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Unified microscopic approach to the interplay of pinned-Wigner-solid and liquid behavior of the
lowest Landau-level states in the neighborhood of ν = 1
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Recently observed microwave resonances in the spectrum of a two-dimensional electon gas under high magnetic
fields in the neighborhood of the fractional filling ν = 1/3 were interpreted as signatures of a weakly pinned
Wigner solid. Using the rotating-and-vibrating electron-molecule (RVEM) theory [Yannouleas and Landman,
Phys. Rev. B 66, 115315 (2002); Phys. Rev. A 81, 023609 (2010)], in conjunction with exact diagonalization,
a unified microscopic approach is developed for the interplay between liquid fractional-quantum-Hall-effect
(FQHE) and Wigner-solid states in the lowest Landau level (LLL) in the neighborhood of ν = 1/3. In contrast
to more traditional treatments, the RVEM theory utilizes a single class of variational wave functions for the
description of both the FQHE liquid and Wigner-solid states, and their coexistence. Liquid characteristics of
the FQHE states are associated with the symmetry-conserving rotations and vibrations of the electron molecule.
The liquid characteristics, however, coexist with intrinsic correlations that are crystalline in nature, as revealed by
the conditional probability distributions. Although the electron densities of the symmetry-conserving LLL states
do not exhibit crystalline patterns, the intrinsic crystalline correlations are reflected in the emergence of cusp
yrast states in the LLL spectra. These cusp states correspond to fractional fillings in the thermodynamic limit and
are the only ones to provide the global ground states of the system. It is shown that away from the exact fractional
fillings, weak pinning perturbations (due to weak disorder) may overcome the energy gaps between adjacent
global states and generate pinned broken symmetry ground states as a superposition of symmetry-conserving
LLL states with different total angular momenta. The electron densities of such mixed states (without good
angular momentum quantum numbers) exhibit oscillating patterns that correspond to molecular crystallites.
These pinned Wigner crystallites represent finite-size precursors of the bulk Wigner-solid state. It is further
shown that the emergence of these molecular crystallites is a consequence of the presence of RVEM components
in the symmetry-conserving LLL states. In addition, it is shown that the RVEM approach accounts for the
Wigner-solid state in the neighborhood of ν = 1, which was also found in the experiments. Utilizing results
for sizes in a wide range from N = 6 to 29 electrons, we address the extrapolation to the thermodynamic
limit of the energetics of pinned Wigner crystallites, showing development of a crystal of enhanced stability
due to contributions of quantum correlations. Furthermore, we address the size evolution of the crystal motifs
(culminating in a hexagonal bulk two-dimensional Wigner lattice).
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I. INTRODUCTION

In the early 1980’s, the widely accepted theoretical in-
terpretation of the fractional quantum Hall effect (FQHE)
phenomenon1 was formulated around the antithesis between
a new form of quantum fluid represented by the celebrated
Jastrow-Laughlin wave function2 and the pinned Hartree-Fock
Wigner crystal (HFWC) described in the work of Fukuyama
and Lee3 and Maki and Zotos.4 In the above, the Wigner-
crystal (WC) phase has been described3,4 by broken-symmetry
variational wave functions, which differ from those used for
the quantum liquid.2

The seminal paper by Laughlin2 pointed to two key aspects
in favor of the “quantum-fluid” interpretation: (i) the energy
per particle of the HFWC varied smoothly with the filling
factor ν in contrast to the experiment. However, Laughlin’s
wave function corresponded naturally to the major fractional
fillings [ν = 1/(2p + 1)] that were observed experimentally
[as a result of the conservation of its total angular momen-
tum L = (2p + 1)N (N − 1)/2]. (ii) The energy per particle
(extrapolated to the thermodynamic limit N → ∞) of the
Laughlin-liquid state was substantially lower than that of the
Wigner crystal at ν = 1/3. In the context of the major fractions,

a crossover2 to a Wigner-crystal ground state5 was calculated
to occur only for smaller fractional fillings; initially the onset
of Wigner-solid ground states had been estimated to occur
for fillings 1/11 � ν � 1/9, while later studies6 predicted
crossover already for 1/7 � ν � 1/5.

Based on the above studies, signatures of the Wigner crystal
were expected to appear naturally in the range of smaller filling
factors, and indeed, over the last two decades, experimental
studies of the Wigner crystal in the lowest Landau level
(LLL) seemed to validate the above crossover prediction.7–10

Furthermore, this crossover behavior between liquid (larger
major fractions) and crystal (smaller major fractions) was also
in agreement with the composite fermion (CF) approach for the
liquid states,11–13 including the modifications of the HF Wigner
crystal referred to as composite fermion Wigner crystals.13–17

(For an outline of the status of the CF theory for the Wigner
crystal, see Sec. VI below.)

In light of the above, the most recent observation18 of
experimental signatures associated with a pinned Wigner
crystal in the immediate neighborhood of ν = 1/3 (as well
as18,19 in the neighborhood of ν = 1) represents a rather
surprising development. In this paper, motivated by the
above recent experimental observations, we further develop
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the quantal theory of the rotating and vibrating electron-
molecule (RVEM) description.20 The RVEM incorporates
liquid and crystalline correlations on an equal footing; it
was introduced by us in previous publications20–24 and was
shown20 to accurately describe the full LLL spectrum. In the
RVEM theory, the description of both liquid and Wigner-
solid states is achieved within the framework of a single
class of variational wave functions (see Refs. 21 and 21).
This allows us (see below) to discuss the coexistence of
FQHE liquid and Wigner-solid states. Namely, we will show
that the application of this theory to the LLL states in the
neighbohoods of ν = 1/3 and 1 provides a unified microscopic
interpretation (i.e., amenable to direct comparisons with exact
solutions) pertaining to the emergence of both liquidlike
and Wigner-solid behavior. In addressing the emergence of
the Wigner crystalline state and its coexistence with the
FQHE liquid, it is imperative that quantitative estimates of
the energy difference between the liquid and solid states be
provided.

The plan of the paper is as follows. Section II presents a
brief outline of the RVEM trial functions and shows (in the
neighborhood of ν = 1/3) that the liquid characteristics of
the LLL states coexist with intrinsic crystalline correlations
revealed in the conditional probability distributions [CPDs,
see Eq. (9)]. Further insights into the underlying physical
reasons for this coexistence are given in Secs. II A and II B,
where examples of quantitative analyses of the vibrational
content (in terms of RVEM components) of the symmetry-
conserving LLL states (obtained through exact diagonaliza-
tion) are presented. Section III describes (in the neighborhood
of ν = 1/3) the effect of weak pinning (experimentally
caused by weak disorder25) that generates broken-symmetry
molecular (Wigner) crystallites manisfested in the electron
density (ED) of the two-dimensional (2D) system. These
broken-symmetry crystalline states result from the mixing of
symmetry-conserving LLL states with different total angular
momenta. Section IV shows that the RVEM theory of liquid
versus Wigner-crystallite behavior can be extended to the
neighborhood of ν = 1.

Our findings are not limited to the case of N = 6 electrons
(examined in detail in Secs. II, III, and IV); they extend to
larger sizes as well. Indeed, Sec. V presents results for sizes
in the range from N = 7 to 29 electrons. This section also
addresses the extrapolation to the thermodynamic limit of the
energetics (energy difference from the liquid FQHE state) of
pinned Wigner crystallites as well as the size evolution of
the crystal motifs (culminating in a 2D hexagonal Wigner
lattice for 1/N → 0). Section VI offers an outline of the status
of composite-fermion literature regarding the challenging
problem of a Wigner solid in the neighborhood of ν = 1/3. A
summary is given in Sec. VII.

Appendix A recapitulates the remaining analytic expres-
sions needed to define the RVEM trial wave functions
presented in Eq. (5). Furthermore, with the insights gained
in this paper and the equivalence20 between the composite-
fermion and the RVEM theories, Appendix B shows that
intrinsic crystalline correlations are exhibited in the condi-
tional probability distributions of the composite-fermion trial
functions in the neighborhood of ν = 1/3. Moreover, Wigner
crystallites (showing crystalline electron-density oscillations)

are obtained via mixing of CF LLL states through the pinning
process introduced in Sec. III.

II. RO-VIBRATING ELECTRON MOLECULE AND THE
DESCRIPTION OF LIQUID-TYPE BEHAVIOR

As has been discussed earlier,26,27 the many-body Hamilto-
nian (H) of an assembly of N electrons in the LLL is reduced
to its two-body interaction (Coulombic) component, i.e.,

H int
LLL = N

h̄ωc

2
+

N∑
i=1

N∑
j>i

e2

κrij

, (1)

where rij = |ri − rj |, κ is the dielectric constant, ωc =
eB/(m∗c) is the cyclotron frequency, B is the applied magnetic
field perpendicular to the plane, and m∗ is the effective mass
of the electron.

The neutralizing ionic background generates an overall ex-
ternal confinement.28–33 For high B, the external confinement
contributes an additional Hamiltonian term H con

LLL (see Sec. III),
which influences only the total energies of the LLL states,
but not their many-body structure. Its effects do not need
to be considered in this section (such consideration will be
postponed to Sec. III).

