbon segments, can be incorpo-
rated in an effective position-dependent mass term in the Dirac hamiltonian; the transport solutions associated
with this hamiltonian exhibit conductance patterns comparable to those obtained from the microscopic NEGF
calculations. For zigzag graphene nanoribbon (zGNR) segments, the valence-to-conduction energy gap vanishes,
and the mass term is consonant with excitations corresponding to massive nonrelativistic Schrödinger-type
carriers.

As aforementioned, transport through narrow graphene channels – particularly bottom-up fabricated and
atomically-precise graphene nanoribbons8–13 – is expected to offer ingress to unique behavior of Dirac electrons in
graphene nanostructures. In particular, the wave nature of elementary particles (e.g., electrons and photons) is
commonly manifested and demonstrated in transport processes. Because of an exceptionally high electron
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mobility and a long mean-free path1, it has been anticipated that
graphene devices hold the promise for the realization, measurement,
and possible utilization of fundamental aspects of coherent and bal-
listic transport behavior, which to date have been observed, with
varying degrees of success, mainly at semiconductor interfaces15,16,
quantum point contacts17, metallic wires18, and carbon nanotubes19.
Prominent among the effects that accompany coherence and ballistic
transport are conductance quantization (in nanoconstrictions) in
steps of G0 5 2e2/h, which have been found earlier for quantum
ballistic transport in semiconductor point contacts17 and metal nano-
wires18. However, quantization signatures were scarcely observed20 in
GNRs fabricated with top-down methods.

Another manifestation of coherent ballistic transport are interfer-
ence phenomena, reflecting the wave nature of the transporting
physical object, and associated most often with optical (electromag-
netic waves, photons) systems or with analogies to such systems (that
is, the behavior of massless particles, as in graphene sheets).
Measurements of interference patterns are commonly made with
the use of interferometers, most familiar among them the multi-pass
optical Fabry-Pérot (OFP) interferometer21, where the superposition
of all the outgoing light waves, bouncing in a cavity from bounding
partially reflecting mirrors, yields an oscillatory intensity record
(interference pattern) which depends on the light wavelength and
the distance between the mirrors.

The quest for demonstration of the particle-wave duality of elec-
trons through measurement of quantum interference phenomena
associated with electron transport in solid-state devices requires
materials and configurations having long mean-free paths. This
requirement limited early experimental work in the late 1980s to
semiconductor heterostructures15,16, where conductance-quantiza-
tion steps in gate-controlled two-dimensional constrictions have
been observed. Subsequently interference patterns for nonrelativistic
charge carriers in the form of conductance oscillations were
observed22 (and interpreted22,23 as Fabry-Pérot-type phenomena) in
semiconductor nanowires. The advent of 2D forms of carbon allo-
tropes has motivated the study of optical-like interference phenom-
ena associated with relativistic massless electrons, as in the case of
metallic carbon nanotubes19 and graphene 2D p-n junctions24. (We
note that the hallmark of the OFP is that the energy separation
between successive maxima of the interference pattern varies as the
inverse of the cavity length L.)

For GNRs with segments of different widths, our investigations
reveal diverse transport modes beyond the OFP case, with conduc-
tance quantization steps (nG0, n 5 1, 2, 3, …) found only for uniform
GNRs. In particular, three distinct categories of Fabry-Pérot inter-
ference patterns are identified:

1. FP-A: An optical FP pattern corresponding to massless graphene
electrons exhibiting equal spacing between neighboring peaks.
This pattern is associated with metallic armchair nanoribbon
central segments. This category is subdivided further to FP-A1
and FP-A2 depending on whether a valence-to-conduction gap
is absent (FP-A1, associated with metallic armchair leads), or
present (FP-A2, corresponding to semiconducting armchair
leads).

2. FP-B: A massive relativistic FP pattern exhibiting a shift in the
conduction onset due to the valence-to-conduction gap and
unequal peak spacings. This pattern is associated with semicon-
ducting armchair nanoribbon central segments, irrespective of
whether the leads are metallic armchair, semiconducting arm-
chair, or zigzag.

3. FP-C: A massive non-relativistic FP pattern with 1/L2 peak spa-
cings, but with a vanishing valence-to-conduction gap, L being
the length of the central segment. This pattern is the one
expected for usual semiconductors described by the (nonrelati-
vistic) Schrödinger equation, and it is associated with zigzag

nanoribbon central segments, irrespective of whether zigzag or
metallic armchair leads are used.

The faithful reproduction of these unique TB-NEGF conductance
patterns by the DFP theory, including mixed armchair-zigzag con-
figurations (where the carriers transit from a relativistic to a non-
relativistic regime), provides a unifying framework for analysis of
coherent transport phenomena and for interpretation of experi-
ments targeting fundamental understanding of transport in GNRs
and the future development of graphene nanoelectronics.

Results
Segmented Armchair GNRs: All-metallic. Our findings for the case
of all-metallic3,7 segmented aGNRs (when the number of carbons
specifying the width is NW

~3lz2, l 5 1, 2, 3, …) are presented
in Fig. 1; this lattice configuration is denoted as AAA (mmm). A
uniform metallic armchair GNR [see Fig. 1(I)] exhibits ballistic
quantized-conductance steps [see Fig. 1(a)]. In contrast,
conductance quantization is absent for a nonuniform 3-segment
aGNR; see Figs. 1(b) – 1(f). Instead of quantized steps, a finite
number of oscillations appears, whose maxima (at the value of
unity) maintain a constant energy separation. This behavior is
indicative of optical-like Fabry-Pérot multiple reflections of the
DW electron within the cavity defined by the two contacts
(interfaces between the segments of different width). The patterns
in Figs. 1(b) – 1(f) correspond to the category FP-A1.

