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1 Introduction

A complete understanding of a physical phenomenon must include an understanding of its dy-
namics: how it changes in time. One burgeoning area of condensed matter physics where dynamics
are actively studied is in the magnetic excitations of frustrated spin systems [1]. Such spin systems
can host exotic quantum liquid phenomena including fractional excitations, emergent gauge fields,
and novel particle statistics. In addition to broadening basic scientific knowledge, understanding
the dynamics of frustrated magnetic systems can further technological applications in quantum
computing [2].

In 1D systems, where quantum fluctuations are greatly enhanced, dynamics of magnetic exci-
tations can be more readily studied. One technique that has shown great utility in this endeavor
is inelastic Raman spectroscopy [3]. While significant research has been performed in studying
magnetic phenomena of 1D spin chains using inelastic Raman spectroscopy [4–16], the collection of
spin systems probed has been limited to simple 1D spin chains and Spin-Peierls dimerized chains.
To better understand magnetic phenomena of 1D magnetic systems, there is a need to study more
complex spin chains. While synthesis of unique materials presents one route to this end, inelastic
Raman scattering itself could also satisfy this need.

One underappreciated feature of Raman spectroscopy is the interplay between spatial geometry
and spin degrees of freedom. In particular, the relative orientation of incident and scattered photon
polarizations with respect to a sample’s crystallographic axes allows the inelastic Raman scattering
spectrum to probe the ground state dynamics of operators besides the Hamiltonian. Even for simple
geometries, such as a zig-zagged spin chain, these operators can possess di↵erent symmetries from
the Hamiltonian. This begs the question as to whether one can use a given spin system with a fixed
Hamiltonian to study qualitatively di↵erent spin phenomena by simply engineering the dynamical
operator.

In this proposal, I will present a theoretical approach to study the interplay between spatial
geometry and inelastic Raman spectroscopy. I will first review some basic facts about magnetic
insulators. Then, I will introduce the notion of a quantum liquid (QL) in 1D, 2D, and 3D materials
as a particular phase of magnetic insulators. I will also briefly review some rich tools available to
physicists to experimentally probe the exotic magnetic excitations of these phases. I will focus on
inelastic Raman spectroscopy and discuss how it has been used to study magnetic excitations in
1D spin chains. Then, I will present my research aims in deducing the Raman response of spatial
defects in zig-zagged 1D spin chains. Finally, I will finally present my work thus far [17] which uses
a mean-field approach [18] to predicting inelastic Raman scattering spectra of 1D systems.
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2 Literature Review

2.1 Magnetic Insulators

Qualitatively, a magnetic insulator is a material which does not conduct electric current but
does demonstrate magnetic phenomena. We can characterize a magnetic insulator in the limit of a
metal described by simplified fermionic Hubbard Hamiltonian

HHubbard = �t

X

hi,ji,�

⇣
c
†
i�
cj� + h.c.

⌘
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X

i

ni"ni# (1)

where t, U > 0 have units of energy, hi, ji enumerate nearest neighbor lattice sites, � 2 {", #},

{ci�, c
†
j�0} = �ij���0 , and ni� = c

†
i�
ci� is a density operator. With this identification, a magnetic

insulator is governed by HHubbard in the limit t/U ⌧ 1. In this limit, the Hubbard model approxi-
mately reduces1 to the Heisenberg model

HHeisenberg = J

X

hi,ji

Si · Sj (2)

where J is an energy scale. For J < 0, we say the system is ferromagnetic, while for J > 0 we say
the system is antiferromagnetic. Within the (t/U) ⌧ 1 limit, the Hamiltonian for a given system
has SU(2) symmetry.

The Heisenberg model demonstrates a magnetic phase transition on square lattices. At tempera-
tures where kBT ⌧ |J |, rotational symmetry is spontaneously broken, and the system magnetically
orders. Simple examples of order parameters for this phase transition include the magnetization
M =

P
j
Sj for ferromagnetic materials, or the staggered magnetization Ms =

P
j
(�1)jSj for

antiferromagnetic materials. In the T ! 1 limit, the system is in the normal state (M,Ms = 0),
while in the T ! 0 limit the (anti)ferromagnetic system is in the ordered state with a net nonzero
(staggered) magnetization. Ferromagnetic order has parallel nearest neighbor spins, while anti-
ferromagnetic or Néel order has anti-parallel nearest neighbor spins. While classical magnetic
insulators can be understood within this simple framework, quantum mechanical e↵ects and richer
lattice geometries in real magnetic insulators can bear highly nontrivial phenomena.

