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ABSTRACT: “Bottom-up” approaches to the many-body physics of fermions
have recently demonstrated precise number and site-resolved preparations with
tunability of interparticle interactions in single-well, SW, and double-well, DW,
nanoscale confinements created by manipulating ultracold fermionic atoms
with optical tweezers. These experiments emulate an analogue-simulator
mapping onto the requisite microscopic Hamiltonian, approaching realization
of Feynmans’ vision of quantum simulators that “will do exactly the same as
nature”. Here we report on exact benchmark configuration−interaction
computational microscopy solutions of the Hamiltonian, uncovering the
spectral evolution, wave function anatomy, and entanglement properties of the
interacting fermions in the entire parameter range, including crossover from an SW to a DW confinement and a controllable
energy imbalance between the wells. We demonstrate attractive pairing and formation of repulsive, highly correlated, ultracold
Wigner molecules, well-described in the natural orbital representation. The agreement with the measurements affirms the
henceforth gained deep insights into ultracold molecules and opens access to the size-dependent evolution of nanoclustered and
condensed-matter phases and ultracold-atoms quantum information.

KEYWORDS: Ultracold atoms, double-well nanoconfinement, Wigner molecule, configuration interaction, entanglement,
strongly correlated matter, natural orbitals

Ingress to the origins of complex physical phenomena often
requires experiments whereby theories are tested or

suggested through artificial manipulations of physical circum-
stances. During the past decade, a cornucopia of new tools have
emerged resulting from the discovery and advancement of
methods for the preparation and trapping of ultracold atomic
gases, controlled tuning of the interparticle interactions (via
magnetic manipulation of the Feshbach resonance), and the
creation of synthetic gauge fields through atom-light
interactions in optical lattices of varied geometries and
topologies.1,2 The remarkable pristine nature of these systems,
and the exquisite level of control that can be exercised over
them, brought forth a realization of Richard Feynman’s vision3

for the construction of physical quantum simulators, capable of
an exact simulation, of systems or situations that are
computationally or analytically intractable. Indeed, in the past
several years we witnessed a surge of realizations of such exact
simulations addressing diverse fields (see reviews in refs 1 and
2), including in particular the behavior of strongly interacting
fermions where computations are precluded because of the
“fermion sign problem.”.4 These systems range from high-Tc
superconductivity,1,2 collosal magnetoresistance,5 and quantum
Hall effects2 to atomic frequency resonators,6 interferometry,7,8

matter wave gyroscopes,9 and the development of scalable
quantum computers with neutral atoms.10,11

Progress aiming at a “bottom-up” approaches to the many-
body physics of fermions has been demonstrated in recent

efforts to deterministically prepare and measure few fermion
systems in a single-well (SW)12 or double-well (DW)13

confinement created with the use of optical tweezers.12−14

This experimental methodology differs in a substantial way
from the “top-down” approach of most experiments with an
optical lattice which is loaded by a large ensemble of trapped
atoms cooled in an external trap. Here,12−14 the precise number
and site-resolved preparation and the tunability of the nature
(attraction or repulsion) and strength of their interactions open
access to the molecular world and the size-dependent evolution
of clustered and condensed-matter phases.
With the parameters chosen, the DW experiment13 can be

regarded as an emulation of an exact analogue simulator in the
Feynman sense,3 mapping the two interacting fermion problem
onto the exact microscopic Hamiltonian [see eq 1 below].
Under the ultracold experimental conditions (T ∼ 10−9 K) the
de Broglie wavelength, λdB = h/(mv) = h/(2πmkT)1/2, of a 6Li
atom is of the order of 24 μm and the interwell separation in
the double well can be varied from zero to a couple of microns;
consequently, the system of ultracold atoms in the DW
confinement is found in the deep quantum regime.
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Here, we advance benchmark exact solutions for the
microscopic Hamiltonian describing the confined interacting
fermions for the parameter ranges accessible in the experiment.
These solutions uncover the evolution of the spectrum, wave
function anatomy, and entanglement properties of the two
interacting fermions, demonstrating attractive pairing and
formation, for strong interatomic repulsion, of highly correlated
ultracold Wigner molecules (UCWM) that are well-described
in the natural orbital representation; UCWM for bosonic atoms
have been introduced in ref 15. We consider two DW (see
below and the Supporting Information) configurations: (1) a
so-called “linear arrangement” (LA) where two quasi one-
dimensional (1D) wells, connected by a barrier between them,
are located on the same axis (x), and (2) a so-called “parallel
arrangement” (PA) where the quasi 1D wells are oriented along
two parallel lines in the y-direction being separated by a barrier
in the x-direction; tunneling between the wells occurs in the x-
direction through the long sides of the wells (namely the sides
that are along the y-axis). Case (1), the LA configuration, is
described in detail in the main text of the article, and case (2),
the PA configuration (see Supporting Information, Figure S1)
is discussed and compared (along with the LA configuration)
with the experimental results13 in the Supporting Information
(see Figure S2). The remarkable agreement (see Supporting
Information) between the calculated results and the measure-
ments,13 validates these novel theoretical and experimental
methodologies and affirms the henceforth gained deep insights
into fundamental aspects of the chemistry and physics of
molecular and condensed-phase materials.
We begin with a brief statement of the many-body

Hamiltonian of the 1D two-fermion DW system in the
aforementioned LA configuration, expressed (with N = 2
here) as a sum of the single-particle part H(i) (defined in the
Supporting Information) and the two-particle contact inter-
action

∑ ∑ ∑ δ= + −
= = >

H H i g x x( ) ( )
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j i

N

i j
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where xi − xj denotes the relative distance between the i and j
fermions (e.g., 6Li atoms).
The external confining potential [in H(i)] that models the

DW is based on a two-dimensional two-center-oscillator16

(TCO, see Supporting Information) that allows for independ-
ent variation of both the interwell separation, d, and of the
barrier height Vb. It further allows consideration of a tilt Δ
between the left and right wells. The 1D character of our CI
treatment is enforced through the requirement that only the
zero-point motion in the y-direction is of any relevance (see
Supporting Information).
Evolution of the many-body spectra for wells of equal depth