The dependence of the conductance on the width of the leads
relative to that of the constriction is explored by comparing the
two junctions (exhibiting sharp lead-to-constriction interfaces)
depicted in Fig. 1(II) and Fig. 1(III). Examination of the TB-NEGF
conductances for these two segmented aGNRs [Fig. 1(c) and
Fig. 1(e)] reveals that a wider lead [Fig. 1(III)] is associated with a
stronger confinement (sharp conductance spikes) compared to a
narrower lead [Fig. 1(II)] (oscillations). In the DFP results
[Fig. 1(d) and Fig. 1(f)], which reproduce the TB-NEGF results, this
trend is accounted for by varying the length and height of the mass
barriers, which generates either a weak coupling (closed quantum-
dot-like conductance spikes) or a strong coupling (open quantum-
dot-like Fabry-Pérot-type oscillations) to the leads.

Further insight can be gained by an analysis of the discrete energies
associated with the humps of the conductance oscillations in Fig. 1(c)
and the resonant spikes in Fig. 1(e). Indeed a simplified approxi-
mation for the electron confinement in the continuum model con-
sists in considering the graphene electrons as being trapped within a
1D infinite-mass square well (IMSW) of length L1 (the mass terms
are infinite outside the interval L1 and the coupling to the leads
vanishes). The discrete spectrum of the electrons in this case is
given25 by

En~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2v2

Fk2
nzM2v4

F

q
, ð1Þ

where the wave numbers kn are solutions of the transcendental
equation

tan knL1ð Þ~{�hkn= MvFð Þ: ð2Þ

In the context of Fig. 1,M~m1~0 (massless DW electrons), and
one finds for the spectrum of the IMSW model:

En~ nz1=2ð Þp�hvF=L1, ð3Þ

with n 5 0, 1, 2, …. Remarkably, the energies associated with the TB-
NEGF oscillation humps and spikes in Figs. 1(c) and 1(e) [or
Figs. 1(d) and 1(f) in the DFP model] follow very closely the above
relation. Note the constant separation between successive energies,

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7893 | DOI: 10.1038/srep07893 2



En{En{1~2E0, n~1,2,3, . . . , ð4Þ

which is twice the energy

E0~p�hvF= 2L1ð Þ ð5Þ

of the lowest state.
As is well known, a constant energy separation of the intensity

peaks, inversely proportional to the length of the resonating cavity
[here L1, see Eqs. (4) and (5) above] is the hallmark of the optical
Fabry-Pérot, reflecting the linear energy dispersion of the photon in
optics or a massless DW electron in graphene structures. For our

purpose, most revealing is the energy offset away form zero of the
first conductance peak, which equals exactly one-half of the constant
energy separation between the peaks. In onedimension, this is the
hallmark of a massless fermion subject to an infinite- mass-barrier
confinement25, and it provides ultimate support for our introduction
of mass barriers at the interfaces of the segmented aGNR. Naturally,
in the case of a semiconducting segment (see below), this equidistant
behavior and 1/2-offset of the conductance peaks do not apply; this
case is accounted for by the Dirac-Fabry-Pérot model presented in
Methods, and it is more general than the optical Fabry-Pérot theory
associated with a photonic cavity21.

In the nonrelativistic limit, i.e., when �hkn=MvF , one gets
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Figure 1 | Conductance quantization steps (a) for a uniform metallic armchair nanoribbon (I) contrasted to Fabry-Pérot oscillations (b–f) for 3-
segment all-metallic SaGNRs (II and III). The first two columns (employing red colors) display TB-NEGF results. The third column (employing green

colors) displays continuum DFP results, which reproduce the TB-NEGF results in the middle column. (I–III) Schematics of the nanoribbons employed in

the TB-NEGF calculations. A 3-segment segmented GNR is denoted asNW
1 {NW

2 {NW
1 , withNW

1 i~1,2ð Þ being the number of carbon atoms specifying

the width of the ribbon segments. In all configurations, the semi-infinite leads are shown in blue color on the far left and far right. Note the steps nG0 in (a)

reflecting full conductance quantization for the uniform nanoribbon. Instead of steps, the SaGNR junctions in (b–f) exhibit Fabry-Pérot-type

conductance oscillations whose maxima are the places where conductance quantization is maintained. The effect of the relative widths of the leads and the

constriction on the conductance of the all-metallic junctions is shown in (c,e) (TB-NEGF) and in (d,f) (corresponding DFP, respectively), illustrating

Fabry-Pérot oscillations (c,d) for a constriction width close to that of the leads [see schematic (II)] and the development of a sharper oscillatory pattern

[conductance spikes, see (e) and (f)] for a junction with much wider leads [see (III)]. The DFP approach is used to analyze the behavior of the TB-NEGF

conductance in the energy range of the 1G0 step [see (b)]. (IV) Diagram of the double mass-barrier used in the DFP method [case of massless Dirac-Weyl

electrons with m1 5 0 andMl~0,Ml being the carrier mass in the leads (not shown)]. The double-barrier parameters that reproduce the TB-NEGF

results were L1 5 58a0, L2 5 1a0, m2v2
F~t=3 for (d) and L1 5 60a0, L2 5 6a0, m2v2

F~t=4 for (f). In the case of the wide leads (III), it is worth noting that the

DFP theory reproduces the gradual widening of the spikes as a function of increasing energy; naturally this trend results from the weakening of the

confinement effect due to a stronger coupling to the leads for higher energies. The horizontal solid lines at G 5 1G0 (blue online) in (d) and (f) describe the

DFP conductance obtained when employing a potential V(x) double barrier [similar in shape to the schematic in (IV)] and the assumption w(x) 5 0; the

result is independent of the potential barrier’s heights. In all figures (here and below), when a roman number is placed in the same frame along with a letter

index, it indicates the corresponding lattice or DFP schematic specified by the roman number. a0 5 0.246 nm is the graphene lattice constant; t 5 2.7 eV is

the hopping parameter.
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tan knL1ð Þ*0, ð6Þ

which yields the well known relations kn L1 , np and

En*Mv2
Fzn2�h2p2

�
2ML2

1

� �
: ð7Þ

For a massive relativistic electron, as is the case with the semicon-
ducting aGNRs in this paper, one has to numerically solve Eq. (2) and
then substitute the corresponding value of kn in Einstein’s energy
relation given by Eq. (1).