The eigenstates of the Hamiltonian in Eq. (1) have the
property that they conserve the total angular momentum L =∑N

i=1 li . This is instrumental in relating the precursor states of
the finite system to the thermodynamic filling factors ν via the
relation2,34

ν = L0/L, (2)

with

L0 = N (N − 1)/2. (3)

For example, for a system of N = 6 electrons, the lowest-
energy state with a total angular momentum L = 45 is the
precursor that corresponds to the ν = 1/3 filling factor in the
thermodynamic limit; for N = 7 electrons, the corresponding
state is the lowest-energy one with L = 63.

To determine the eigenstates and eigenenergies of the
LLL Hamiltonian in Eq. (1), we employ two complementary
approaches: (1) the usual exact diagonalization (EXD) method,
which employs uncorrelated Slater determinants as the basis
for the expansion of the many-body wave function. The
number of Slater determinants in the expansion is referred
to as the dimension of the EXD. These Slater determinants are
made out from the LLL single-particle orbitals

ul(r) = (2π2l l!)−1/2rleilφe−r2/4, (4)

with lengths in units of the magnetic length lB = √
h̄/m∗ωc.

(2) The rotating-and-vibrating electron-molecule diago-
nalization (RVEM-diag), which was introduced in Ref. 20.
This method employs the technique of diagonalizing the LLL
Hamiltonian in Eq. (1) by expanding the many-body wave
function in a correlated basis constructed with the general rovi-
brational electron-molecule (RVEM) trial functions (within a
normalization constant)

�RVEM
L = �REM

L (n1,n2, . . . ,nr )Q[�]|0〉, (5)
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where

Q[�] ≡ Q
m1
λ1

Q
m2
λ2

Q
m3
λ3

, (6)

with � = λ1m1 + λ2m2 + λ3m3. The number of RVEM states
in the expansion is referred to as the dimension of the RVEM-
diag; for a given L, this is much smaller20 than the dimension
used in the EXD.

The index REM stands for “rotating electron molecule.”
[The terms Wigner molecule (WM) and rotating Wigner
molecule (RWM) are also often used; they are equivalent
to electron molecule (EM) and REM, respectively.] Here
and in the following, (n1,n2, . . . ,nr ) denotes an N electron
configuration consisting of concentric polygonal rings, with
n1 electrons in the innermost ring, n2 electrons located in
the second inner ring,..., and nr electrons on the outermost
ring, N = ∑r

i=1 ni . The purely rotational (vibrationless) com-
ponents �REM

L (n1,n2, . . . ,nr ) are associated with the cusp
LLL states (see Fig. 1) and have been described in detail in
Refs. 20–22, and 24 (see brief description in Appendix A).
The general RVEM wave function in Eq. (5) is a product
that combines rotations with vibrational excitations, the latter
being denoted by Qm

λ , with λ being an angular momentum;
the superscript denotes raising to a power m. Both �REM

L
and Q[�] are homogeneous polynomials of the complex-
number particle coordinates z1,z2, . . . ,zN , of order L and �,
respectively. The total angular momentum L = L + �. Q[�]
is always symmetric in these variables; �REM

L is antisymmetric
(electrons are fermions). |0〉 is a product of Gaussians

|0〉 = exp

(
−

N∑
i=1

ziz
∗
i /2

)
, (7)

which is usually omitted from the notation.
The vibrational excitations Qλ are given35,36 by the sym-

metric polynomials:

Qλ =
N∑

i=1

(zi − zc)λ, (8)

where zc is the coordinate of the center of mass and λ > 1 is
an integer positive number.

As was shown in Ref. 20, the RVEM-diag reproduces
the EXD results to within arbitrary precision. In this paper,
we are not focusing on this numerical aspect. Rather we
will use the RVEM-diag to analyze the extent that the
vibrational degrees of freedom contribute to the exact wave
functions in the neighborhood of ν = 1/3, in addition to
(and beyond) the vibrationless REM (the REM contibution
by itself was studied in earlier publications,22,23 and naturally,
only for the exact fractional filling ν = 1/3). The importance
of the vibrational components derives from the fact that the
Laughlin trial functions (as shown in Ref. 20) as well as the
composite-fermion11,13 ones (see Appendix B), are expandable
in the RVEM basis. This suggests an equivalent description
of the “liquid character”12 of the LLL states within the
framework of our quantal RVEM theory. Namely, states with
a larger weight of rotational-symmetry-preserving vibrational
components exhibit enhanced liquidlike character.

In the RVEM approach, the liquid state of the rotating
and vibrating molecule is characterized by an azimuthally
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FIG. 1. (Color online) Exact-diagonalization energies for N = 6
LLL electrons. Only the Hamiltonian term containing the two-body
Coulomb interaction [see Eq. (1)] was considered. (a) LLL yrast
states in the range 15 � L � 55. The cusp states of the yrast line are
marked by arrows. All the cusp states correspond to either a (1,5)
(upward arrows) or to a (0,6) (downward arrows) Wigner-molecule
ring configuration.22,24,37 The cusp at L = 45 occurs for both the
(1,5) and (0,6) Wigner-molecule configurations. (b) The six lowest-
in-energy states of the LLL spectrum in the immediate neighborhood
of the magic angular momentum L = 45 (ν = 1/3). Energies in units
of e2/κlB . The zero of the energy scale corresponds to Nh̄ωc/2.

uniform liquidlike electron density (consistent with the fact
that the RVEM wave functions are eigenstates of the total
angular momentum). Nevertheless, crystalline correlations are
manifested in the CPDs, defined as

P (r,r0) = 〈�L|
∑
i 	=j

δ(ri − r)δ(rj − r0)|�L〉, (9)

where r0 is a fixed point in the intrinsic frame of reference of
the rotating molecule. The CPD gives the probability of finding
an electron at position r given that another one is located at r0.

In this respect, as discussed in Sec. III of Ref. 23, the
rotating/vibrating electron molecule contrasts with the non-
rotating (static) Wigner molecule familiar from unrestricted
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Hartree-Fock theories, which does not preserve the total
angular momentum. As a result, the static Wigner molecule
exhibits crystalline patterns in the electron density, and thus it
is the proper finite analog of the bulk two-dimensional classical
Hartree-Fock Wigner crystal (considered in the early paper of
Maki and Zotos4) and of its composite-fermion extension14

(composite-fermion Wigner crystal, CFWC). In the RVEM
approach, behavior similar to a Wigner crystal is induced
through pinning, as will be elaborated in Sec. III.

We return now to the description of LLL states in the
neighborhood of ν = 1/3 having a good angular momentum
L. In the context of precursor states in a finite system,
Fig. 2 displays EXD results (for electron densities, top
row, and CPDs, bottom row) for three characteristic yrast
states in this neighborhood. Specifically, we consider N = 6
electrons in the LLL with total angular momenta L = 45
(ν = 1/3 = 0.333), 47, and 50. The EXD electron densities
[see Figs. 2(a)–2(c)] are azimuthally uniform, in consonance
with the quantum fluid picture of the LLL states. In contrast, for
all three cases, the EXD calculated CPDs [see Figs. 2(d)–2(f)]
exhibit crystalline correlations reflecting the predominance of
the (1,5) classical isomer38,39 in the intrinsic frame of a rotating
molecule.

The crystalline-like EXD-calculated CPDs for cusp states
(here, for L = 45 and 50) have been reported in many earlier
studies (see, e.g., Refs. 22,23,40–43). Our EXD calculations
(case of N = 6 with L = 47 in Fig. 2 and results for other

N ’s and L’s reported in Ref. 20) demonstrate that the intrinsic
crystalline correlations are present in all states comprising the
LLL spectra.

The degree of crystallinity (particle localization) in the
CPDs of Fig. 2 varies from one case to the other. This is
due to the different weight of the vibrational modes Qm

λ in
comparison to that of the vibrationless REM component [see
Eq. (5)]. Naturally, a larger vibrational component in the EXD
wave function results in reduced particle localization and in
a relative enhancement of the liquid character of the LLL
state. It is instructive to analyze the vibrational content of the
LLL states in detail with the help of the RVEM theory. As
illustrative examples, we consider below the cases of N = 6
electrons with L = 45 (ν = 1/3), which is an yrast cusp state,
and L = 47 (an yrast non-cusp state); see Fig. 1.

A. The case N = 6 with L = 45 (ν = 1/3 = 0.333)

For N = 6 and L = 45, the dimension of the EXD Hilbert
space is 1206; that is the number of uncorrelated Slater
determinants built out of the harmonic-oscillator states ul(r)
[see Eq. (4)]. The translationally invariant20 (TI) subspace
spanned by the RVEM wave functions has a much smaller
dimension of 149. Here, we analyze RVEM-diag results (see
Table I) for a smaller RVEM basis of dimension 44; this
suffices to yield a many-body yrast state having a 0.990 overlap
with the EXD wave function and an energy relative error of
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FIG. 2. (Color online) EXD electron densities (EDs, top row) and CPDs (bottom row) in the neighborhood of ν = 1/3 for N = 6 LLL
electrons, and for angular momenta (from left to right) L = 45 (ν = 0.333), 47, and 50. The solid dots denote the position of the fixed point.
All three CPDs reveal the predominance (to various degrees) of the (1,5) molecular configuration. The units for the vertical axes in the CPD
panels are arbitrary, but the same for all CPD frames here and throughout the paper. Lengths in units of lB . The ED units are in 10−2l−2

B . EDs
are normalized to the number of particles, N .
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TABLE I. Participation weights (sum of coefficients squared) of
different subspaces to the RVEM-diag wave function for N = 6 and
L = 45. The total dimension of the RVEM-diag space considered is
44 (149 being the upper limit for the full TI subspace). The symbol
�REM

L (n1,n2)Q[�] (L = L + �) denotes the subspace spanned by
all the vibrations considered of the form Q[�] ≡ Q

m1
λ1

Q
m2
λ2

Q
m3
λ3

with
� = λ1m1 + λ2m2 + λ3m3

RVEM subspace Dimension Weight

�REM
45 (1,5) 1 0.4477

�REM
40 (1,5)Q[5] 2 0.2344

�REM
35 (1,5)Q[10] 10 0.1490

�REM
30 (1,5)Q[15] 20 0.0912

�REM
45 (0,6) 1 0.0630

�REM
39 (0,6)Q[6] 5 0.0120

�REM
33 (0,6)Q[12] 5 0.0027

0.141% referenced to the EXD energy (i.e., an energy of
2.864187 e2/κlB compared to the EXD energy of 2.860151
e2/κlB).