(i.e., Δ = 0, see DW profiles in the insets), is displayed in
Figure 1, showing the eight lowest energy states for the entire
interwell distance range, from the united atom [d = 0, Figure
1a] to full dissociation of the two-particle Feschbach molecule
[d = 2 μm, Figure 1c]. Because the CI calculation preserves the
total spin, the energy curves are labeled as singlets (s) or triplets
(t); the parity of the many-body states (see Supporting
Information) is also conserved (Δ = 0), and thus the
corresponding states are labeled also as ±. Overall the evolution
of the spectra reflects the splitting of the united atom into two
wells. That is, a double degeneracy appears gradually and it fully
develops for complete dissociation (Figure 1c) where the seven

(eight) curves in Figure 1a regroup into three (five) curves in
the repulsive (attractive) region, respectively.
The energy curves (in all panels of Figure 1) fall into two

groups: those that are independent of the interaction strength g
(horizontal lines) and those that depend on g. In all instances,
the energy of the triplet states is independent of g, as found also
for a single well,17 due to the exchange hole imposed by the

Figure 1. Evolution of energy spectra of two fermions in a double well
without tilt (Δ = 0) as a function of the interaction strength g and well
separation d. Both repulsive (−1/g < 0) and attractive (−1/g > 0)
interparticle interactions are considered. The confining frequencies in
the x- and y-directions are ωx = 2π × 1 kHz and ωy = 2π × 100 kHz,
leading to an effective 1D confinement along the x-direction. In all
three cases (a−c), the barrier heights Vb (produced by the smooth
neck) are given by Vb = 18.18 V0, where V0 is the bare barrier of the
TCO double well (see Supporting Information); V0/h = 0.125 kHz
and 0.297 kHz for b and c, respectively. This factor leads to strong
anharmonicities in the confining double-trap potentials. The interwell
separation is (a) d = 0, the “united atom” (single well), (b) d = 1.297
μm = l0, and (c) d = 2 μm = 1.543l0, representing two rather well-
separated wells, with l0 ≡ l0x = (ℏ/(Mωx))

1/2 being the (left or right)
harmonic-oscillator length. The mass corresponds to ultracold 6Li
atoms, M = 9.99 × 10−27 kg. The DW parameters in (c) are within the
range of those used in the experiments.13 The colors of the energy
curves are consistent in all three panels. The horizontal curves in (c)
correspond to HL-type (one fermion in each well) states that relate to
the maximally spin-entangled two-qubit Bell states. Because of parity
conservation, the g-dependent, doubly degenerate first-excited (dark
blue and orange) energy curves in the repulsive regime in (c)
correspond to highly space-entangled NOON states of the form (|2, 0
> ± |0, 2 > )/√2.
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Pauli exclusion principle. In general, the energies of the singlet
states are dependent on g except in the case of full dissociation
when the singlet states having one fermion in each well become
degenerate with corresponding triplet states (the exchange
integral vanishes), see Figure 1c. For example, the lowest two
degenerate horizontal lines in Figure 1c correspond to Heitler-
London-type (HL-type) wave functions (singlet and triplet) of
the form |L ↑ R ↓> ± |L ↓ R ↑> in analogy with the stretched
natural H2 molecule (with L and R signifying the left and right
wells and ↑, ↓ the two spin projections). Such states
approximate the highly entangled Bell states.10,18 The energy
curves that show a g-dependence correspond to singlet states
having both fermions in the same well. This is a consequence of
the contact interaction which is not effective at the longer
distances introduced by the interwell separation.
For Δ = 0, and for either repulsive (−1/g < 0) or attractive

(−1/g > 0) interactions, the conservation of parity leads to the
formation of highly entangled NOON states19 of the form |L ↑

L ↓ > ± |R ↑ R ↓>. The pair of degenerate first excited states
(blue and orange color) in the repulsive range (−1/g < 0) of
Figure 1c are such NOON states, representing repulsive
(excited) bound states.20 The pair of degenerate ground states
(green and dark brown) in the attractive range (−1/g > 0) of
Figure 1c are also NOON states.
In the attractive range of Figure 1c (complete well

separation), anticrossings appear between a couple of singlet-
state curves. These anticrossings are absent in the spectra of the
united atom [Figure 1a] and result from the nonseparability of
the center-of-mass and relative motions of the two fermions;
these motions are separable for a single harmonic trap.
Results for a DW with an interwell tilt Δ/h = 0.5 kHz and

separation d = 2 μm are displayed in Figure 2; the parameters
fall within the same range as those used in the experiments.13 In
addition to the energy spectra in the repulsive range g > 0 (for
the attractive range, see Figure 1 and the last figure of the
paper) shown in the center panel, we display the results of