It is worth mentioning here that the inoperativeness for one-
dimensional cases, due to Klein tunneling26, of the electrostatic
potential V(x) [see horizontal blue lines at G 5 1G0 in Figs. 1(d)
and 1(f)] was also noted earlier; see the curves for normal incidence
(labeled h 5 0) in Fig. 2 of Ref. 27.

Segmented Armchair GNRs: All-semiconducting. Our results for a
3-segment all-semiconducting aGNR are portrayed in Fig. 2 [see
schematic lattice diagrams in Figs. 2(I) and 2(II)]; this lattice
configuration is denoted as AAA (sss). A uniform semiconducting
armchair GNR [see Fig. 2(I)] exhibits ballistic quantized-
conductance steps [see Fig. 2(a)]. In contrast, conductance
quantization is absent for a nonuniform 3-segment (13 – 7 – 13)
aGNR; see Figs. 2(b) – 2(d). Here, instead of quantized steps,
oscillations appear as in the case of the all-metallic junctions
presented earlier in Fig. 1. However, the first oscillation appears
now at an energy ,0.22 t, which reflects the intrinsic gap D/2 of
the semiconducting central segment belonging to the class II of
aGNRs, specified7,28 by a width NW

~3lz1, l 5 1, 2, 3, …. That
the leads are semiconducting does not have any major effect. This is
due to the fact thatNW

2 vNW
1 , and as a result the energy gap m1v2

F of

the central segment is larger than the energy gap Mlv
2
F of the

semiconducting leads [see schematic in Fig. 2(III)].
The armchair GNR case with interchanged widths (i.e., 7 – 13 – 7

instead of 13 – 7 – 13) is portrayed in Figs. 2(e) – 2(f). In this case the
energy gap of the semiconducting leads (being the largest) deter-
mines the onset of the conductance oscillations. It is a testimonial
of the consistency of our DFP method that it can reproduce [see
Fig. 2(d) and Fig. 2(f)] both the 13 – 7 – 13 and 7 – 13 – 7 TB-
NEGF conductances; this is achieved with very similar sets of para-
meters taking into consideration the central-segment-leads inter-
change. We note that the larger spacing between peaks (and also
the smaller number of peaks) in the 7 – 13 – 7 case is due to the
smaller mass of the central segment (0.166 t instead of 0.22 t).

From an inspection of Fig. 2, one can conclude that the physics
associated with the all-semiconducting AAA junction is that of mul-
tiple reflections of a massive relativistic Dirac fermion bouncing back
and forth from the edges of a particle box created by a double-mass
barrier [see the schematic of the double-mass barrier in Fig. 2(III)]. In
particular, to a good approximation the energies of the conductance
oscillation peaks are given by the IMSW Eq. (2) with Mv2

F~

m1v2
F~0:22t (13 – 7 – 13) orMv2

F~m1v2
F~0:166t (7 – 13 – 7). In

this respect, the separation energy between successive peaks in
Figs. 2(b), 2(c), 2(e), and 2(f) is not a constant, unlike the case of
the all-metallic junction.

The patterns in Figs. 2(c) and 2(f) correspond to the category FP-B.
This generalized oscillations cannot be accounted for by the optical
Fabry-Pérot theory, but they are well reproduced by the generalized
Dirac-Fabry-Pérot model introduced by us in the Methods.

Segmented Armchair GNRs: semiconducting-metallic-semicon-
ducting. Our results for a 3-segment (7 – 5 – 7) semiconducting-
metallic-semiconducting aGNR are portrayed in Fig. 3 [see schematic
lattice diagram in Fig. 3(I)]; this lattice configuration is denoted as
AAA (sms). The first FP oscillation in the TB-NEGF conductance
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Figure 2 | Conductance quantization steps (a) for a uniform semiconducting armchair nanoribbon (I) contrasted to Fabry-Pérot oscillations
(b–f) of two 3-segment armchair GNRs [(II) and (IV)] with both a semiconducting central constriction and semiconducting leads (13-7-13 and 7-13-7).
(III, V) Schematics of the mass barriers used in the DFP modeling, with the dashed line denoting the zero mass. The physics underlying such a junction is

that of a massive relativistic Dirac fermion impinging upon the junction and performing multiple reflections (above m1v2
F ) within a particle box defined

by the double-mass barrier. (c,e) TB-NEGF conductance as a function of the Fermi energy of the massive Dirac electrons in the leads. (d) DFP

conductance reproducing [in the energy range of the 1G0 step, see (b)] the TB-NEGF result in (c). The mass-barrier parameters used in the DFP

reproduction were L1 5 55a0, m1v2
F~0:22t, L2 5 1a0, m2v2

F~0:5t. The mass of the electrons in the leads wasMlv
2
F~0:166t. (f) DFP conductance

reproducing the TB-NEGF result in (e). The parameters used in the DFP reproduction were L1 5 53.6a0, m1v2
F~0:166t, L2 5 1a0, m2v2

F~0:51t. The mass

of the electrons in the leads wasMlv
2
F~0:22t. a0 5 0.246 nm is the graphene lattice constant; t 5 2.7 eV is the hopping parameter.
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displayed in Fig. 3(a) appears at an energy ,0.23 t, which reflects the
intrinsic gap D/2 of the semiconducting leads (with NW

1 ~7). The
energy spacing between the peaks in Fig. 3(a) is constant in
agreement with the metallic (massless DW electrons) character of
the central segment withNW

2 ~5. The TB-NEGF pattern in Fig. 3(a)
corresponds to the Fabry-Pérot category FP-A2. As seen from

Fig. 3(b), our generalized Dirac-Fabry-Pérot theory is again
capable of faithfully reproducing this behavior.