The state with L = 45 is a cusp state. As a result the
RVEM component with highest contribution is expected to
have the form of a pure (vibrationless) �REM

45 (1,5), given
that the (1,5) molecular configuration is predominant in the
corresponding EXD-calculated CPD [see Fig. 2(d)]. This
expectation is confirmed by the RVEM-diag results in Table I,
where the participation weight (coefficient squared) of this
�REM

45 (1,5) component is listed as 0.4477. We note that in
total, including the vibrational components, the (1,5) isomer
contributes the most with a participation weight of 0.9223,
while the contribution of the (0,6) isomer is only 0.0777.

In Figs. 3(a) and 3(b), the CPD of �REM
45 (1,5), which is the

largest component in the RVEM-diag at L = 45, is compared
with the CPD associated with the RVEM diagonalization
for the maximum expansion (44 RVEM states) considered
in Table I. The CPD of the pure vibrationless component
[see Fig. 3(a)] displays a (1,5) isomeric configuration with
largest radial and azimuthal variations. The importance of the
additional vibrational modes [containing the Q[�] factors] in
bringing a close agreement with the EXD-calculated CPD is
apparent [compare Fig. 3(b) with the EXD-calculated CPD in
Fig. 2(d)].

For L = 45 (ν = 1/3 for N = 6), it is natural to compare
the behavior of RVEM-diag wave function (with 44 RVEM
states, see Table I) with that of the Laughlin trial function,2,13,23

in particular due to the fact that the corresponding energies
differ only in the fourth decimal point. Indeed, the Laughlin-
state energy is 2.86440 e2/κlB compared to the RVEM-diag
energy of 2.864187 e2/κlB ; this translates to a relative error
of 0.148% for the former compared to 0.141% for the latter.

To proceed in more depth with this comparison, we display
in Fig. 3(c) the CPD for the Laughlin state. It is apparent
that the Laughlin CPD deviates from the CPD associated with
the EXD calculation [see Fig. 2(d)] to a larger extent than
the RVEM-diag one [see Fig. 3(b)]; e.g., the central hump is
significantly attenuated in the Laughlin-state CPD, and this
reinforces the impression of a “liquid state.” Furthermore,
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FIG. 3. (Color online) (a) and (b) RVEM-diag CPDs for the cusp
yrast state with N = 6 LLL electrons, and L = 45 (corresponding to
ν = 1/3). (a) CPD with only one RVEM state [namely, �REM

45 (1,5)
with the largest participation, see Table I] included in the RVEM basis.
(b) The CPD corresponding to the largest number of RVEM states
considered in Table I. (c) The corresponding CPD for the Laughlin
wave function. (d) The radial densities ρ(r) for the EXD (solid line,
online red), RVEM-diag (with 44 states, see Table I; dotted line, online
brown), and Laughlin (long dashed line, online blue) wave functions.
The solid dots in (a)–(c) denote the position of the fixed point. The
CPD in (b) exhibits only minor differences from the EXD-calculated
CPD in Fig. 2(d). The circled numbers in (a) and (b) denote the
number of states included in the RVEM expansion. The units for the
vertical axes in the CPD panels are arbitrary, but the same for all
CPD frames here and throughout the paper. Lengths in units of lB .
The units of the vertical axis in (d) are l−2

B . The radial densities are
normalized as

∫ ∞
0 ρ(r)rdr = N .

Fig. 3(d) compares the radial electron densities for the
EXD, RVEM-diag, and Laughlin states. Again, the deviation
between the EXD and RVEM-diag radial EDs is smaller than
the deviation between the EXD and Laughlin radial EDs. This
behavior is in agreement with the fact that the overlap between
the EXD and RVEM-diag states is 0.990, while that between
the EXD and the Laughlin state is smaller,44,45 i.e., 0.982.

B. The case N = 6 with L = 47

For N = 6 and L = 47, the dimension of the EXD Hilbert
space is 1540. The translationally invariant20 (TI) subspace
spanned by the RVEM wave functions has a much smaller
dimension of 180. Here, we analyze RVEM-diag results (see
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TABLE II. Participation weights (sum of coefficients squared) of
different subspaces to the RVEM-diag wave function for N = 6 and
L = 47. The total dimension of the RVEM-diag space considered is
78 (180 being the upper limit for the full TI subspace). The symbol
�REM

L (n1,n2)Q[�] (L = L + �) denotes the subspace spanned by
all the vibrations considered of the form Q[�] ≡ Q

m1
λ1

Q
m2
λ2

Q
m3
λ3

with
� = λ1m1 + λ2m2 + λ3m3.

RVEM subspace Dimension Weight

�REM
45 (1,5)Q2 1 0.3549

�REM
40 (1,5)Q[7] 4 0.2283

�REM
35 (1,5)Q[12] 11 0.1485

�REM
30 (1,5)Q[17] 20 0.0400

�REM
45 (0,6)Q2 1 0.1405

�REM
39 (0,6)Q[8] 8 0.0539

�REM
33 (0,6)Q[14] 22 0.0262

�REM
47 (2,4) 1 0.0002

�REM
43 (2,4)Q[4] 2 0.0012

�REM
39 (2,4)Q[8] 8 0.0059

Table II) for a smaller RVEM basis of dimension 78; this
suffices to yield a many-body yrast state having an 0.986
overlap with the EXD wave function and an energy relative
error of 0.19% referenced to the EXD energy.

The state with L = 47 is not a cusp state [see Fig. 1(a)].
As a result, the RVEM component with highest contribution
is expected to have the form �REM

45 (1,5)Q2|0〉, given that the
(1,5) molecular configuration is predominant in the nearest
L = 45 cusp state (see Fig. 2), and corresponding to the fact
that two units of angular momentum separate 47 from 45. This
expectation is confirmed by the RVEM-diag results in Table II,
where the participation weight of this Q2 component is listed
to be 0.3549. We note that vibrations associated with the (1,5)
isomer contribute the most with a (combined) participation
weight of 0.7717, while those associated with the (0,6) isomer
contribute only by 0.2206. The (2,4) isomer has a much smaller
contribution with a weight of 0.0073.

Restating the above, we note that for N = 6 and L = 47 the
vibrationless (1,5) component does not contribute to this LLL
state. This is due to the fact that this state is a non-cusp yrast
state. The component with the largest participation weight is
�REM

45 (1,5)Q2; it corresponds to a dipolar (� = 2) vibration
of the largest component [i.e., �REM

45 (1,5)] in the nearest cusp
state with L = 45.

In Fig. 4, the CPD of the largest component of the
RVEM-diag calculated for L = 47, that is �REM

45 (1,5)Q2, is
compared with the CPD associated with the the wave function
resulting from the RVEM diagonalization for the maximum
expansion (78 RVEM states) considered in Table II. While
the effect of the dipolar Q2 vibration in softening electron
localization is visible when comparing to the pure REM
CPD [compare Fig. 4(a) to Fig. 3(a)], the importance of the
remaining additional vibrational modes in bringing a close
agreement with the CPD obtained from the EXD calculation
is apparent [compare Fig. 4(b) to the EXD-calculated CPD in
Fig. 2(e)].
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FIG. 4. (Color online) RVEM-diag CPDs for the noncusp yrast
state with N = 6 and L = 47. (a) Only one RVEM state [namely,
�REM

45 (1,5)Q2 with the largest participation, see Table II] is included
in the RVEM basis. (b) The CPD corresponding to the largest
number of RVEM states considered in Table II. The solid dots
denote the position of the fixed point. The CPD in (b) exhibits only
minor differences from the EXD-calculated CPD in Fig. 2(e). The
circled numbers denote the number of states included in the RVEM
expansion. The units for the vertical axes are arbitrary, but the same
for all CPD frames here and throughout the paper. Lengths in units
of lB .