Figure 2. Double well with a finite tilt Δ/h = 0.5 kHz and well separation d = 2 μm = 1.543l0. The spectrum as a function of the strength of the
interaction g is displayed for the repulsive regime (−1/g < 0); for the spectrum for the attractive regime, see Figure 4. The many-body wave function
anatomy (single-particle densities, SPDs, green surfaces, and spin-resolved conditional probability distributions, CPDs, red surfaces, see Methods)
are illustrated for several representative instances, marked by letters a−h on the energy curves. The spin-resolved CPD gives the spatial probability
distribution of finding a second fermion with spin projection σ under the condition that another fermion is located (fixed) at r0 with spin projection
σ0; σ and σ0 can be either up (↑) or down (↓) and in this figure the black arrow denotes the location of the observation point r0 with σ0 = ↓, and the
red surface gives the probability distribution of the electron with spin ↑ (indicated by the red up-arrow). The abscissa values associated with the
points a−h are −1/g = − 4/(21/2l0ℏωx) at a,b,g,h; −1/g = −1.70/(21/2l0ℏωx) at c; −1/g = − 0.5/(21/2l0ℏωx) at d; −1/g = − 1/(21/2l0ℏωx) at e,f. The
far-left part of the −1/g axis represents the noninteracting limit. For −1/g → −∞, the ground state (brown curve) consists of two fermions in the
left well (see panel a); the space-entangled NOON states (see caption of Figure 1) do not survive a finite tilt. However, even in the noninteracting
limit, the HL-type Bell-like states (with one fermion in each well) do survive the influence of the tilt with small modifications; see the density and
CPD for the singlet state in panel b (point b is located on the blue energy curve). Increasing g brings one to a resonance between the doubly
occupied singlet state in the left well and the HL-type singlet state discussed above. This resonance corresponds to an anticrossing region centered at
−1/g = −1.22/(21/2l0ℏωx) and is highlighted by a square. For strong repulsion, the two fermions minimize their interaction energy by avoiding each
other, leading to the formation of a UCWM; note in panel e the two-humped density and the behavior of the CPD. The cases of two triplet states
with spin projection Sz = 0 are elaborated in panels g,h; they have the structure of Bell states (|↑↓> + |↓↑>)/√2. We have checked that the purple
curve (associated SPDs and CPDs not shown) corresponds to both fermions being trapped in the right well. The labels L and R correspond to space
orbitals localized on the left and right wells. The subscripts l and r denote space orbitals partially localized on the left and right side of a given well.
The subscripts s and p denote 1s-type and 1p-type orbitals in the left or right well. The symbol s in 2(1 + s2)1/2 denotes the overlap of left and right
space orbitals comprising the singlet states. The confining frequencies in the x- and y-directions are ωx = 2π × 1 kHz and ωy = 2π × 100 kHz and Vb
= 18.18V0; Vb is measured from the bottom of the left well and V0/h = 0.297 kHz. The mass corresponds to ultracold 6Li atoms, M = 9.99 10−27 kg.
All chosen parameters are within the range of a recently reported experiment.13
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analysis of selected many-body wave functions (for different
states and/or g values), exhibiting their single-particle densities
(SPDs, green surfaces) and spin-resolved conditional proba-
bility distributions21 (CPDs, red surfaces); the letter labels (a,
b, c,....) relate the surface plots to the corresponding points on
the various energy curves (for the definitions of the SPD and
CPD see Methods). The spin-resolved CPD gives the spatial
probability distribution of finding a second fermion with spin
projection σ under the condition that another fermion is
located (fixed) at r0 with spin projection σ0; σ and σ0 can be
either up (↑) or down (↓).
In the noninteracting limit (far-left of the −1/g axis in Figure

2), the ground-state wave function consists of a single
determinant formed by the up- and down-spin fermions
occupying the lowest 1s space orbital in the left well, and as a
result the SPD is localized on the left side of the plot in panel a.
This state is denoted as |L ↑ L ↓>; note that no NOON state is
formed since the parity is not conserved for Δ ≠ 0, unlike the
case for Δ = 0 (Figure 1). Following the increase in the ground-
state energy with increasing g (that is, staying on the dark
brown curve), an anticrossing develops, associated with a
resonance region in the vicinity of U ∼ Δ; this region is
highlighted by a gray box in the energy plot of Figure 2. This
resonance (details displayed in Figure 3) involves the singlet
state |L ↑ L ↓> (with both fermions residing in the left well)
and the singlet Heitler-London state |L ↑ R ↓> − |L ↓ R ↑>
(with one fermion in each well occupying the corresponding
left/right 1s space orbitals).
Two main themes, pertaining to the structure of the many-

body wave functions exhibited in Figure 2a−h, emerge: (1)
both fermions are localized either in the left or right well; see
the cases a,c,d,e,g, which involve both singlets, a,c,d,e, and a
triplet, g, and (2) each well contains one fermion. In the latter
case, the wave functions can be approximated either with the
singlet (panels b,f) or triplet (panel h) variants of the HL wave
functions. The single-well space orbitals involved in the
formation of the HL-type wave functions are not restricted
only to the 1s left- and right-well orbitals, but may involve 1p
orbitals of the individual wells (compare, e.g., f,h); the orbitals
involved (1s, 1p) are explicitly indicated as subscripts; 1s and
1p refer to the 1D states with zero and one node, respectively.
We recall here that the HL wave functions involving one space
orbital from each well faithfully approximate the highly
entangled two-qubit Bell states.
Of particular interest are cases d,e with both fermions in the

left well. Focusing first on the double-humped density in panel
e, it is apparent that the underlying wave function cannot be
approximated as |Ls ↑ Ls ↓> having an up-spin and a down-spin
fermions occupying the same 1s space-orbital in the left well (as
is the case in panel a). Rather, the double-humped density
indicates that the two fermions (due to the large repulsion)
localize and avoid each other, forming an UCWM. The
displayed CPD in panel e further supports formation of a
UCWM; indeed, placing the down-spin fermion at the position
of the right hump (black down arrow) the distribution of the
up-spin fermion (red surface) is found to be located away from
the black arrow with its maximum at the position of the second
(left) density hump. The wave function of this UCWM
(singlet) is well-approximated by the two-determinant HL form
|Ll ↑ Lr ↓> − |Ll ↓ Lr ↑>, where the subscripts l and r indicate
the left and right humps in the density (green surface) of panel
e. The case in panel d describes an incipient UCWM; the
multideterminantal nature of the wave function is a signature of

a correlated state.21 The predicted formation of Wigner
molecules (WMs) made of cold atoms is a remarkable
discovery. Indeed, WMs have been initially predicted
theoretically21−24 and subsequently found experimentally21,25

for strongly interacting electrons in two-dimensional (2D)
quantum dots (QDs) at semiconductor interfaces. More
recently WMs have been found in other 2D QDs,26 clean
carbon nanotubes,27 and for biexciton states in 3D QDs.28

The discovery of Wigner molecules made of four fermions
(electrons) in a double well confinement using full config-
uration interaction calculations, allowed us to establish the
correspondence between strong Wigner molecules and
Heisenberg spin chains;16 for an earlier analysis of the spin
structure of WMs in single harmonic well confinements
(including a quasi-linear, 1D, case) see ref 29. It was shown
that the full WM wave function can be mapped into a pure spin
function.16,29

In the limit of −1/g = 0, the UCWM may reach the regime
of fermionization of two distinguishable fermions, which has