A deeper understanding of the AAA (sms) case can be gained via
an inspection of the density of states (DOS) plotted in Fig. 3(c) for the
total segmented aGNR (central segment plus leads) and in Fig. 3(d)
for the the isolated leads. In Fig. 3(c), nine equidistant resonance lines
are seen. Their energies are close to those resulting from the IMSW
Eq. (3) (with L1 5 60.4a0, see the caption of Fig. 3) for a massless DW
electron. Out of these nine resonances, the first five do not conduct
[compare Figs. 3(a) and 3(c)] because their energies are lower than
the minimum energy (i.e., D=2~Mlv

2
F*0:23t) of the incoming

electrons in the leads [see the onset of the first band (marked by an
arrow) in the DOS curve displayed in Fig. 3(d)].

Segmented Armchair GNRs: Effects of hydrogen passivation. As
shown in Refs. 4, 5, a detailed description of hygrogen passivation
requires that the hopping parameters t9 for the nearest-neighbor C-C
bonds at the armchair edges be given by t9 5 1.12 t. Taking
this modification into account, our results for a 3-segment
semiconducting-metallic-semiconducting aGNR are portrayed in
Fig. 4 [see schematic lattice diagram in Fig. 4(I)]; this lattice
configuration is denoted as ‘‘AAA (sms) H-passivation.’’ The first
FP oscillation in the TB-NEGF conductance displayed in Fig. 4(a)
appears at an energy ,0.28 t, which reflects the intrinsic gap D/2 of
the properly passivated semiconducting leads (with NW

1 ~7). The
energy spacing between the peaks in Fig. 4(a) is slightly away from
being constant in agreement with the small mass m1v2

F~0:05t
acquired by the central segment with NW

2 ~5, due to taking t9 5

1.12 t. As seen from Fig. 4(b), our generalized Dirac-Fabry-Pérot
theory is again capable of faithfully reproducing this behavior.

A deeper understanding of the AAA (sms)-H-passivation case can
be gained via an inspection of the DOS plotted in Fig. 4(c) for the
total segmented aGNR (central segment plus leads) and in Fig. 4(d)
for the isolated leads. In Fig. 4(c), eight (almost, but not exacrly,
equidistant) resonance lines are seen. Their energies are close to
those resulting from the IMSW Eq. (2) (with L1 5 59.5a0 and
m1v2

F~0:05t; see the caption of Fig. 4) for a Dirac electron with a
small mass. Out of these eight resonances, the first six do not conduct
[compare Figs. 4(a) and 4(c)] because their energies are lower than
the minimum energy (i.e., D=2~Mlv

2
F*0:28t) of the incoming

electrons in the leads [see the onset of the first band (marked by an
arrow) in the DOS curve displayed in Fig. 4(d)]. From the above we
conclude that hydrogen passivation of the aGNR resulted in a small
shift of the location of the states, and opening of a small gap for the
central metallic narrower (with a width of NW

2 ~5) segment, but did
not modify the conductance record in any qualitative way. Moreover,
the passivation effect can be faithfully captured by the Dirac FP
model by a small readjustment of the model parameters.

All-zigzag segmented GNRs. It is interesting to investigate the
sensitivity of the interference features on the edge morphology. We
show in this section that the relativistic transport treatment applied
to segmented armchaie GNRs does not maintain for the case of a
nanoribbon segment with zigzag edge terminations. In fact zigzag
GNR (zGNR) segments exhibit properties akin to the well-known
transport in usual semiconductors, i.e., their excitations are governed
by the nonrelativistic Schrödinger equation.

Before discussing segmented GNRs with zigzag edge terminations,
we remark that such GNRs with uniform width exhibit stepwise
quantization of the conductance, similar to the case of a uniform
metallic armchair-edge-terminated GNR [see Fig. 2(a)].

In Fig. 5(a), we display the conductance in a three-segment junc-
tion [see lattice schematic in Fig. 5(I)] when all three segments have
zigzag edge terminations (denoted as ZZZ). The main finding is that
the central segment behaves again as a resonant cavity that yields an
oscillatory conductance pattern where the peak spacings are unequal
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lattice diagram in (I). (II) Schematics of the mass barriers used in the DFP

modeling, with the dashed line denoting the zero mass. The physics

underlying such a junction is that of a massive relativistic Dirac fermion

impinging upon the junction, which loses its mass upon tunneling in the

central segment and performs multiple reflections within a particle box

defined by the double-mass barrier. (a) TB-NEGF conductance as a

function of the Fermi energy of the massive Dirac electrons in the leads. (b)

DFP conductance reproducing the TB-NEGF result in (a). The mass-

barrier parameters used in the DFP reproduction were L1 5 60.4a0, m1 5 0,

L2 5 1a0, m2v2
F~0:37t. The mass of the electrons in the leads was

Mlv
2
F~0:23t. (c) – (d) The total DOS of the junction and the density of

states in the isolated leads, respectively, according to the TB-NEGF

calculations. The arrows indicate the onset of the electronic bands in the

leads. Note that the DOS in (c) reveal the existence of five sharp electronic

states below the onset (at 0:23t:Mlv
2
F) of the first band in the leads [see

(d)], which consequently do not generate any conductance resonances [see

(a) and (b)]. Note further in (c) the equal energy spacing between the

vertical lines [the five solid (red) and four dashed (black) ones] associated

with the resonances of a massless electron confined within the central

metallic aGNR segment. a0 5 0.246 nm is the graphene lattice constant; t

5 2.7 eV is the hopping parameter.
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[Fig. 5(a)]. This feature, which deviates from the optical Fabry-Pérot
behavior, appeared also in the DFP patterns for a three-segment
armchair junction whose central segment was semiconducting, albeit
with a different dependence on L [see Figs. 2 and Eq. (2)]. Moreover,
from a set of systematic calculations (not shown) employing different

lengths and widths, we found that the energy of the resonant levels in
zGNR segments varies on the average as , (n/L)2, where the integer n
counts the resonances and L indicates the length of the central seg-
ment. However, a determining difference with the armchair GNR
case in Fig. 2 is the vanishing of the valence-to-conductance gap in
the zigzag case of Fig. 5(a). It is well known that the above features are
associated with resonant transport of electronic excitations that obey
the second-order nonrelativistic Schrödinger equation.