III. PINNED ELECTRON MOLECULE AND THE
DESCRIPTION OF CRYSTAL-TYPE BEHAVIOR

The experimentally observed rf or microwave resonances
in the spectrum of a 2D electron system under high B have
been interpreted8–10,18,19 as collective modes of a weakly
pinned (due to disorder) Wigner-solid phase. Within the
context of the LLL Hilbert space of a finite system, pinning
can be described by a many-body Hamiltonian having the
following two terms in addition to the Hamiltonian in Eq. (1):
(i) impurity-type external potentials denoted by Vimp and
(ii) an overall confinement Hamiltonian term denoted by Hcon.
Namely,

H = H int
LLL + Hcon + Vimp. (10)

The confinement Hamiltonian accounts for the neutralizing
ionic background,28–33 and (for a smooth edge) it can be
approximated as being harmonic:

Hcon =
N∑

i=1

1

2m∗
(

pi − e

c
Ai

)2
+

N∑
i=1

1

2
m∗ω2

0r2
i . (11)

In Eq. (11), p is the momentum of an electron and A(r) =
(−By,Bx,0)/2 is the vector potential.

In the presence of the confinement, the degeneracy of the
single-particle orbitals within each Landau level is lifted.
In the high-magnetic-field regime considered in this paper
(ω0 
 ωc), the harmonic-confinement part involves only the
Darwin-Fock levels that form the LLL band, and it can be
approximated26,27 simply as

H con
LLL = h̄

(√
ω2

0 + ω2
c/4 − ωc/2

)
L. (12)

Since H con
LLL is linear in the total angular momentum L, it

influences only the total energies of the LLL states, but not
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their many-body structure [determined solely by H int
LLL, see

Eq. (1)]. We note that the description of pinning below is
independent of the precise value of ω0.

The first two terms in Eq. (10) define the “global”
Hamiltonian

Hglb = H int
LLL + H con

LLL, (13)

which provides the global ground state of the system at a given
B (in the absence of disorder).

An example of a global LLL spectrum (as a function of the
applied magnetic field) corresponding to the Hamiltonian Hglb

is displayed in Fig. 5. Specifically, for N = 6 electrons, the
global LLL spectrum is plotted in the neighborhood of ν = 1/3
(L = 45). It is seen that only cusp states (see Fig. 1) become
ground states [specifically for L = 40, 45, and 50, associated
with the (1,5) molecular configuration]. The first excited states
are separated from the ground states by relatively large energy
gaps and are composed of these (1,5) cusp states and those
associated with the (0,6) molecular configuration (with L = 39
and 51, see Fig. 1).46 The remaining LLL states in Fig. 1,
including the rest of the yrast states (e.g., with L = 41, 42, 43,
44, 46, 47, 48, 49) become higher excitations in Fig. 5.

The effect of the pinning perturbation term Vimp in Eq. (10)
is to mix global states with good L and produce a wave
packet without a good total angular momentum. For a weak
pinning case (small perturbation Vimp), it is apparent that
Vimp can efficiently mix only two global ground states in the
neighbohood of their crossing points (denoted by arrows in
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FIG. 5. The global spectrum as a function of the magnetic field
in the neighborhood of ν = 1/3 for N = 6 LLL electrons. The
confinement was taken as h̄ω0 = 3.6 meV. Note that all global ground
states are yrast cusp states (see Fig. 1), but not all cusp states become
global ground states.22,26,27 The yrast cusp states with L = 39 (0,6), 40
(1,5), 45 (1,5), 50 (1,5), 51 (0,6) are portrayed by thick dashed-dotted
lines. The L = 45 curve relates to ν = 1/3 in the thermodynamic
limit. The numbers next to some curves (for yrast states only) denote
the corresponding total angular momenta. The arrows highlight a
couple of curve crossings (for curves associated with cusp states).
Remaining parameters: κ = 13.1 and m∗ = 0.067me, corresponding
to GaAs. The topology (relative position) of the curves is independent
of the specific value for h̄ω0 (see text).

Fig. 5). Thus a weakly pinned state will have in general the
form

�PIN(L1,L2; α,β) = α�L1 + βeiθ�L2 , (14)

where L1 and L2 are the magic angular momenta of the global
ground states and α2 + β2 = 1. The phase θ determines the
orientation of the pinned state; we mention it here for the
sake of generality and completeness, but it is not an essential
parameter for the rest of the paper.

It is apparent that the total angular momentum of the wave
packet state in Eq. (14) is not a good quantum number and is
given as the average value

L̄ = α2L1 + β2L2. (15)

Likewise, the energy of the pinned state is given as the average
of the energies E1 and E2 of the superimposed states,

EPIN(L1,L2,α,β) = α2E1 + β2E2. (16)

To demonstrate that weak pinning leads to formation of
a nonrotating Wigner-crystal-type state, we display in Fig. 6
the electron densities for (a) �PIN(45,50; 1/

√
2,1/

√
2) and

(b) �PIN(45,51; 1/
√

2,1/
√

2), where EXD yrast states have
been used for both �L1 and �L2 . Figure 6 demonstrates
that the pinning of LLL states leads to formation of ex-
plicitly nonrotating EMs with the molecular configurations
being present in the electron densities themselves. This
amounts to a “reverse projection”47—that is, construction of a
symmetry-broken, nonrotating, pinned state via superposition
of symmetry-conserving, liquidlike states (with good total
angular momenta), which themselves are characterized by
azimuthally uniform electron densities [see Figs. 2(a)–2(c)],
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FIG. 6. (Color online) Electron densities for pinned [see Eq. (14)]
LLL states in the neighborhood of ν = 1/3 for N = 6 electrons.
EXD states have been used for both �L1 and �L2 . (a) L1 = 45 and
L2 = 50 (|L1 − L2| = 5). (b) L1 = 45 and L2 = 51 (|L1 − L2| = 6).
The formation of a pinned (nonrotating) EM representing a (1,5)
molecular configuration in (a) and a (0,6) molecular configuration
in (b) is transparent. α = β = 1/

√
2. Note that all six humps of

localized electrons are visible in the electron densities of the pinned
EM (in contrast to five visible humps in the CPDs of a rotating
electron molecule). Lengths in units of lB . The units of the vertical
axes are 10−2l−2

B . The electron densities are normalized to the number
of particles, N .
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but exhibit intrinsic crystalline correlations manifested in the
corresponding CPDs [see Figs. 2(d)–2(f)].

A remarkable trend revealed by the EDs in Fig. 6 is that the
(1,5) molecular configuration corresponds to a superposition
of two EXD yrast states with angular momenta differing
by |L1 − L2| = 5 angular momentum units, while the (0,6)
molecular configuration corresponds to a superposition of two
EXD yrast states with angular momenta differing by |L1 −
L2| = 6 units. This motivated us to study the ED patterns in
the neighborhood of ν = 1/3 for the superposition of two EXD
yrast states as a function of the difference �L = |L1 − L2| (in
particular for �L = 2,3, and 4; see Fig. 7). Of course, the
cases portrayed in Fig. 7 involve mixing with excited states,
which are separated from the global ground state (L1 = 45)
by larger energy gaps (see Fig. 5) and are not expected to
materialize in a weak-pinning situation. Figure 7 illustrates
that these combinations lead to the formation of charge density
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FIG. 7. (Color online) Electron densities corresponding to charge
density waves for pinned [see Eq. (14)] LLL states in the neigh-
borhood of ν = 1/3 for N = 6 electrons (corresponding to angular
momenta around L = 45). EXD states have been used for both �L1

and �L2 . (a) L = 45 and L1 = 47 (|L1 − L2| = 2). (b) L1 = 45 and
L2 = 48 (|L1 − L2| = 3). (c) L1 = 45 and L2 = 49 (|L1 − L2| = 4).
Unlike the cases in Fig. 6, the EDs here are not commensurate with the
(1,5) or (0,6) classical Wigner-molecule equilibrium configurations;
instead, they represent charge density waves. (d) The relative
amplitude of the density oscillations as a function of �L = |45 − L2|,
referenced to the WM case with �L = 5 [which is the strongest
one, see Fig. 6(a)]. The numbers above the vertical bars denote the
values of L2. Lengths in units of lB . The units of the vertical axes
are 10−2l−2

B . The electron densities are normalized to the number of
particles, N .

waves (CDWs) instead of Wigner-molecular crystallites (as in
Fig. 6). The relative amplitudes of the oscillations in the EDs
shown in Figs. 7(a)–7(c), referenced to the WM with �L = 5
[see Fig. 6(a)], are shown in Fig. 7(d) exhibiting attenuated
variations in the density.

Figure 8 portrays the electron densities associated with
superposition of pure REM wave functions �REM

L (1,5) and
�REM

L (0,6) for N = 6 electrons. Such REM functions are
the strongest components in the RVEM expansions of the
EXD LLL states for L = 45, 50, and 51. We note that the
magic angular momentum L = 45 is commensurate with
both the (1,5) and (0,6) isomeric structures, while the magic
L = 50 and 51 are commensurate only with one isomer,
i.e., the (1,5) for the former and the (0,6) for the latter.
Figure 8 shows that superposition of same-configuration
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FIG. 8. (Color online) Electron densities for pinned [see Eq. (14)]
LLL states in the neighborhood of ν = 1/3 for N = 6 electrons.
Pure REM states �REM

L (n1,n2) have been used for forming the
superposition in Eq. (14). (a) L1 = 45 and L2 = 50; with a (1,5)
molecular isomer. (b) L1 = 45 (1,5) and L2 = 51 (0,6). (c) L1 = 45
(0,6) and L2 = 50 (1,5). (d) L1 = 45 and L2 = 51; both with a
(0,6) isomer. The formation of a pinned (static) Wigner molecule
representing a (1,5) molecular configuration in (a) and a (0,6)
molecular configuration in (d) is apparent. Superpositions of REM
functions belonging to different isomers [(b) and (c)] fail to produce a
pinned crystalline structure. α = β = 1/

√
2. The units of the vertical

axes are 10−2l−2
B . The electron densities are normalized to the number

of particles, N .
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RVEM functions leads to pinned WMs [see Figs. 8(a) for
(1,5) and 8(d) for (0,6)]. In contrast, superposition of RVEM
functions corresponding to different isomers fails to generate
any crystalline structures. This means that the emergence of the
EXD pinned crystallites (such as in Fig. 6) cannot be explained
(or anticipated) without the prior knowledge of the presence
of appropriate (n1,n2, . . . ,nr ) isomeric RVEM functions as
physical components in the EXD LLL states with good L [see,
e.g, the RVEM expansions in Tables I and II, and in Ref. 20].