Figure 3. The resonance region in a double well with a finite tilt Δ/h =
0.5 kHz and well separation d = 2 μm = 1.543l0. Top: magnification of
the anticrossing spectrum region enclosed in the square highlighted in
Figure 2. The resonance region is centered at − 1/g = −1.22/
(21/2l0ℏωx). At this value of −1/g, two labels correspond to the two
singlets states (a, blue and c, brown) participating in the resonance |
RES± > = c1|L ↑ L ↓> ± c2(|L ↑ R ↓> − |L ↓ R ↑>)/2, namely the
resonance between a state with both fermions in the left well and a
state with one fermion in each well; it occurs when the repulsive
interaction energy U of the two fermions in the left well equals the tilt
energy Δ. A third label b corresponds to a triplet state (green) of the
HL-type, |TRI > = (|L ↑ R ↓> + |L ↓ R ↑>)/2. Panels a−c display the
corresponding SPDs (green surfaces) and CPDs (red surfaces),
supporting the intuitive expressions for the many-body wave functions,
|RES± > and |TRI > , given above. Exactly at resonance c1 = c2; see text
for a detailed description. The confining frequencies in the x- and y-
directions are ωx = 2π × 1 kHz and ωy = 2π × 100 kHz and Vb =
18.18V0; Vb is measured from the bottom of the left well and V0/h =
0.297 kHz. The mass corresponds to ultracold 6Li atoms, M = 9.99 ×
10−27 kg. All chosen parameters are within the range of a recently
reported experiment.13
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been most recently realized for two 6Li atoms confined within a
single harmonic trap.30 In this limit, the energy of the UCWM
(singlet, blue curve) becomes degenerate with the energy of the
triplet state (orange horizontal straight line). Note the
similarity in the densities and CPDs between panel g (triplet
with Sz = 0) and panel e (singlet UCWM).
A detailed analysis of the resonance region (highlighted by

the square box in Figure 2) is displayed in Figure 3. As
aforementioned (Figure 2), this resonance corresponds to the
anticrossing resulting from the interaction between two singlet
states and has the form

| ↑ ↓ >± | ↑ ↓ >−| ↓ ↑ >
c L L c

L R L R( )
21 2 (2)

In Figures 2 and 3, left (right) of the resonance, on the blue
curve one has c1 < c2 (c1 > c2), whereas on the dark brown curve
c1 > c2 (c1 < c2). At resonance c1 = c2. In agreement with the
corresponding SPDs (green surfaces) in panels a and c, the
probability ratio for finding a fermion in the left or right well at
the resonance points (denoted as a and c in Figure 3) is 3:1.
Further corroboration that the structure of the many-body
states at resonance is well approximated by eq 2 is provided by
the spin-resolved CPDs in a and c. Indeed, in both cases, if one
locates the down-spin fermion in the middle of the left well
(see black arrow), the probability distribution (red surface) of
the up-spin fermion extends in both wells, and the ratio of the
volumes under its left/right parts is 2:1. In contrast, if one
locates the down-spin fermion in the right well, the spin-up
fermion is found only in the left well. It is pertinent to note that
the horizontal energy curve (green) in Figure 3 corresponds to
the HL-type (|L ↑ R ↓> + |L ↓ R ↑ > )/2, as is also corroborated
through an inspection of the SPD and CPDs associated with
the many-body wave function at the point specified by b.
Quantifying Entanglement Using the von Neumann

Entropy as a Measure and the Natural Orbitals. The
theory of entanglement in a two-qubit space is associated with
the celebrated Bell states, used earlier in investigations of
quantum information processes implemented with ultracold
atoms in optical lattices.5 The CI many-body wave functions,
however, are associated with larger Hilbert spaces for which a
quantitative measure of entanglement is the von Neumann
entropy21,31 SvN defined as

ρ ρ= − +S CTr( log )vN 2 (3)

where ρ is the single-particle density matrix (SPDM, see
Supporting Information for details) and C = −log2 N is a
constant, yielding SvN = 0 for an uncorrelated single-
determinant state. In keeping with previous literature on two
electrons in semiconductor quantum dots,21,30 base 2
logarithms are used.
For two fermions, the eigenvalues pj and the eigenvectors

ϕj
NO(r) of the SPDM provide key information31,32 concerning

the anatomy of the many-body wave function. The wave
functions ϕj

NO(r) are known as the natural orbitals (NOs),
introduced by Löwdin.32 For a singlet state it has been shown32

that

∑ φ φ αβ βαΦ ′ = ′ ′ − ′
=

dr r r r( , ) ( ) ( )( )
j

M

j j j
CI

1

NO NO

(4)

with dj = ± (pj)
1/2; a similar expression applies for the triplet. In

conjunction with SvN, knowledge of the pj’s and NOs
determines fully the anatomy (and degree of entanglement)

of the many-body wave function by specifying the minimal
number M of Slater determinants (referred to also as the Slater
rank18 of the many-body wave function) that gives the most
rapid converged approximation to ΦCI (see the analysis below
regarding the bar plots in Figure 4).
The entanglement entropy SvN for two 6Li atoms in a double

well with d = 2 μm and Δ/h = 0.5 kHz (the same parameters as
in Figure 2) is displayed in Figure 4. Given that the allowed
maximum value for the von Neumann entropy in our CI
calculations is log2(2K) − log2(2) = 6.13 (we use a basis of K =
70 single-particle space orbitals), it is remarkable that the
calculated values in Figure 4 remain smaller than 1.3 in the
repulsive range, and in particular in the regime of strong
correlations, that is, for −1/g → 0 −. This reflects formation of
a Wigner molecule. SvN = 1 for all the triplets, that is, the von
Neumann entropy curves for all triplet states in the double well
collapse to the single horizontal line. We note that the dark
brown and purple curves approach vanishing entropy as −1/
g→ −∞; this is natural because in the weak-repulsion regime (g
→ 0 + ) they correspond to the single-determinant wave
functions |L ↑ L ↓> (dark brown) and |R ↑ R ↓> (purple).
In contrast to the bounded values (<1.3) of SvN for repulsive

interaction, in the attractive region, all the SvN values associated
with the singlet ground and excited states of a highly correlated
and tightly bound dimer (see Figure 4) tend to increase
without bound in the limit of −1/g → 0 + . This indicates that
the wave function of the tightly bound attractive dimer consists
effectively of a large number of Slater determinants [see the bar
plot for the pj’s in panel (a)]. Naturally, for weak interparticle
attraction the CI wave function approaches a single Slater
determinant having vanishing von Neumann entropy [see panel
(b) in Figure 4]. This behavior contrasts with the mostly two-
determinant states found by us for all cases in the repulsive
regime. In particular, for the strongly repulsive highly correlated
UCWM regime the corresponding bar plot in (g) contrasts
sharply with that in (a). Indeed in panel (g) two SPDM
eigenvalues (p1 = 0.81 and p2 = 0.18) dominate; a third one is
sufficiently small and can be neglected. Furthermore, for both
repulsive and attractive interactions, we found that the HL-type
(one fermion in each well) singlet states (bar plots not shown)
approach the maximally entangled Bell states for increasing well
separation; indeed the corresponding SPDM eigenvalues p1 =
p2 → 1/2, pj = 0 for j ≥ 3, as d → ∞, while the entangled Bell
states have the form (|↑↓> ∓|↓↑>)/√2 with SvN = 1. Because
of this association with the Bell states, the HL-type states in the
double well are a promising candidate for the implementation
of quantum logic gates.10