Naturally, one could formulate a continuum transport theory
based on transfer matrices (see Methods) that use the 1D
Schrödinger equation instead of the generalized Dirac Eq. (8).
Such a Schrödinger-equation continuum approach, however, is
unable to describe mixed armchair-zigzag interfaces (see below),
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Figure 4 | H-passivation effects in the conductance of a 3-segment
armchair nanoribbon with a metallic (NW

2 ~5) central constriction and
semiconducting leads (NW

1 ~7); see schematic lattice diagram in (I).
Note that the nearest-neighbor C-C bonds at the armchair edges (thick red

and blue lines) have hopping parameters t9 5 1.12 t. (II) Schematics of the

position-dependent mass field used in the DFP modeling, with the dashed

line denoting the zero mass. The physics underlying such a junction is that

of a massive relativistic Dirac fermion impinging upon the junction, which

reduces its mass close to zero upon tunneling in the central segment and

performs multiple reflections within a particle box defined by the double-

mass barrier. (a) TB-NEGF conductance as a function of the Fermi energy.

(b) DFP conductance reproducing the TB-NEGF result in (a). The mass

parameters used in the DFP reproduction were L1 5 59.5a0, m1v2
F~0:05t,

L2 5 1.5a0, m2v2
F~0:30t. The mass of the electrons in the leads was

Mlv
2
F~0:28t. (c) – (d) The total DOS of the junction and the density of

states in the isolated leads, respectively, according to the TB-NEGF

calculations. The arrows indicate the onset of the electronic bands in the

leads; note the shifts from 0.23 t to 0.28 t and from 0.42 t to 0.38 t for the

onsets of the first and second bands, respectively, compared to the case

with t9 5 t in Fig. 3(d). Compared to Fig. 3, the subtle modifications of

mass parameters brought about by having t9 5 1.12 t result in having six

sharp electronic states [see (c)] below the onset (at 0:28t:Mlv
2
F ) of the

first band in the leads [see (d)], which consequently do not generate any

conductance resonances [see (a) and (b)]. In addition, within the energy

range (0 to 0.4 t) shown in (a) and (b), there are now only two conducting

resonances, instead of three compared to Figs. 3(a) and 3(b). a0 5

0.246 nm is the graphene lattice constant; t 5 2.7 eV is the graphene

hopping parameter.

0.2

0.6

1.0

0.2

0.6

1.0

0.04 0.08 0.12

Energy (t)

NEGF

DFP
0.04 0.08 0.12

0.2

0.6

1.0

Energy (t)

G
 (2

e 
 /h

)
2

0.2

0.6

1.0

G
 (2

e 
 /h

)
2

NEGF

DFP

0.04 0.08 0.12

0.04 0.08 0.12

ZZZ AZA

(a) (b)

(c) (d)

(I) (II)

(III)

L1

m1

m2m2

L2 L2
M   VlM   Vl l l

V2 V2
V1

00

40-12-40

23-12-23

Figure 5 | Conductance for ZZZ (all-zigzag, left column) and AZA
(armchair-zigzag-armchair, right column) segmented nanoribbon
junctions. See corresponding lattice diagrams in (I) and (II). The 3-

segment GNRs are denoted asNW
1 {NW

2 {NW
1 , withNW

i (i 5 1, 2) being

the number of carbon atoms specifying the width of the ribbon segments.

The armchair leads in the AZA junction are metallic (NW
1 ~23, class III

aGNR). (a) – (b) TB-NEGF conductance for the ZZZ and AZA junction,

respectively. (c) DFP conductance reproducing the TB-NEGF result in (a)

for the ZZZ junction. (d) DFP conductance reproducing the TB-NEGF

result in (b) for the AZA junction. In spite of the different edge

morphology, the Fabry-Pérot patterns in (a) and (b) are very similar. The

central zigzag segment controls the Fabry-Pérot patterns. According to the

continuum DFP analysis, the physics underlying such patterns is that of a

massive nonrelativistic Schrödinger fermionic carrier performing multiple

reflections within a cavity defined by a double-mass barrier [see diagram in

(III)], but with the additional feature that V1~{m1v2
F and Vl~{M1v2

F
are also considered for segments or leads with zigzag edge terminations

(see text for details). The mass and Vi parameters used in the DFP

calculations were L1 5 30a0, m1v2
F~2:23t{cEt, with c 5 7.3,

V1~{m1v2
F , L2 5 1.1a0, m2v2

F~0:38t, V2~{m2v2
F

�
3,Mlv

2
F~2:30t,

Vl~{Mlv
2
F in (c) and L1 5 29.1a0, m1v2

F~2:65t{cEt, with c 5 8.4,

V1~{m1v2
F , L2 5 1.0a0, m2v2

F~0:30t, V2~{m2v2
F ,Ml~0, Vl 5 0 in

(d).Ml and Vl denote parameters of the leads. E is the energy in units of t.

a0 5 0.246 nm is the graphene lattice constant; t 5 2.7 eV is the hopping

parameter.
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where the electron transits between two extreme regimes, i.e., an
ultrarelativistic (i.e., including the limit of vanishing carrier mass)
Dirac regime (armchair segment) and a nonrelativistic Schrödinger
regime (zigzag segment). We have thus been led to adopt the same
Dirac-type transfer-matrix approach as with the armchair GNRs, but
with nonvanishing potentials V~gMv2

F , with g 5 H(2E) 2 H(E),
where H(E) is the Heaviside step function. This amounts to shifts (in
opposite senses) of the energy scales for particle and hole excitations,
respectively, and it yields the desired vanishing value for the valence-
to-conduction gap of a zigzag GNR.