The above considerations culminate in the following “se-
lection rules” for the construction of pinned Wigner-molecule
crystallites: (1) the difference between the angular momenta
of the superimposed states [e.g., L1 and L2 in Eq. (14)]
should be a multiple of the magic angular momentum period
associated with cusp states [e.g., either �L = 5 or 6 for N = 6,
see Fig. 1(a)]. (2) A given isomer [e.g., (1,5) or (0,6) for
N = 6] must have a participation weight in both the symmetry-
conserving superimposed states (for the participation weights
for N = 6 and L = 45, see Table I). Naturally, different
participation weights give rise to different strengths of the
density oscillations in the Wigner-molecule crystallites [see
Fig. 7(d)].

IV. PINNED ELECTRON MOLECULE IN THE
NEIGHBORHOOD OF ν = 1

The recent experimental observation in the neighborhood
of ν = 1 (in addition to the ν = 1/3 neighborhood) of a
microwave resonance in the spectrum of a 2D electon system
under high B has also been associated with the formation of
a weakly pinned Wigner solid.18,19 In this section, following
an analysis similar to that used in Sec. III for the ν = 1/3
neighborhood, we show that crystallite states (precursors to
a Wigner solid in the thermodynamic limit) develop also
naturally for a finite system in the neighborhood of ν = 1.

We start by displaying in Fig. 9 the global spectrum for
N = 6 electrons; in this case, L = L0 = 15 corresponds to
an integral filling factor ν = 1 [see Eq. (2)]. The global LLL
spectrum around ν = 1 (see Fig. 9) shares the same prominent
characteristics with that in the neighborhood of ν = 1/3 (see
Fig. 5), i.e., only yrast cusp states associated with magic
angular momenta (here, L = 15, 21, 25, 30) can become
global ground states for a given magnetic field. The rest of
the LLL states [derived from the interaction-only Hamiltonian
H int

LLL; see Eq. (1)] become excited states in Fig. 9 and they are
separated by substantial gaps from the global ground states.

As was pointed out in Sec. III, weak pinning results in
the mixing of two global-ground states in the neighborhood
of crossing points (see, e.g., arrows in Fig. 9), according
to the prescription in Eq. (14). To demonstrate that weak
pinning leads to formation of a nonrotating Wigner-crystal-
type state in the neighborhood of ν = 1, we display in Fig. 10
the electron densities for (a) �PIN(15,21; 1/

√
2,1/

√
2) and

(b) �PIN(15,20; 1/
√

2,1/
√

2), where EXD yrast states have
been used for both �L1 and �L2 . Figure 10 shows that the
pinning of LLL states in the neighborhood of ν = 1 leads also
to the formation of explicitly nonrotating EMs, with the molec-
ular configurations being present in the very electron densities.

 71.5

 72

 72.5

 73

 73.5

 74

 3  5  7  9  11

B (T)

E
ne

rg
y 

(m
eV

)

15

21

25

30

20

27

3131

2624

29

27

28

FIG. 9. The global spectrum as a function of the magnetic
field in the neighborhood of ν = 1 for N = 6 LLL electrons. The
confinement was taken as h̄ω0 = 3.6 meV. Note that all global ground
states are yrast cusp states, but not all cusp states become global
ground states.22,26,27 The yrast cusp states with L = 15, 20 (1,5), 21
(0,6), 25 (1,5), 27 (0,6), 30 (1,5) are portrayed by thick dashed-dotted
lines. The L = 15 curve relates to ν = 1 in the thermodynamic
limit. The numbers next to some curves denote the corresponding
total angular momenta. Yrast states in addition to the cusp states
are portrayed by a solid line. The arrows highlight a couple of
curve crossings (for curves associated with cusp states). Remaining
parameters: κ = 13.1 and m∗ = 0.067me, corresponding to GaAs.
The topology (relative position) of the curves is independent of the
specific value for h̄ω0 (see text).
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FIG. 10. (Color online) Electron densities for pinned [see
Eq. (14)] LLL states in the neighborhood of ν = 1 (L = 15) for
N = 6 electrons. EXD states have been used for both �L1 and
�L2 . (a) L1 = 15 and L2 = 21 (|L1 − L2| = 6). (b) L1 = 15 and
L2 = 20 (|L1 − L2| = 5). The formation of a pinned (nonrotating)
EM representing a (0,6) molecular configuration in (a) and a
(1,5) molecular configuration in (b) is transparent. α = β = 1/

√
2.

Lengths in units of lB . The units for the vertical axes are 10−2l−2
B . The

electron densities are normalized to the number of particles, N .
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We stress again the property that a difference of �L = 6 in
angular momenta generates a (0,6) isomer, while a difference
of �L = 5 generates a (1,5) isomer; this was also the case
in the neighborhood of ν = 1/3 (see Fig. 6 and the selection
rules given at the end of Sec. III).

We further note that the filling factor corresponding to the
crossing point of the L1 = 15 and L2 = 21 global curves is
0.857, while the filling factor for the crossing point of the
L1 = 45 and L2 = 50 global curves is 0.316; here, the filling
factor is calculated from Eq. (2). As a result, we find that the
pinned Wigner crystallite can appear in a larger range of filling
factors away from ν = 1 (i.e., �ν = 0.143) compared to the
corresponding range in the neighborhood of ν = 1/3 (where
�ν = 0.333 − 0.316 = 0.017). This trend is in agreement
with experimental observations.18

V. LARGER SIZES

In the previous sections, we addressed the interplay of liquid
and crystalline states by studying in detail EXD results for the
case of N = 6 electrons. Our findings, however, are not limited
to the case of N = 6 electrons, but extend to larger sizes; this
is supported by the EXD results presented in this section for
sizes in the range from N = 7 to 29 electrons.

A. Extrapolation of total energies

In Fig. 11(a), we plot the three lowest global ground-state
energies around ν = 1/3 (for N = 7 electrons) as a function
of the magnetic field B. They correspond to three cusp states
with angular momenta 57, 63, and 69. The magnetic field
corresponding to ν = 1/3 is denoted by B1/3, while those
associated with the two crossing points A and C (left and
right of B1/3) are denoted as B− and B+, respectively. The
AD dashed line corresponds to the broken-symmetry (pinned)
Wigner-crystallite state �PIN(57,63; 1/

√
2,1/

√
2) with en-

ergy EPIN = Eglb(L1 = 57)/2 + Eglb(L2 = 63)/2, while the
EC dashed line corresponds to a pinned crystalline state
�PIN(63,69; 1/

√
2,1/

√
2) with energy EPIN = Eglb(L1 =

63)/2 + Eglb(L2 = 69)/2.
The energy cost (energy gap to be overcome) for mixing

the L = 63 ground state at ν = 1/3 with the excited state
L = 57 directly (vertically) above it, yielding the pinned
crystallite �PIN(57,63; 1/

√
2,1/

√
2) is denoted by �xc [see

Fig. 11(a)]. Most importantly, at B− (or B+) the good-angular
momentum states L1 = 57 and L2 = 63 (or L1 = 63 and
L2 = 69) are degenerate and thus the energy cost (gap) for
creating the crystallite from a superposition of two angular
momenta states vanishes. The least favorable place (that is,
the largest energy cost) for creating the crystallite is at B1/3,
while, as mentioned above, at B−(B+) the cost vanishes.
Since ν1/3B1/3 = ν−B− = ν+B+ (keeping the electron density
constant), this correlates with the experimentally observed
continuous reduction of the microwave absorption strength
as the filling factor ν approaches the value 1/3, reflecting the
enhanced stability of the liquid state at ν = 1/3 compared
to the crystalline one. As one moves away from B1/3, the
energy cost for creating the crystallite decreases, so that a
weaker disorder can act as a pinning perturbation leading to
the formation of the crystallite, as illustrated in Fig. 11.
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FIG. 11. (Color online) (a) The global energy spectrum [ground
state (L = 63) and first excited states (L = 57 and 69)] at ν =
1/3 (and its neighborhood) for N = 7 electrons, as a function
of the magnetic field B. The magnetic field corresponding to
filling factor ν = 1/3 is denoted by B1/3, and those corresponding
to the crossing points A and C are denoted by B− and B+.
The dashed lines indicate the energies for the pinned crystalline
states [Eq. (14)] �PIN(57,63; 1/

√
2,1/

√
2) (AD, left dashed line)

and �PIN(63,69; 1/
√

2,1/
√

2) (EC, right dashed line). (b)–(d)
These panels portray the elecrton density of the pinned crystallite
�PIN(57,63; α,β) for various values of the weights α and β,
corresponding to different degrees of pinning at the points marked
in (a) as F and G and on the dashed-line segment marked in (a) as
AD. In (a), the points marked F , G, and A can be reached via a
weak-pinning disorder, while moving from A to D along the dashed
line would require strong-pinning disorder. The energy cost (gap)
for mixing the ground state (L = 63) with the first excited state
(L = 57) at B1/3 [point marked F in (a)] is denoted as �xc. The
confinement was taken as h̄ω0 = 3.6 meV. Remaining parameters:
κ = 13.1 and m∗ = 0.067me, corresponding to GaAs. The topology
(relative position) of the curves is independent of the specific value
for h̄ω0 (see Sec. III). Lengths in units of lB . The units of the vertical
axes are 10−2l−2

B . The electron density is normalized to the number
of particles, N .