The above findings suggest that progress in achieving highly
accurate solutions to systems described by many-body
Hamiltonians of interacting particles (involving contact, or
other, e.g. Coulomb, interactions), particularly for circum-
stances of strong interparticle correlations, would involve the
employment of basis functions made of natural orbitals (see,
e.g., ref 33). Note the resemblance between the shape of the
profiles of the wave functions along the x-axis, Ψx(NO1) and
Ψx(NO2), and the CI-calculated density [Figure 4g]. We also
remark that construction of such NOs may be achieved without
the need for prior CI calculations,31 for example, through the
iterative-NO method.34

The Bell states play a crucial role in the theory of quantum
information and quantum computation; they consist precisely
of two determinants, having as a result a von Neumann entropy
SvN = 1; the Bell states are the maximally entangled states in the
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space of two qubits. On the other hand, the CI wave function
gives an exact solution to the many-body problem, but it
comprises in general many determinants. The above findings
show that the von Neumann entropy provides a quantitative

diagnostic tool for identifying the special many-body states that
are close to the Bell states, that is, when SvN ∼ 1. In this respect,
it also provides a measure of the deviation from the ideal Bell
state. When SvN ∼ 1, we stress again that there are only two
dominant Slater determinants in the basis of natural orbitals.
The insights obtained here via computational microscopy

probing of the wave function anatomy and entanglement
characteristics of two fermionic ultracold atoms in an isolated
double-well confinement, in juxtaposition with the demon-
strated benchmark experimental capability2 to prepare and
control such a system (with single-site addressability), provides
the impetus for further explorations of more complex systems
built from such building blocks. The theoretical methodology
that we have introduced, which has been shown here to result
in agreement with the experiments for the same range of DW
confining parameters as chosen experimentally (see Supporting
Information, in particular Figure S2, for comparison of the
results of calculations for two DW configurations with the
experiments in ref 13), covers as well a broader parameter range
than the one used in the experiments. Moreover, this
methodology is also applicable to systems with a larger number
of interacting atoms and complex confining geometries,
including multiwells and arrangements in higher dimensions.

Methods. Many-Body Definitions of the SPD, CPD, and
SPDM. The single-particle density (SPD) is the expectation
value of the one-body operator

∑ρ δ= ⟨Φ | − |Φ ⟩
=

r r r( ) ( )N q
i

N

i N q,
CI

1
,

CI

(5)

where |ΦN,q
CI > denotes the qth many-body (N particles) CI

wave function.
The spin-resolved two-point anisotropic correlation function

is defined as

∑ δ δ δ δ= <Φ | − − |Φ >σσ σσ σ σ
≠

P r r r r r r( , ) ( ) ( )N q
i j

i j N q0 ,
CI

0 ,
CI

i j0 0

(6)

Using the normalization constant N(σ,σ0,r0) = ∫ Pσσ0(r,r0)dr, we
further define a related spin-resolved conditional probability
distribution (CPD) as

σ σ
=σσ

σσP

N
r r

r r

r
( , )

( , )

( , , )0
0

0 0
0

0

(7)

The single-particle density matrix (SPDM), ρ, is given by

ρ =
Φ | |Φ

∑ Φ | |Φ
νμ

μ ν

μ μ μ

†

†

a a

a a

CI CI

CI CI
(8)

and it is normalized to unity, i.e., Trρ = 1. The Greek indices μ
(or ν) count the spin orbitals χμ(r) that span the single-particle
space (of dimension 2K).
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Figure 4. Evolution of entanglement in a double well with a finite tilt
Δ/h = 0.5 kHz and well separation d = 2 μm = 1.543l0. The von
Neumann entropy (bottom), in conjunction with the energy spectrum
(top), is shown as a function of the strength of the interparticle
interaction strength g. Both repulsive (−1/g < 0) and attractive (−1/g
> 0) interparticle interactions are considered. Panels (a−g) are
associated with the points marked by these letters on the energy and
entropy curves. In addition to the single-particle densities (SPDs,
green surfaces) panels (a−g) display (one or both of) the following
quantities: conditional probability distribution (CPD, red surface) and
the single particle density matrix eigenvalues (blue bars) associated
with the points marked on the energy and entropy curves. The point g
on the repulsive side corresponds to the singlet-spin UCWM discussed
previously in Figure 2. For this case, the two-dominant (see the
corresponding bar plot) natural orbitals are also plotted. As seen from
both the orbital density, ρ, and the orbital wave function cut, Ψx, along
the x-axis, the zero-node NO1 is two-peaked in contrast to the single-
peak 1s orbital familiar from the noninteracting case. At the points
labeled e (with both fermions residing in the left well, see associated
densities) and f (with both fermions residing in the right well), the
entropy is vanishing indicating a single-determinant wave function
appropriate for the noninteracting limit. At the point d, the entropy is
unity, indicating a maximally entangled two-determinant wave function
of the HL-type (with one fermion in each well). At point b, the
entropy is ∼0.2, and the many-body wave function consists mainly of a
single determinant [see the bar plot in panel (b)]. However, for strong
attraction (point a), the number of Slater determinants grows out of
bound [see the bar plot in panel (a)], a behavior that contrasts with
that of the strong-repulsion UCWM case [compare bar plots in (a,g)].
For both left and right wells, ωx = 2π × 1 kHz and ωy = 2π × 100 kHz.
The interwell barrier height Vb = 18.18V0; Vb is measured from the
bottom of the left well and V0/h = 0.297 kHz. The mass corresponds
to ultracold 6Li atoms, M = 9.99 × 10−27 kg. All chosen parameters are
within the range of a recently reported experiment.13

Nano Letters Letter

DOI: 10.1021/acs.nanolett.5b03199
Nano Lett. 2015, 15, 7105−7111

7110

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.5b03199/suppl_file/nl5b03199_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.5b03199/suppl_file/nl5b03199_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b03199
http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b03199
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.5b03199/suppl_file/nl5b03199_si_001.pdf
http://dx.doi.org/10.1021/acs.nanolett.5b03199


■ AUTHOR INFORMATION

Corresponding Author
*E-mail: uzi.landman@physics.gatech.edu.