The calculated DFP conductance that reproduces well the TB-
NEGF result for the ZZZ junction [Fig. 5(a)] is displayed in
Fig. 5(c); the parameters used in the DFP calculation are given in
the caption of Fig. 5. We note that the carrier mass (m1) in the central
zigzag segment exhibits an energy dependence. This is similar to a
well known effect (due to nonparabolicity in the E 2 k dispersion) in
the transport theory of usual semiconductors29. We further note that
the average mass associated with a zigzag segment is an order of
magnitude larger than that found for semiconducting armchair seg-
ments of similar width (see captions in Fig. 2, and this yields energy
levels , (n/L)2 close to the nonrelativistic limit [see Eq. (7)]. We note
that FP pattern of the ZZZ junction belongs to the category FP-C.

Mixed armchair-zigzag-armchair segmented GNRs. Fig. 5 (right
column) presents an example of a mixed armchair-zigzag-armchair
(AZA) junction, where the central segment has again zigzag edge
terminations [see lattice schematic in Fig. 5(II)]. The correspond-
ing TB-NEGF conductance is displayed in Fig. 5(b). In spite of the
different morphology of the edges between the leads (armchair) and
the central segment (zigzag), the conductance profile of the AZA
junction [Fig. 5(b)] is very similar to that of the ZZZ junction
[Fig. 5(a)]. This means that the characteristics of the transport are
determined mainly by the central segment, with the left and right
leads, whether zigzag or armchair, acting as reservoirs supplying the
impinging electrons.

The DFP result reproducing the TB-NEGF conductance is dis-
played in Fig. 5(d), and the parameters used are given in the caption.
We stress that the mixed AZA junction represents a rather unusual
physical regime, where an ultrarelativistic Dirac-Weyl massless elec-
tron (due to the metallic armchair GNRs in the leads) transits to a
nonrelativistic massive Schrödinger one in the central segment. We
note that FP pattern of the AZA junction belongs to the category FP-
C.

Mixed zigzag-armchair-zigzag segmented GNRs. Finally Fig. 6
presents an example of a mixed zigzag-armchair-zigzag (ZAZ)
junction, where the central segment corresponds to a metallic
armchair GNR [see lattice schematic in Fig. 6(I)]. The corre-
sponding TB-NEGF conductance is displayed in Fig. 6(a). In spite
of the different morphology of the edges between the leads (zigzag)
and the central segment (armchair), the conductance profile of the
ZAZ junction [Fig. 6(a)] is controlled by determined the central
segment, with the left and right leads acting as reservoirs supplying
the impinging electrons. Thus the conductance peaks are close to
being equidistant, and the FP pattern belongs to the categoty FP-A1.
The DFP result reproducing the TB-NEGF conductance is displayed
in Fig. 6(b), and the parameters used are given in the caption.

In a reverse sense compared to the AZA junction above, the mixed
ZAZ junction here represents also a rather unique physical regime,
where a nonrelativistic massive Schrödinger electron (due to the
zigzag GNRs in the leads) transits to an ultrarelativistic Dirac-
Weyl massless one in the central segment. The decisive advances
brought forward by our DFP 1D continuum theory can be clearly
appreciated by its ability to describe the corresponding TB-NEGF
results for these highly nontrivial ZAZ and AZA junctions [compare
Figs. 6(a) and 6(b), as well as Figs. 5(b) and 5(d)]. Contimuum 2D

formulations are unable to describe the important all-zigzag and
mixed armchair/zigzag junctions described in this section, because
they cannot distinguish between armchair and zigzag edges.

Discussion
To motivate the 1D Dirac formalism developed and utilized here, we
note that customarily armchair or zigzag edge terminations in two-
dimensional (2D) graphene nanoribbons are treated with the mass-
less 2D Dirac equation with the use of the corresponding boundary
conditions30. In our study, however, narrow GNRs are treated with a
1D generalized Dirac equation. This approach is reminiscent of the
1D description of GNRs as described in Ref. 31 and also reviewed in
Ref. 7, where the tight-binding 2D spectrum is projected onto the
longitudinal wavenumber direction, kx. For the armchair case (see
Eqs. 10 on Ref. 31), the low-energy range of the 1D spectrum can be
well approximated by the Einstein energy relation with a non-zero
mass term for the semiconducting case, and with a zero mass term for
the metallic case which exhibits a massless linear dependence
(photon-like dispersion) of the energy on the momentum.

As a function of kx, the zigzag GNRs exhibit a partially at E , 0
band due to the localized (in the transverse direction) edge state. The
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Figure 6 | Conductance for a ZAZ (zigzag-armchair-zigzag) segmented
nanoribbon junction. See corresponding lattice diagram in (I). The 3-

segment GNRs are denoted asNW
1 {NW

2 {NW
1 , withNW

i i~1,2ð Þ being

the number of carbon atoms specifying the width of the ribbon segments.

The central armchair segment in the ZAZ junction is metallic (NW
2 ~11,

class III aGNR). (a) TB-NEGF conductance for the ZAZ junction. (b) DFP

conductance reproducing the TB-NEGF result in (a) for the ZAZ junction.

The central armchair segment controls the Fabry-Pérot patterns.