The gradual development of a Wigner crystallite in the
neighborhood of 1/3 for weak-pinning conditions is illustrated
in Figs. 11(b)–11(d), where the pinned state is illustrated at
the points marked F , G, and A, respectively. To simulate the
experimental finding of a liquid state at ν = 1/3 (B1/3), we
assume a sufficiently weak pinning so that the weights α and
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β in the superposition α�L1=57 + β�L2=63 [see Eq. (14)] can
be taken as α = 0 and β = 1; indeed, the electon density in
Fig. 11(b) is circularly symmetric corresponding to a liquid
state. We remark that because of the large mixing energy
gap at B1/3, the creation of a pinned crystalline state at
ν = 1/3 requires strong-pinning disorder. The electron density
associated with a pinned crystallite shown in Fig. 11(c)
[corresponding to the point marked G in Fig. 11(a)] was
obtained via weak-pinning induced mixing (α = 0.141,β =
0.990). This electron density exhibits partially developed
crystalline features, with a (1,6) electronic configuration. A
fully developed (1,6) crystallite (obtained for α = β = 1/

√
2)

is shown in Fig. 11(d) [corresponding to the point marked as
A in Fig. 11(a)], which as mentioned above is associated with
a vanishing mixing gap (i.e., most susceptible to pinning by
weak disorder).

To gain further insights into the nature of the Wigner
crystalline states considered in this paper, it is instructive
to extrapolate the EXD-calculated �xc as a function of 1/N

(where N is the number of electrons) to the thermodynamic
limit (i.e., 1/N → 0). Such extrapolation (see Fig. 12 and
Table III) allows us to compare our results with previous
treatments of the Wigner crystal based on variational wave
functions in the bulk;4,6,14 the latter results are summarized in
Table IV. Since the results from the bulk wave functions4,6,14

assume that the kinetic energy of all the electrons is quenched
to the value of the LLL energy, h̄ωc,30,33 we need to omit kinetic
energy contibutions from �xc when making comparisons;
the energies used in Fig. 12 correspond to spectra like the
one shown for N = 6 in Fig. 1. Then, 2�xc is given by
the difference |Eint

1 − Eint
2 | of the electron-electron interaction

energies [the eigenenergies of the Hamiltonian in Eq. (1)]
associated with the yrast state with (magic) angular momentum
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FIG. 12. (Color online) Extrapolation of the EXD-calculated
[see Eq. (1)] energy gap per particle, 2�xc/N , at ν = 1/3 to the
thermodynamic limit (1/N → 0). Results are shown in the range
N = 7 to 12 (see Table III). In the thermodynamic limit, the energy
cost per particle, �xc/N , to create a pinned crystal at precisely
ν = 1/3 is approximately 0.004e2/κlB . Vertical axis: energies per
particle in units of e2/κlB . Horizontal axis: 1/N , where N is the
number of electrons.

TABLE III. Interaction energies per particle [see the Hamiltonian
in Eq. (1)] from N = 7 to 12 of the yrast states entering in the
evaluation of the gap 2�xc/N . (n1,n2) denotes the ring configuration.
Energies in units of e2/κlB .

N (n1,n2) L1 L2 (3L0) Eint
1 /N Eint

2 /N

7 (1,6) 57 63 0.57409 0.54213
8 (1,7) 77 84 0.63462 0.60373
9 (2,7) 101 108 0.68860 0.66177
10 (2,8) 127 135 0.74287 0.71684
11 (3,8) 157 165 0.79218 0.76915
12 (3,9) 189 198 0.84187 0.81921

L = 3L0 = 3N (N − 1)/2 (ν = 1/3) and the (magic) yrast
state immediately preceeding it; see detailed description in
Table III.

Inspection of the values in Table IV leads us to conclude that
the Wigner crystalline state described by our treatment entails
the smaller gap (energy cost) of the crystal relative to the liquid
state at ν = 1/3, compared to previous treatments. This finding
is a consequence of the quantum nature of our crystalline state,
exhibiting a high degree of electronic correlations. Since �xc

is largest at ν = 1/3 [see Fig. 11(a)], the above conclusion
extends to the crystalline states formed (via weak-disorder
pinning) in the whole neighborhood of ν = 1/3.

B. Evolution of crystalline patterns

In this section, we discuss the evolution of the pinned
EXD crystalline patterns as a function of size (the number
of electrons N ). In Fig. 11, in addition to the N = 6 system
discussed in detail in earlier sections, we presented results for
pinned Wigner crystallites in the neighborhood of ν = 1/3
for N = 7 electrons; they conform to a (1,6) molecular
configuration in agreement with the finite-size crystalline
structures for repelling classical point charges.38,39

Currently, for N > 10, it is not computationally convenient
to calculate electron densities (or CPDS) in the neighborhood
of ν = 1/3. However, given the fact that the crystalline
isomeric structures are independent of the filling factor ν (they
depend only on the number of electrons N ; compare Secs. III
and IV), we can use EXD results in the neighborhood of ν = 1

TABLE IV. Energy cost per particle at the thermodynamic limit
(compared to the liquid state) for forming a Wigner-crystalline state
at ν = 1/3 according to previous approaches and the present work.
Note that smaller values reflect higher stability of the crystal. Values
corresponding to previous Wigner-crystal approaches were extracted
from Fig. 2 in Ref. 14. Energies in units of e2/κlB .

Approach Energy cost per particle

Maki-Zotosa (Hartree Fock) 0.0245
Lam-Girvinb 0.0183
Yi-Fertigc (composite-fermion WC) 0.0070
Present workd 0.0040

aReference 4.
bReference 6.
cReference 14.
dSee Fig. 12.
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FIG. 13. (Color online) Electron densities for pinned (crystalline)
[see Eq. (14)] LLL states in the neighborhood of ν = 1 for N =
13 electrons. (a) and (b) Formation of a pinned (nonrotating) EM
representing a (4,9) molecular configuration is evident. In (a) L2 −
L1 = 9, with the outer ring showing nine density humps, and in
(b) L2 − L1 = 4, showing four density peaks on the inner ring. α =
β = 1/

√
2. Lengths in units of lB . The units of the vertical axes are

10−2l−2
B . The electron density is normalized to the number of particles,

N .

to study the evolution of pinned crystallites with size, without
loss of generality.

To this end, we present EXD calculated electron densities
of pinned crystallites for three (larger than N = 6) sizes, i.e.,
N = 13 (see Fig. 13), N = 20 (see Fig. 14), and N = 29 (see
Fig. 15). In accordance with the selection rules described in
Sec. III, the pinned EM for N = 13 resulting from mixing
states with L1 = 136 and L2 = 145 exhibits a nine-electron
outer ring (L2 − L1 = 9) [see Fig. 13(a)], and the one with
L1 = 141 and L2 = 145 shows a four-electron inner ring
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N=20e         EXD   EDs         PINNED EMs

FIG. 14. (Color online) Electron densities for pinned [see
Eq. (14)] LLL states in the neighborhood of ν = 1 for N = 20
electrons. In (a), L2 − L1 = 12 corresponding to twelve electrons
on the outer ring, and in (b), L2 − L1 = 13, with thirteen electrons
on the outer ring. These electron densities correspond to formation of
pinned (nonrotating) EM isomers representing a (1,7,12) molecular
configuration (a) and a (1,6,13) molecular configuration (b). α = β =
1/

√
2. Lengths in units of lB . The units of the vertical axes are 10−2l−2

B .
The electron density is normalized to the number of particles, N .
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FIG. 15. (Color online) Electron densities for pinned (crystalline)
[see Eq. (14)] LLL states in the neighborhood of ν = 1 for N = 29
electrons. In (a), L2 − L1 = 15 corresponding to fifteen electrons on
the outer ring, and in (b), L2 − L1 = 14, with fourteen electrons on
the outer ring. These electron densities correspond to formation of
pinned (nonrotating) EM isomers representing a (4,10,15) molecular
configuration (a) and a (5,10,14) molecular configuration (b). α =
β = 1/

√
2. Lengths in units of lB . The units of the vertical axes are

10−2l−2
B . The electron density is normalized to the number of particles,

N .