Author Contributions
C.Y. and U.L. conceived the paper, B.B.B and C.Y. performed
computations. B.B.B., C.Y., and U.L. analyzed the results. B.B.B,
C.Y., and U.L. wrote the manuscript.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We acknowledge a communication by Professor S. Jochim
concerning the setup of the experiment in ref 13. We thank the
Air Force Office for Scientific Research for the support of this
work under AFOSR Award No. FA9550-14-1-0005. Calcu-
lations were carried out at the GATECH Center for
Computational Materials Science.

■ REFERENCES
(1) Bloch, I.; Dallibard, J.; Nascimbene, S. Nat. Phys. 2012, 8, 267−
276.
(2) Goldman, N.; Juzeliunas, G.; Ohberg, P.; Spielman, I. B. Rep.
Prog. Phys. 2014, 77, 126401.
(3) Feynman, R. P. Int. J. Theor. Phys. 1982, 21, 467−488.
(4) Loh, E. Y.; Gubernatis, J. E.; Scalettar, R. T.; White, S. R.;
Scalapino, D. J.; Sugar, R. L. Phys. Rev. B: Condens. Matter Mater. Phys.
1990, 41, 9301−9307.
(5) Dagotto, E. Science 2007, 318, 1076−1077.
(6) Bollinger, J. J.; Itano, W. M.; Wineland, D. J.; Heinzen, D. J. Phys.
Rev. A: At., Mol., Opt. Phys. 1996, 54, R4649−R4652.
(7) Holland, M. J.; Burnett, K. Phys. Rev. Lett. 1993, 71, 1355−1358.
(8) Campos, R. A.; Gerry, C. C.; Benmoussa, A. Phys. Rev. A: At.,
Mol., Opt. Phys. 2003, 68, 023810.
(9) Dowling, J. P. Phys. Rev. A: At., Mol., Opt. Phys. 1998, 57, 4736−
4746.
(10) Anderlini, M.; Lee, P. J.; Brown, B. L.; Sebby-Strabley, J.;
Phillips, W. D.; Porto, J. V. Nature 2007, 448, 452−456.
(11) Negretti, A.; Philipp Treutlein, P.; Calarco, T. Quantum Inf.
Process. 2011, 10, 721−753.
(12) Serwane, F.; Zürn, G.; Lompe, T.; Ottenstein, T. B.; Wenz, A.
N.; Jochim, S. Science 2011, 332, 336−338.
(13) Murmann, S.; Bergschneider, A.; Klinkhamer, V. M.; Zürn, G.;
Lompe, Th.; Jochim, S. Phys. Rev. Lett. 2015, 114, 080402.
(14) Kaufman, A. M.; Lester, B. J.; Reynolds, C. M.; Wall, M. L.;
Foss-Feig, M.; Hazzard, K. R. A.; Rey, A. M.; Regal, C. A. Science 2014,
345, 306−309.
(15) Romanovsky, I.; Yannouleas, C.; Landman, U. Phys. Rev. Lett.
2004, 93, 230405.
(16) Li, Y.; Yannouleas, C.; Landman, U. Phys. Rev. B: Condens.
Matter Mater. Phys. 2009, 80, 045326.
(17) Idziaszek, Z.; Calarco, T. Phys. Rev. A: At., Mol., Opt. Phys. 2006,
74, 022712.
(18) Eckert, K.; Schliemann, J.; Bruss, D.; Lewenstein, M. Ann. Phys.
2002, 299, 88−127.
(19) Pryde, G. J.; White, A. G. Phys. Rev. A: At., Mol., Opt. Phys. 2003,
68, 052315.
(20) Winkler, K.; Thalhammer, G.; Lang, F.; Grimm, R.; Denschlag,
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1. Two-center-oscillator confining potential.  Following the recent experimental advances
1-3

, 

and in particular those in ref. 2, we investigate here the quantum mechanical properties of two 

interacting fermionic ultracold atoms confined in a double well (DW). We consider two DW 

configurations: (1) a so-called “linear arrangement” (LA) where two quasi one-dimensional (1D) 

wells (see below Eq. S1), connected by a barrier between them, are located on the same axis (x), 

and (2) a so-called “ parallel arrangement” (PA) where the quasi 1D wells are oriented along two 

parallel lines in the y direction being separated by a barrier in the x-direction; tunneling between 

the wells occurs in the x-direction through the long sides of the wells (namely the sides that are 

along the y- axis). Case (1), the LA configuration, is described in detail in the main text of the 

article, and case (2), the PA configuration, is discussed (see caption to Fig. S1 below) and 

compared (along with the LA configuration) with the experimental results
2
, see Fig. S2 below. 

To model the  two interacting fermionic ultracold atoms confined in a double well we use 

a 2D many-body problem (as described below). In the LA configuration  we enforce the 1D 

character by requiring that the trap confinement in the  -direction is much stronger than that in 

the  -direction (i.e. ωy / ωx  >> 1), with the result that only the zero-point motion in the  -direction 

is included in the calculations, whereas in the PA configuration we choose ωy / ωx  < 1  (see the 

caption of Fig. S1 below).  