According to the continuum DFP analysis, the physics underlying such

patterns is that of a massless relativistic Dirac-Weyl fermionic carrier

performing multiple reflections within a cavity defined by a double-mass

barrier [see diagram in (II)]. but with the additional feature that

Vl~{Mlv
2
F are also considered for the leads with zigzag edge

terminations (see text for details). The mass and Vi parameters used in the

DFP calculations were L1 5 66a0, m1 5 0, V1 5 0, L2 5 1a0, m2v2
F~0:50t,

V2 5 0,Mlv
2
F~2t. Vl~{Mlv

2
F . E is the energy in units of t. a0 5

0.246 nm is the graphene lattice constant; t 5 2.7 eV is the hopping

parameter.
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at part is centered around kx 5 p (alternatively taken as kx 5 0 in Ref.
30), where E(kx 5 p) 5 0, and it expands towards the graphene Dirac
points located at 2p/3 (alternatively, kx 5 2p/3) and 4p/3 (alterna-
tively kx 5 p/3) as the width of the ribbon increases (see Fig. 7 in Ref.
7). After reaching the ends of the at part, the energy band opens two
branches with non-zero energies; these branches do not have a linear
dependence on kx. Although this can be termed also as a ‘‘gapless’’
spectrum (like the metallic armchair case), the two differ in their
dispersion relation – that is the energy of the former (zigzag) is
approximately independent of the momentum for a broad range of
the kx momentum (see examples for various widths of zigzag GNRs
in Fig. 4 of Ref. 7), whereas the latter (armchair) shows a linear
energy-momentum relationship (see Fig. 3 in Ref. 7).

As the width of the GNRs get smaller (narrow zigzag nanorib-
bons), the range of the aforementioned at part decreases, and in the
limit of a single row of benzene rings (the narrow-most zigzag GNR,
referred to as polyacene) the dispersion curve transforms32 into two
(electron-hole) parabolas touching at kx 5 p. The spectrum of poly-
acene is gapless, but due to the nonrelativistic parabolic dispersion, a
mass,M, is associated32 with the second derivative according to the
nonrelativistic relation p2

�
2M. The case of narrow zigzag GNRs that

we study here is closer to the nonrelativistic polyacene than to the
relativistic massless graphene (i.e., the limit of a zigzag ribbon of
infinite width). Incidentally, we mention that the polyacene para-
bolic-band limit is not obtained33 through a treatment employing the
massless 2D Dirac equation with boundary conditions.

We comment here that physical circumstances where a change in
some system configuration can result in a change in the nature of the
dispersion relation (e.g from linear to quadratic), are not that rare.
Another example is found when comparing the gapless, but linear in
momentum, dispersion of the energy of particles (massless relat-
ivistic) in a monolayer 2D graphene sheet with the gapless, but para-
bolic, dispersion (massive non-relativistic particles) in bilayer
graphene34.

Furthermore, our NEGF conductance calculations for segmented
zigzag GNRs exhibited Fabry-Pérot oscillatory patterns, with the
spacing between peaks behaving as 1/L2 (where L is the length of
the GNR segment). This differs from the (photon-like) FP pattern
found for the metallic case of armchair GNRs where the spacing
between peaks in the oscillatory conductance varies as 1/L (char-
acteristic of massless particles with linear energy-momentum disper-
sion, e.g. photons), which were studied21 by Fabry and Pérot. This
directly suggests that the zigzag GNRs can be described by a non-
relativistic limit of the Dirac equation with a sufficiently large mass
(i.e. by the Schrödinger equation).

Focusing on the intrinsic properties of the graphene lattice, ori-
ginating from the topology of the honeycomb network, and using a
NEGF approach, we have studied here the transport properties of
atomically precise segmented armchair and zigzag graphene nanor-
ibbons, with segments of different widths. Mixed armchair-zigzag
junctions (with segments of different widths) have also been
discussed.

The electronic conductance is found to exhibit Fabry-Pérot oscil-
lations, or resonant tunneling, associated with partial confinement
and formation of a quantum box (resonant cavity) in the junction.
The Fabry-Pérot oscillations occur for junctions that are strongly
coupled to the leads (open system), whereas the resonant-tunneling
spikes appear for weak lead-junction coupling (closed system). In
particular, with regard to the FP interference patterns, three distinct
categories were identified (see the Introduction), with only one of
them having the characteristics of the optical21 FP pattern corres-
ponding to massless graphene electrons exhibiting equal spacings
between neighboring peaks.

Perfect quantized-conductance at steps were found only for
uniform GNRs. In the absence of extraneous factors, like disorder,
in our theoretical model, the deviations from the perfect quantized-

conductance steps were unexpected. However, this aforementioned
behavior obtained through TB-NEGF calculations is well accounted
for by a 1D contimuum fermionic Dirac-Fabry-Pérot interference
theory (see Methods). This approach employs an effective position-
dependent mass term in the Dirac Hamiltonian to absorb the
finite-width (valence-to-conduction) gap in armchair nanoribbon
segments, as well as the barriers at the interfaces between nanoribbon
segments forming a junction. For zigzag nanoribbon segments the
mass term in the Dirac equation reflects the nonrelativistic
Schrödinger-type behavior of the excitations. We emphasize that
the mass in zigzag-terminated GNR segments is much larger than
the mass in semiconducting armchair-terminated GNR segments.
Furthermore in the zigzag GNR segments (which are always char-
acterized by a vanishing valence-to-conduction energy gap), the
mass corresponds simply to the carrier mass. In the armchair GNR
segments, the carrier mass endows (in addition) the segment with a
valence-to-conduction energy gap, according to Einstein’s relativistic
energy relation [see Eq. (1)].

We observe here that the Dirac Fabry-Pérot masses that we find to
yield agreement with the TB conductance spectra agree well with
those obtained through Density Functional Theory (DFT) calcula-
tions4 where the energy gap D=2~Mv2

F for armchair GNRs versus
width has been determined. For example, for NW

~5 and NW
~7,

Eq. (1) in Ref. 4 yields D/2 5 0.06 t and 0.28 t, respectively. These
DFT values agree well with the DFP values of 0.05 t (central segment)
and 0.28 t (leads) given in the caption of Fig. 4, where the H-pas-
sivation effect according to the DFT was incorporated in the TB
description.