(L2 − L1 = 4) [see Fig. 13(b)]. The superposition of these
two mixed states gives the (4,9) pinned configuration. For
N = 20 (see Fig. 14) and N = 29 (see Fig. 15), we focus on
the electron configurations in the outer rings of the pinned
EM crystallites; the classical molecular isomers38,39 exhibit
the (1,7,12) and (1,6,13) crystalline configurations for N = 20
and the (4,10,15) and (5,10,14) configurations for N = 29. It
is evident that the quantum mechanical Wigner configurations
of the outer rings in the EXD-calculated EDs in Figs. 14
and 15 are in agreement with the above classical patterns.
For these sizes, i.e., N = 20 and 29, exploration of the
molecular configurations of the electrons in the inner rings via
EXD calculations will require consideration of higher angular
momenta and a heavier computational effort, beyond the scope
of this paper.

To summarize, for all sizes (in the range of N = 6 to 29)
that we considered here (and for angular momentum values
that we have been able to reach, at the present time, via
quantum mechanical EXD calculations), the pinned crystalline
configurations characterizing the electron densities are in
agreement with those obtained from structural optimization
of Coulomb repelling classical point charges confined by a
2D circular harmonic potential.38,39 This finding is particularly
noteworthy since the LLL EXD wave functions are determined
solely by the interelectron repulsion [see the Hamiltonian
in Eq. (1)]. As discussed in the context of the classical
calculations (see Table I in Ref. 38), these configurations
develop gradually a core that possesses a hexagonal Wigner-
lattice structure for larger clusters (above hundred particles).
The aforementioned agreement supports the conjecture that
the quantum mechanical crystalline configurations described
in this paper may be considered as embryonic Wigner
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crystallites extrapolating to the Wigner hexagonal lattice at
the thermodynamic limit.

VI. DISCUSSION: COMPOSITE-FERMION-CRYSTAL
APPROACHES VERSUS THE WIGNER SOLID

IN THE NEIGHBORHOOD OF ν = 1/3

The concept of a composite-fermion Wigner crystal was
described14 through the use of the wave-function approach,
i.e., by attaching Jastrow vortices (factors) to the Maki-Zotos4

Hartree-Fock-crystal wave function. Of relevance for our
purposes here is Fig. 2 in Ref. 14, where the energies of the
CFWC are compared to those of the Laughlin liquid states2 in
the range 0.10 � ν � 0.35 (which includes the FQHE fillings
1/7, 1/5, and 1/3). From this figure,14 it is evident that the
CFWC energy lies far above the Laughlin-liquid energy in the
neighbohood of ν = 1/3. On the other hand, the CFWC energy
is competitive with the Laughlin energy in the neighborhood
of ν = 1/5, and it becomes lower than the Laughlin energy in
the neighborhood of ν = 1/7. The above trends suggest that
the CFWC wave function is a legitimate candidate for the case
of the Wigner solid in the neighborhood of ν = 1/5, but not
for the Wigner solid recently observed18 in the neighborhood
of ν = 1/3. This is consistent with most of the subsequent
studies16,17 associated, or related, to CF crystals; indeed,
we are unaware of any CF crystal study that addressed the
neighborhood of ν = 1/3.

The similarity between the IQHE and the FQHE was used
in Ref. 48 to study whether the reentrant IQHE behavior49 may
occur also for CFs in higher CF Landau levels. According to
this analogy, residual interactions between CF quasiparticles
(that is excitations of the CF fractional quantum Hall effect
liquid) may lead to formation of CF-solid phases or to second-
generation CF liquids. Reference 48 employed the same
Hamiltonian composite-fermion approach as Narevich al.15 to
model the CF-solid and CF-liquid phases around the electronic
fractional fillings 4/11, 6/17, and 4/19, which are higher than
1/3. Such an approach (employing a two-component picture,
i.e., CF liquid and its excitations), which has been noted in
Ref. 18, contrasts with our approach where a single class of
wave functions is used for both the liquid and Wigner-solid
states.

Of relevance to our paper here is the fact that Ref. 48 did
not produce new CF results in the neighborhood of ν = 1/3
with respect to the previous composite-fermion Wigner-crystal
studies14 of Yi and Fertig. Furthermore, the Hamiltonian
CF approach employed in Ref. 48 appears not to describe
the neighborhood of ν = 1/3, since it is a weak-coupling
perturbative method applicable50 only to cases “when a higher
CF LL level (p � 1) is partially filled”; it fails when the
composite-fermion filling factor (νCF) is close to an integer
value (corresponding to a closed CF shell). Note that for an
electronic filling factor ν ∼ 1/3, one has νCF ∼ 1.

The above approaches were explicitly based on a bulk
2D system. However, the liquidlike composite-fermion trial
functions were formulated11,13 in the context of a finite
system. This offered several advantages, an important one
being the ability to perform quantitative comparisons13 with
exact results (e.g., for energies) and wave functions (e.g., pair
correlations and overlaps). The composite-fermion crystal in

Refs. 16 and 17 (henceforth referred to as CFC, to distinguish
it from the aforementioned infinite CFWC) represents an
attempt to formulate a CF crystal for a finite system. The
important new element in the CFC approach is the use of
the correlated rotating-electron-molecule21,23 wave function
in the place of the uncorrelated single Slater determinant
employed in the CFWC of Ref. 14. This substitution is
nontrivial, and (in the framework of the CFC theory) it
leads to restoration of the fundamental symmetries of the
many-body Hamiltonian (rotational and translational) and to
the introduction of additional energy-lowering correlations; a
direct consequence is that the CFC wave function can be tested
against exact diagonalization calculations, due to the fact that
it has a good total angular momentum, LCFC.

Because of its use of the REM (which is nonvanishing
only for magic angular momenta, Lm), the CFC is limited
solely to the FQHE filings, and cannot provide descriptions in
the neighborhood of fractional fillings. Furthermore, a serious
shortcoming of the CFC is its inability (by construction) to be
extended to ν = 1/3. Indeed, the angular momentum, LCFC,
of the CFC is given by16,17

LCFC = N (N − 1)p + LREM, (17)

where the first term on the right-hand side is 2L0p, p is a
nonnegative integer, and LREM is the REM angular momentum.
At ν = 1/3, one needs to have LCFC = 3L0, with L0 [see
Eq. (3)] being the lowest angular momentum. Then the only
possible value for LREM is L0 (p = 1). The REM, however, at
LREM = L0 coincides23 with the single Slater determinant of
the maximun density droplet, and the usual attachment of two
CF vortices to this determinant yields11 the liquid Laughlin
wave function for ν = 1/3.

From the above discussion, it follows that the emergence
of a Wigner solid in the neighborhood of ν = 1/3 has been a
challenging open problem in the composite-fermion literature
up to date. Based on the insights gained in this paper and the
equivalence20 between the composite-fermion and the RVEM
theories, we show (see Appendix B) that CF wave functions
can be used to describe formation of Wigner crystallites
through the pinning process introduced in Sec. III.

VII. SUMMARY

Based on the rotating-and-vibrating electron-molecule
theory20,21 (RVEM), and in conjunction with exact-
diagonalization results, we presented a unified microscopic
theory for the interplay between liquid and Wigner-solid
states in the neighborhood of ν = 1/3, which was recently
observed18 experimentally. In the RVEM theory, the descrip-
tion of both liquid and Wigner-solid states is achieved within
the framework of a single class of variational wave functions;
see Eqs. (5) and (6) and Refs. 20 and 21.

In the RVEM method, liquid characteristics of the FQHE
states are associated with conservation of the symmetries of
the Hamiltonian, in particular the total angular momentum of
the RVEM wave functions. For example, the electron densities
of the RVEMs are circularly symmetric as expected for liquid
states [this is also in accordance with EXD results for all
states of the LLL spectra, as illustrated for N = 6 electrons
in the neighborhood of ν = 1/3 in Figs. 2(a)–2(c)]. The
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liquid characteristics of the LLL states, however, coexist with
intrinsic correlations that are crystalline in nature [i.e., exhibit
patterns associated with the equilibrium configurations of N

classical pointlike electrons, as revealed via the conditional
probability distributions; see examples in Figs. 2(d)–2(f)].
Further insight into the intrinsic crystalline correlations was
gained via a study of the relative weights of the rovibrational
excitations of the electron crystallite. For N = 6 electrons,
examples of such relative weights were presented for states in
the neighborhood of ν = 1/3 in Secs. II A and II B.

Although the electron densities of the symmetry-conserving
LLL states do not exhibit crystalline patterns, the intrinsic
crystalline correlations are reflected in the emergence in the
LLL spectra of cusp yrast states with enhanced stability and
magic angular momenta (see Fig. 1); the cusp states are
associated with the fractional fillings in the thermodynamic
limit [see Eq. (2)]. A direct consequence of the enhanced
stability is the fact that only states with magic angular momenta
(cusp states) can become global ground states, as illustrated
in Figs. 5 and 9 for N = 6 electrons and ν = 1/3 and ν = 1,
respectively.

Away from the exact fractional fillings, weak pinning
perturbations (experimentally due to weak disorder) can
overcome the energy gaps between adjacent global states (in
particular near their crossing points; see Fig. 5 and Sec. V) and
generate a mixed, broken symmetry (pinned) ground state, that
is a linear superposition of symmetry-conserving LLL states
with different total angular momenta. A central finding of
this paper is that such pinned states do exhibit explicitly a
crystalline pattern in the electron density (nonrotating, pinned
molecular, or Wigner, crystallites); see, e.g., Figs. 6 and 8).
These pinned crystallites represent finite-size precursors of
the Wigner solid in the thermodynamic limit (see Sec. V).
Furthermore, we illustrated that the emergence of the pinned
molecular crystallite is a direct consequence of the contribu-
tions of RVEM components in the symmetry-conserving LLL
states themselves; see discussion in text related to Fig. 8.