2.2 Quantum Liquid Phenomenology and Contraindicators

A collection of quantum mechanically induced e↵ects within magnetic insulators are theorized
to produce exotic phases of matter known as a quantum liquids (QLs): (sliding) Luttinger liquids
[19], quantum spin liquids [1], Bose-Luttinger liquids [20], etc. While at the time of writing this
proposal there is no agreed upon definition of a QL, there are, however, ways to classify what it is
not.

Unlike classical magnetic insulators, QLs do not magnetically order. One way a magnetic
insulator may fail to order is if it has antiferromagnetic interactions and geometric frustration. The
canonical example of a geometrically frustrated system is given by the case of an antiferromagnet
on a 2D triangular lattice [1]. Because the three corners of a given triangle are all pairwise nearest
neighbors, any ground state of the system will have one of the three spins on every triangle parallel
to one of its neighbors. Due to this geometric frustration, the classical ground state degeneracy of
the 2D triangular antiferromagnet is extensive in the system size.

1One can show this using second order perturbation theory on HHubbard at half filling. In this limit, HHeisenberg is
an e↵ective Hamiltonian with the same spectrum as HHubbard restricted to its ground state manifold.
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Geometrically frustrated quantum antiferromagnets analogously exhibit extensive ground state
degeneracies. A seminal example of this property is in the resonating valence bond state proposed
by Anderson [21]. One ground state for the aforementioned 2D triangular antiferromagnet is a
product state of nearest neighbor singlets known as the valence bond solid. This state, however,
does not account for all the symmetries of the Hamiltonian. By accounting for the full symmetries
of the Heisenberg Hamiltonian, Anderson constructed the resonating valence bond (RVB) state.
The RVB ground state has been shown to be the ground state of many Hamiltonians, and it is a
canonical example of a quantum spin liquid.

In addition to quantum spin liquids, other exotic QL phases have been identified that o↵er
explanations for why some magnetic insulators fail to order at low temperatures. One such example
is the Luttinger liquid which occurs in 1D systems. Similar to the quantum spin liquid, the Luttinger
liquid does not demonstrate spontaneous symmetry breaking of its parent Hamiltonian. Indeed,
quantum fluctuations in 1D are so pronounced that they destroy any magnetic ordering. As of late,
coupled Luttinger liquids have also generated interest as they can lead to sliding Luttinger liquid
phase beyond the Fermi liquid paradigm.

2.3 Theoretical Probes of Magnetic Excitations

Several theoretical tools are also available to predict the scattering spectra for quantum liquid
candidates. Here, I briefly touch upon those used in predicting inelastic Raman scattering spectra.
One analytic technique, bosonization [22], uses field theoretic tools to compute low energy dynamics
for a given system. Another analytic technique includes mean-field approximations [18, 23]. In
contrast, mean-field tools can be used to compute higher energy dynamics, and they are often more
tractable in execution. Computational techniques such as exact diagonalization [24] and density
matrix renormalization group (DMRG) [25] can further supplement analytic techniques.

2.4 Inelastic Raman Spectroscopy

The rich magnetic phenomenology of quantum liquids can be probed through inelastic Raman
scattering. In this section, I review fundamentals of this technique. In a magnetic Raman scattering
process, an incident photon with frequency !i indirectly creates magnetic excitations [3]. The
photon first excites a virtual particle-hole pair. This virtual pair then annihilates into magnetic
excitations and a scattered photon with frequency !f . The inelastic Raman scattering spectrum
I(!) is measured with respect to the Raman shift ! = !f �!i. While the Raman scattering process
involves virtual charge excitations, it can be solely described in terms of a spin Hamiltonian within
London-Fleury theory [26]. In brief, typical Raman scattering experiments are carried out at Raman
shifts well below the charge gap [3] which e↵ectively freezes out the electronic degrees of freedom.

Within London-Fleury theory, the scattering spectrum I(!) is the frequency space representa-
tion of the time correlation function of an operator R [22].

I(!) =
1

2⇡

Z 1

�1
dt e

i!t
hR(t)R(0)i (3)

Where R is the Loudon-Fleury photon-induced superexchange operator [26]

R =
X

r1,r2

(êi · r12)(ês · r12)A(r12)Sr1
· Sr2

(4)

Above, êi,s is the polarization direction of the scattered photon and r12 = r1�r2. Generally, A(r12)
is di�cult to determine, but “the ratio between the factors on di↵erent bonds is known to be of
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Compound Reference

KCuF3 [4–7]
LiCu2O2 [8]
Sr2CuO3 [9]
SrCuO2 [9]
CuGeO3 [10–16]

Table 1: Compounds whose magnetic excitations have been probed using Raman spectroscopy.

the same order as that between the exchange couplings on those bonds” [22]. For brevity, we refer
to R as the Raman operator.