In the 2D two-center-oscillator (TCO), the single-particle levels associated with the 

confining potential are determined by the single-particle hamiltonian
4,5 

  

 



2 

 

   
  

  
 

 

 
   

    
 

 
    

   
                (S1) 

   

where   
       with     for     (left well) and     for     (right well), and the 

  ’s control the relative well-depth, with the tilt being        .   denotes the coordinate 

perpendicular to the inter-dot axis ( ). The most general shapes described by   are two 

semiellipses connected by a smooth neck [        ];      and      are the centers of these 

semiellipses,         is the interdot distance, and   is the atom mass.  

For the smooth neck between the two wells, we use          
 

 
    

      
   

    
              , where        for     and        for    . The four constants    

and    can be expressed via two parameters, as follows:          
      and       

   
     

 , where the barrier-control parameters   
              are related to the actual 

height of the bare interdot barrier (  ) between the two wells, and         
   

    (for 

     ,           ).  

The single-particle levels of   are obtained by numerical diagonalization in a (variable-

with-separation) basis consisting of the eigenstates of the auxiliary hamiltonian:  

    
  

  
 

 

 
   

    
 

 
    

   
        (S2) 

The eigenvalue problem associated with the auxiliary hamiltonian (Eq. S2) is separable in   and 

 , i.e., the wave functions are written as  

                     (S3) 

with        ,          . The       are the eigenfunctions of a 1D oscillator, and the 

        or         can be expressed through the parabolic cylinder functions 

             , where      
 √        ,                   , and    

               denotes the  -eigenvalues. The matching conditions at     for the left 

and right domains yield the  -eigenvalues and the eigenfunctions      . The   indices are 

integer. The number of   indices is finite; however, they are in general real numbers. 

  

2.  The configuration-interaction method. As aforementioned, we use the method of 

configuration Interaction for determining the solution of the many-body problem specified by the 



3 

 

Hamiltonian (Eq. S1).  

In the CI method, one writes the many-body wave function   
               as a linear 

superposition of Slater determinants                that span the many-body Hilbert space 

and are constructed out of the single-particle spin-orbitals  

                                 (S4) 

and  

                                    (S5) 

where      denote up (down) spins. Namely  

     
            ∑  

 

 

  
            (S6) 

where    

   
  

 

√  
|

           
    

   
           

    
|  S(7) 

and the master index   counts the number of arrangements              under the restriction that 

               . Of course,         counts the excitation spectrum, with     

corresponding to the ground state. In our CI calculations full convergence is reached through the 

use of a basis of up to70 TCO single-particle states; the TCO single-particle states automatically 

adjust to the separation   as it varies from the limit of the unified atom     to that of the 

dissociation of the dimer (for sufficiently large  ).  

The many-body Schrödinger equation      
        

       
    transforms into a matrix 

diagonalizatiom problem, which yields the coefficients   
 
 and the eigenenergies     

  . Because 

the resulting matrix is sparse, we implement its numerical diagonalization employing the well 

known ARPACK solver
6
.  

The matrix elements    
      

   between the basis determinants [see Eq. (S7)] are 

calculated using the Slater rules
7
. Naturally, an important ingredient in this respect are the two-

body matrix elements of the contact interaction,  

     ∫ ∫  
 

  

 

  

       
       

                           (S8) 

in the basis formed out of the single-particle spatial orbitals      ,           [Eq. (S7)]. 

In our approach, these matrix elements are determined numerically and stored separately. The 
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corresponding 1D interparticle interaction strengths,  , are extracted from     as follows  

      ∫  
 

  

          (S9) 

where   is a dummy variable and   is the lowest-in-energy single-particle state in the   ( ) 

direction for the LA (PA) configurations, respectively. In the LA configuration,   coincides 

with   , whereas in the PA configuration   is a linear superposition of   ’s due to the effect of 

the smooth neck.  

The Slater determinants   
  [see Eq. (S7)] conserve the third projection   , but not the 

square  ̂  of the total spin. However, because  ̂  commutes with the many-body Hamiltonian, 

the CI solutions are automatically eigenstates of  ̂  with eigenvalues       . After the 

diagonalization, these eigenvalues are determined by applying  ̂  onto     
   and using the 

relation  

  ̂   
  [               ∑   

   

]  
   (S9) 

where the operator     interchanges the spins of fermions   and   provided that their spins are 

different;    and    denote the number of spin-up and spin-down fermions, respectively.  

When       (   ), the   -parity operator associated with reflections about the origin of the 

axes is defined as  

 

 
 ̂      

                   
                  (S10) 

 

 

and has eigenvalues   . With the two-center oscillator Cartesian basis that we use [see Eq. S7)], 

it is easy to calculate the parity eigenvalues for the Slater determinants, Eq. (S7), that span the 

many-body Hilbert space. Because       and       conserve the partial  ̂  and  ̂  parities, 

respectively, one finds:  

 

  ̂    
     ∑   

           
   (S11) 

   

where    and    count the number of single-particle states associated with the bare two-center 

oscillator [see the auxiliary Hamiltonian    in Eq. (S2)] along the   axis and the simple 
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oscillator along the   direction (with the assumption that the lowest states have     and   

 , since they are even states). We note again that the index   in Eq. S3 is not an integer in 

general, while   here is indeed an integer (since it counts the number of single-particle states 

along the   direction).  
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3.  Results for the double well parallel arrangement (PA) configuration.

 

Figure S1 

 



7 

 

Figure S1.  The energy spectrum (a) of two fermions and wave-function anatomy (b,c) 

calculated in a double well for the PA configuration. The results are plotted for a 

configuration with a well separation along the x-axis        m          (        

√         = 713 nm) and no tilt (   ), plotted as a function of the inverse interaction 

strength            is expressed in units of √       , where     √         =  1297 nm. 

The confining frequencies in the   and   directions are           kHz and         

kHz. The barrier heights    (produced by the smooth neck) are given by                

     ,  where     is  the bare barrier of the TCO double well;      =  20.4 kHz. The mass 

corresponds to ultracold 
6
Li atoms,              kg. The DW parameters are within the 

range of those used in the experiments
2
.    