Along with the molecular crystallites (see Figs. 6 and 8),
other charge-density-wave patterns may develop, originating
from the absence of certain commensurability conditions
between the angular momentum states that get coupled in
the pinning process (see Fig. 7). However, they correspond
to coupling of the global ground states with excited global
states, and therefore are less likely to materialize for a case
of weak pinning because of the large energy gaps between
these states. Selection rules governing the formation of pinned
Wigner crystallites were formulated at the end of Sec. III.

In addition to the neighborhood of ν = 1/3, we also
demonstrated that the RVEM approach can account in a similar
unified manner for the interplay between liquid and Wigner
solid states in the neighborhood of ν = 1; see Sec. IV.

We note again here that our findings are not limited to the
case of N = 6 electrons only. In Sec. V, exact-diagonalization
results were presented in a wide range of sizes, from N = 7
to 29 electrons. The extrapolation displayed in Fig. 12 gave
a value for the energy gap representing the stability of the
bulk Wigner crystal. This value was compared to previously
calculated estimates by other methods in Table IV; it was
found to reflect a Wigner crystal of higher stability due to a
large degree of quantum correlations. Furthermore, we showed
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FIG. 16. (Color online) Composite-fermion CPDs for the cusp
yrast states for N = 6 LLL electrons with (a) L = 30 (ν = 1/2)
and (b) L = 39. The compact CF trial functions for these L’s were
calculated for a disk geometry according to Sec. 4.3 of Ref. 53. The
solid dots denote the position of the fixed point. The units for the
vertical axes are arbitrary, but the same for all frames portraying
CPDs throughout the paper. Lengths in units of lB . Note the (1,5) and
(0,6) molecular patterns for L = 30 (a) and 39 (b), respectively.

in Sec. V that the pinned crystalline patterns obtained via
our quantum mechanical calculations evolve (for all sizes
considered in this paper, i.e., from N = 6 to 29 electrons)
according to the well established sequence of configurations
found for classical point charges, leading to formation of
Wigner-crystalline hexagonal cores for N > 100 electrons.

As mentioned above, the RVEM theory described here and
applied to the analysis of the appearance of Wigner crystalline
patterns in the neighborhood of ν = 1/3 employs a single class
of variational wave functions for the description of both the
correlated liquid and Wigner-solid states. This theory differs
in an essential manner from composite-fermion approaches13

(including Laughlin’s original formulation2), which utilize
different classes of variational wave functions for representing
the liquid versus Wigner-solid states. Specifically, in the CF
approaches, FQHE states are associated with CF liquid states
(defined in the context of N LLL electrons and preserving the
total angular momentum11,13), while solid states are described
by CF Wigner crystals;14 the latter violate the conservation
of the total angular momentum (broken symmetry) and are
a modification (the attachment of Jastrow factors) of the
Maki-Zotos4 Wigner crystal for an infinite 2D system (defined
on a triangular lattice at the mean-field Hartree-Fock level).51

In Sec. VI, we discussed the open challenges faced
by the composite-fermion literature13–17,48 in addressing the
emergence of the Wigner-solid state in the neighborhood of
ν = 1/3. Based on the insights gained in this paper and the
equivalence20 between the composite-fermion and the RVEM
theories, we show (see Appendix B) that CF wave functions
can be used to describe formation of Wigner crystallites
through the pinning process introduced in Sec. III.

The physical picture and formalism developed in this paper
is expected to apply to other filling fractions. While future
experimental and theoretical studies will be needed, our work
suggests that liquid-Wigner-solid coexistence may occur for
fractions in the neighborhood of which a Wigner crystal has
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not been seen as yet. Investigations of these issues with a
variable (tunable) degree of disorder would be most valuable.
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APPENDIX A: PURELY ROTATIONAL TRIAL WAVE
FUNCTIONS (REMS)

In this Appendix, we recapitulate the analytic formulas
for the vibrationless REM trial wave functions entering
into the general expression for the RVEM functions [see
Eq. (5)]. The REM expresions for any (n1,n2, . . . ,nr ) multiring
configuration (with the number of electrons N = ∑r

q=1 nq , nq

being the number of electrons in the qth ring) were derived
earlier in Refs. 20–22.

Assuming that L1 and L2 are the partial angular momenta
for each ring (L1 + L2 = L), the final two-ring (n1,n2) REM
expression is

�REM
L (n1,n2)[z]

=
l1+l2+...+ln1 =L1,ln1+1+ln1+2+...+lN =L2∑

0�l1<l2<...<ln1 <ln1+1<...<lN

C(l1,l2, . . . ,ln1 )

×C(ln1+1,ln1+2, . . . ,lN )det
[
z
l1
1 ,z

l2
2 , . . . ,z

lN
N

]
, (A1)

where the zi’s are complex-number particle coordinates
and “det” denotes a Slater determinant. The coefficients
C(l1,l2, . . . ,ln1 ) and C(ln1+1,ln1+2, . . . ,lN ) are calculated by
applying to each one of them the single-ring [(0,N )] expression

C(l1,l2, . . . ,lN ) =
(

N∏
i=1

li!

)−1
⎛
⎝ ∏

1�i<j�N

sin
[ π

N
(li − lj )

]⎞⎠ .

(A2)

It is straighforward to generalize the two-ring REM ex-
pression in Eq. (A1) to more complicated or simpler [i.e.,
(0,N ) and (1,N − 1)] configurations by (1) considering a
separate factor C(lnq−1+1,lnq−1+2, . . . ,lnq−1+nq

) for each qth
ring, and (2) restricting the summation of the associated nq

angular momenta, i.e., lnq−1+1 + lnq−1+2 + . . . + lnq−1+nq
= Lq ,

with
∑r

q=1 Lq = L.
The analytic expressions for �REM

L (n1,n2, . . . ,nr )[z] de-
scribe pure molecular rotations associated with magic angular
momenta

L = Lm ≡ L0 +
r∑

q=1

nqkq, (A3)

with kq , q = 1, . . . ,r being non-negative integers.
A central property of these trial functions is that identically

�REM
L (n1,n2, . . . ,nr )[z] = 0 (A4)

when

L 	= Lm (A5)
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FIG. 17. (Color online) Electron densities for pinned [see
Eq. (14)] LLL states in the neighborhood of ν = 1/3 for N = 6
electrons. Compact CF states have been used for both �L1 and
�L2 . L1 = 39 and L2 = 45 (|L1 − L2| = 6). The compact CF wave
function at L = 45 coincides with the Laughlin trial function.2

The formation of a pinned (nonrotating) EM representing a (0,6)
molecular configuration is transparent. α = β = 1/

√
2. Note that all

six humps of localized electrons are visible in the electron densities
of the pinned CFs (in contrast to five visible humps in the CPDs
in Fig. 16). Lengths in units of lB . The units of the vertical axis
are 10−2l−2

B . The electron density is normalized to the number of
particles, N .

This selection rule follows directly from the point group
symmetries of the (n1,n2, . . . ,nr ) multiring polygonal config-
urations. Indeed, under condition (A5), the C(. . .) coefficients
are identically zero. In other words, purely rotational states are
allowed only for certain angular momenta that do not conflict
with the intrinsic molecular point-group symmetries.

APPENDIX B: INTRINSIC CRYSTALLINE
CORRELATIONS IN COMPOSITE-FERMION WAVE

FUNCTIONS FOR ν > 1/5

Another class of trial functions that have been shown to
approximate well (in energy) the EXD yrast cusp states are
the composite-fermion ones;13 here we refer in particular to
the compact11 (also referred to52 as mean-field) ones. For
larger fractional fillings (ν > 1/5, including ν = 1/3), it has
been ascertained12,13 that the compact CF functions represent
paradigms of liquid states devoid of any intrinsic crystalline
correlations. Since for N = 6 electrons ν � 1/5 corresponds
to angular momenta L � 75, the CF CPDs (for L = 30 and
L = 39) displayed in Fig. 16, however, disagree with the above
assertion. (The CF wave functions were calculated according
to Sec. 4.3 of Ref. 53.) Indeed, well formed crystalline
correlations corresponding to the (1,5) molecular isomer
(commensurate with a magic angular momentum L = 30)
and the (0,6) molecular isomer (commensurate with a magic
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angular momentum L = 39) are present in these CF CPDs.
This is in agreement with the finding in Ref. 20 that all LLL
functions with good L are equivalent to rotating and vibrating
Wigner molecules.

The above suggests that the superposition of CF wave
functions should also yield pinned Wigner crystallites. This
conclusion is explicitly confirmed in Fig. 17, where the elec-
tron density (showing well developed crystalline oscillations)
of a pinned CF state is displayed for a case in the neighborhood

of ν = 1/3 [i.e., for a state constructed by mixing the compact
CF states for L1 = 39 and L2 = 45, see Eq. (14)]. We note that
the compact CF state for N = 6 and L = 45 coincides with
the Laughlin trial function.2 We further note that L1 − L2 = 6,
and that accordingly the crystalline configuration in Fig. 17
corresponds to the (0,6) classical molecular isomer. This
demonstrates that the selection rules for formation of Wigner
crystallites (discussed at the end of Sec. III) apply to the CF
trial functions as well.
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