The above findings point to a most fundamental underlying phys-
ics, namely that the topology of disruptions of the regular hon-
eycomb lattice (e.g., variable width segments, corners, edges)
generate a scalar-potential field (position-dependent mass, identified
also as a Higgs-type field28,35), which when integrated into a general-
ized Dirac equation for the electrons provides a unifying framework
for the analysis of transport processes through graphene constric-
tions and segmented junctions.

With growing activities and further improvements in the areas of
bottom-up fabrication and manipulation of atomically precise8–12

graphene nanostructures and the anticipated measurement of con-
ductance through them, the above findings could serve as impetus
and implements aiding the design and interpretation of future
experiments.

Methods
Dirac-Fabry-Pérot model. The energy of a relativistic fermion (with one-
dimensional momentum px) is given by the Einstein relation

E~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pxvFð Þ2z Mv2

Fð Þ2
q

, whereM is the rest mass and vF is the Fermi velocity of
graphene. (In a uniform armchair graphene nanoribbon, the mass parameter is
related to the particle-hole energy gap, D, asM~D

�
2v2

F

� �
.) Following the

relativisitic quantum-field Lagrangian for-malism, the massM is replaced by a
position-dependent scalar Higgs field w xð Þ:m xð Þv2

F , to which the relativistic
fermionic field Y(x) couples through the Yukawa Lagrangian35 LY ~{wY{bY (b
being a Pauli matrix). For w(x) ; w0 (constant)Mv2

F~w0, and the massive fermion
Dirac theory is recovered. The Dirac equation is generalized as (here we do not
consider applied electric or magnetic fields)

E{V xð Þ½ �Yzi�hvF a
LY
Lx

{bw xð ÞY~0: ð8Þ

In one dimension, the fermion field is a two-component spinor Y 5 (yu, yl)T; u
and l stand, respectively, for the upper and lower component and a and b can be any
two of the three Pauli matrices. Note that the Higgs field enters in the last term of Eq.
(8). V(x) in the first term is the usual electrostatic potential, which is inoperative due
to the Klein phenomenon26,27 and thus is set to zero for the case of the armchair
nanoribbons (where the excitations are relativistic). The generalized Dirac Eq. (8) is
used in the construction of the transfer matrices of the Dirac-Fabry-Pérot model
described below.
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The building block of the DFP model is a 2 3 2 wave-function matrix V formed by
the components of two independent spinor solutions (at a point x) of the onedi-
mensional, first-order generalized Dirac equation [see Eq. (3) in the main paper]. V
plays36 the role of the Wronskian matrix W used in the second-order nonrelativistic
Kronig-Penney model. Following Ref. 36 and generalizing to N regions, we use the
simple form of V in the Dirac representation (a 5 s1, b 5 s3), namely

VK xð Þ~
eiKx e{iKx

LeiKx {Le{iKx

� �
, ð9Þ

where

K2~
E{Vð Þ2{m2v4

F

�h2v2
F

, L~
�hvF K

E{Vzmv2
F
: ð10Þ

The transfer matrix for a given region (extending between two matching points x1 and

x2 specifying the potential steps m nð Þ
i ) is the product MK x1,x2ð Þ~VK x2ð ÞV{1

K x1ð Þ;
this latter matrix depends only on the width x2 2 x1 of the region, and not separately
on x1 or x2.

The transfer matrix corresponding to a series of N regions can be formed35 as the
product

t1,Nz1~ P
i~1,N

MKi xi,xiz1ð Þ, ð11Þ

where jxi 1 1 2 xij5 Li is the width of the ith region [with (m, V, K, L) R (mi, Vi, Vi,
Li)]. The transfer matrix associated with the transmission of a free fermion of mass
M (incoming from the right) through the multiple mass barriers is the product

T Eð Þ~V{1
k xNz1ð Þt1,Nz1Vk x1ð Þ, ð12Þ

with k~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E{Vð Þ2{M2v4

F

q �
�hvF , E{Vj j§Mv2

F ; for armchair leads V 5 0, while

for zigzag leads V~+Mv2
F . Naturally, in the case of metallic armchair leads, k 5 E/

( vF), sinceM~0.
Then the transmission coefficient T is

T~
1

T 22j j2
, ð13Þ

while the reflection coefficient is given by

R~
T 12

T 22

				
				

2

: ð14Þ

At zero temperature, the conductance is given by G 5 (2e2/h)T; T is the trans-
mission coefficient in Eq. (13).

TB-NEGF formalism. To describe the properties of graphene nanostructures in the
tight-binding approximation, we use the hamiltonian

HTB~{t
X

i,jh i
c{i cjzh:c:, ð15Þ

with ,. indicating summation over the nearest-neighbor sites i, j. t 5 2.7 eV is the
hopping parameter of two-dimensional graphene.

To calculate the TB-NEGF transmission coefficients, the Hamiltonian (15) is
employed in conjunction with the well known transport formalism which is based on
the nonequilibrium Green’s functions14.

According to the Landauer theory, the linear conductance is G(E) 5 (2e2/h)T(E),
where the transmission coefficient is calculated as T Eð Þ~Tr CLGCRG{


 �
. The Green’s

function G Eð Þ is given by

G Eð Þ~ Ezig{Hdev
TB {SL{SR

� �{1
, ð16Þ

with Hdev
TB being the Hamiltonian of the isolated device (junction without the leads).

The self-energies SL(R) are given by SL Rð Þ~tL Rð Þ Ezig{HL Rð Þ
TB

h i{1
t{L Rð Þ, where the

hopping matrices tL(R) describe the left (right) device-to-lead coupling, and HL Rð Þ
TB is

the Hamiltonian of the semi-infinite left (right) lead. The broadening matrices are

given by CL Rð Þ~i SL Rð Þ{S{
L Rð Þ

h i
.
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