(a) Both repulsive (      ) and attractive (      ) interparticle interactions are 

considered. The horizontal curves correspond to Heitler-London (HL)-type states  (one fermion 

in each well) that relate to the maximally spin-entangled two-qubit Bell states. Due to parity 

conservation, the  -dependent, doubly-degenerate first-excited (dark blue and violet) energy 

curves in the repulsive regime correspond to highly space-entangled NOON-type states of the 

form               √ . (b and c)  The many-body wave-function anatomy (single-particle 

densities, SPD  green surfaces, and spin-resolved conditional probability distributions, CPDs, red 

surfaces) is illustrated for two instances, marked by letters A (shown in (b))  and B (shown in 

(c)) on the energy curves (in a). The abscissa value associated with these letters is      

      √            The far-left part of the      axis represents the non-interacting limit. 

Point A (on the s+, positive parity singlet, brown line) is a representative of the above-mentioned 

HL-type state, and point B (on the s+ , positive parity singlet, purple line) is a representative of a 

NOON state.  In the spin-resolved CPDs (red surfaces) the black down arrow represents the 

location of the spin-down fermion (taken at one of the humps in the single-particle density plots 

(green surfaces)), and the red arrow signifies that the red surface corresponds to the up-spin 

probability distribution. In (b) placing the down-spin fermion at the position of the right well 

(black down arrow in the position of the right density hump) shows that the distribution of the 

up-spin fermion (red surface) is found to be located in the other (left) well.  The SPD and CPD 

depicted in (c) are of particular interest, representing a NOON state formed by the superposition 

of two-fermion ultracold Wigner molecules (UCWMs) located in either the right or left wells. 
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The double-humped SPDs indicate that the two fermions (due to the large repulsion) localize and 

avoid each other, forming an UCWM. The displayed CPD in (c) confirms formation of a UCWM 

– indeed, placing the down-spin fermion (black down arrow) at the position of the forward 

density hump in the right well, the distribution of the up-spin fermion (red surface) is found to be 

located away from the black arrow with its maximum coinciding with the backward hump in the 

SPD in the right well. If the fixed (observation) point is chosen to be in the left well, the resulting 

CPD will be a mirror image of the one shown above, namely it will depict a red surface in the 

left well. Note that the formation of NOON states is due to the conservation of parity when the 

detuning tilt (Δ) between the wells vanishes (as is the case here).  

 

4.   Comparison with experiment.  To compare with the experimental results
2
 regarding single 

and double occupancy as a function of the interaction strength,  , we first extract from our 

calculations the relevant Hubbard-model parameters. For the purpose of this comparison we use 

our calculations for the DW systems in the linear arrangement, LA, and parallel arrangement, 

PA.  For the LA case we use the following parameters (see caption to Fig. 1c in the main text):  

The confining frequencies in the   and   directions are         kHz and           

kHz, leading to an effective 1D confinement along the   direction. The barrier height    

(produced by the smooth neck) is                  = 5.407 kHz,  where     is  the bare 

barrier of the TCO double well ,      = 0.297 kHz, where h is the Planck constant.. This factor 

leads to strong anharmonicities in the confining double-trap potential. The interwell separation is 

     m         , representing two rather well-separated wells, with         √        

=        m being the (left or right) harmonic-oscillator length. The mass corresponds to 

ultracold 
6
Li atoms,              kg. For the PA case we use the parameters given in the 

caption to Fig. S1.  These parameters correspond to those  used in the experiment
2
, selected there 

in order to assure applicability of the Hubbard model employed in reference 2, due to the small 

tunneling (hopping parameter  ) between the two wells. .  

The Hubbard-model hopping parameter is obtained from the energy spectrum of the non-

interacting case for the symmetric double well (with    ), i.e., the energy difference, 2J, 

between the singlet ground state and the first-excited triplet state . In this way we extracted  for 

the LA configuration a value of            Hz,  and for the PA configuration J/h = 55.53 Hz, 

which are sufficiently small compared to the axial trap frequency   kHz for the LA  and PA 
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configurations,  corresponding to the weak tunneling regime as in the experiments.  

The Hubbard parameter U (the onsite interparticle interaction strength) as a function of    

(where g is the contact interaction strength in the microscopic hamiltonian given in Eq. 1 of the 

main text) is the energy difference,               ,  for  the singlet ground state in a single  

well;      , is the energy of two non-interacting particle in a single well. If the calculations of 

U were to be done for the symmetric (Δ = 0) case, the results would contain contributions from 

interwell tunneling. To minimize interwell tunneling we performed (for both the LA and PA 

configurations) the above evaluation for U in a strongly tilted DW configuration, so that the low 

energy spectrum is determined solely by the lower lying well. This also incorporates the effect of 

anharmonicity which is inherent to the DW confinement; this effect is particularly important in 

the LA configuration. In these calculations we use a tilt of          kHz for the LA 

configuration and          kHz for the PA configuration, while keeping the other trap 

parameters unchanged.  

Having established the      dependence, we carry out a series of CPD calculations for 

the symmetric double well (with the same   and   ) where the fixed point is placed in the left 

well (   ). The portion of the CPD for     yields the probability of double occupancy. On 

the other hand, the portion of the CPD for     yields the single-occupation probability.  

Our calculations compared to the experimental measurements are displayed in Fig. S2.  

 

 

 

Figure S2 

 

Figure S2.  Probability of double (blue curve) and single (green curve) occupations of the 
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left and right wells for the LA and PA double well configurations. For the ground state 

probabilities (left frame) of both configurations we use the s+ singlet ground state (brown curve 

in Fig. 1c in the main text and in Fig. S1, for the LA and PA, respectively).  For the excited 

NOON state (right frame) we use in the LA configuration the orange s+ singlet of Fig 1c (main 

text), and in the PA configuration we use the purple s+ singlet curve of Fig. S1. For both DW 

arrangements we carried out calculations for two repelling 
6
Li atoms in a symmetric (   ) 

double well, with the parameters of the calculations described for the LA configuration in the 

main text (see captions to Fig. 1) and the start of this subsection, and for the PA configuration the 

parameters are given in the caption of Fig. S1.  Blue squares and green circles represent 

experimental data from Ref. 2. Red circular dots represent our CI simulation results for the LA 

configuration, and red triangles correspond to our calculated results for the PA configuration. 

Note the interchange between the blue and green probability curves (compared to the left panel), 

which is found both in theory and the experiment. Note that the calculated results for both the 

LA and PA configurations of the double well system agree well with the experimentally 

measured data. The limit of the Hubbard model cannot distinguish between the two microscopic 

trap arrangements. 
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