For inelastic scattering, it is clear2 from (3) and (4) that two di↵erent Raman operators R,R
0

yield the same spectrum if R0 = R�CH0 for some constant C. That is, the only part of the Raman
operator which contributes to the inelastic scattering spectrum is the part which does not commute
with H0. Therefore, we will say two Raman operators R, R

0 are spectrally equivalent whenever
R

0 = R� CH0 for arbitrary C 2 R.

2.5 Raman Studies on 1D Materials

In this section, I review Raman spectroscopy studies done on 1D magnetic insulators. Table
1 contains an incomplete list of several compounds whose magnetic excitations have been probed
using Raman spectroscopy.

Raman spectroscopy of KCuF3 has demonstrated the utility of inelastic Raman scattering in
probing magnetic excitations. In particular, below the Néel temperature of KCuF3, Raman scatter-
ing experiments have measured a gapless spinon excitation continuum [5] – a feature characteristic
of 1D systems. Measurements of Sr and Li based materials 1D spin chains [8, 9] have similarly
shown spectroscopic features beyond phononic contributions that likely arise from magnetic exci-
tations. In addition to measuring simple 1D chains, Raman spectroscopy has been used to probe
magnetic excitations in more exotic 1D systems that magnetically dimerize.

A prototypical Spin-Peierls material is the quasi-1D inorganic compound CuGeO3, which dimer-
izes at Tsp = 14 K [18]. Magnetic Raman scattering has been performed on CuGeO3 both above
and below Tsp [10–15]. In the uniform phase Tsp < T , a broad continuum attributed to four-spinon
excitations has been observed. In the dimerized phase, spectroscopic features previously attributed
to magnetic excitations have been determined to be due to phononic excitations [16].

2If [R,H0] = 0, then [R,U(t)] = 0, where U(t) = e
iH0t. Since R(t) = U(t)R(0)U†(t), we have hR(t)R(0)i =

hR(0)2i. We can pull this term out of the integral so that I(!) = hR(0)2i �(!) which is a trivial spectrum.
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3 Proposed Work

3.1 Research Aims

In order to deduce the Raman response of spatial defects in zig-zagged 1D spin chains, I aim to
first characterize the family of Raman operators produced in this geometry. As a practical example,
I will approach this problem by studying the Raman response of a recently discovered quasi-2D
spin-1/2 material Ba4Ir3O10 [27] by treating the material as consisting of decoupled 1D spin chains
[17]. While the material itself is not 1D, it has been argued to be fruitfully modeled in terms of
coupled 1D Heisenberg chains [27], and this limit provides a tractable model for studying dynamics
of fractional spinon excitations.

In addition to tabulating the Raman operators in this geometry, another step towards charac-
terizing dynamics of dimerized domains includes determining the Raman response of these Raman
operators. As a first step, I will use a standard mean-field approximation of free 1D spinons [18]
in order to compute the four spinon contribution to the inelastic scattering spectrum. Raman
spectroscopy measurements of this material [17] provide an excellent comparison for the mean-field
results.

In addition to studying the Raman response of Ba4Ir3O10, I will also compute the Raman
response of the remaining Raman operators arising from 1D zig-zagged chains. I have already
found that zig-zagged spin chains can give rise to Raman operators reminiscent of Spin-Peierls
dimerized Hamiltonians. By introducing spatial defects into the zig-zagged spin chains, one could
construct a Raman operator with dimerized domains. As of yet, no Raman spectroscopy studies
have been performed on 1D spin chains with random dimerized domains. Such systems are known
give rise to random singlet phases [28], where isolated spins at the domain walls of dimerized
domains can engage in long range entanglement by forming singlet states. The Raman response of
these isolated spins, however, is not well understood. Such a system could potentially be studied
by proxy through Raman spectroscopy of 1D zig-zag chains with spatial defects, thereby shedding
light on long range entanglement in condensed matter systems.

For example, analytic mean-field approaches will be supplemented with numeric tools specially
designed to study 1D spin systems [25, 29]. In tandem, the former will provide insight into the high
energy dynamics, while the latter will give insight into systems that are analytically intractable.
Numerically studying the Raman response of isolated spins between dimerized domains is one area
where computational approaches will be indispensible.

Understanding the interplay between spatial defects and their e↵ect on the Raman response of a
spin system could also give insight into previously conducted Raman spectroscopy experiments. In
particular, a cohesive theory of this interplay could serve as a discriminator between novel magnetic
phenomena and geometric artifacts in a given spectrum.

3.2 Current Progress

3.2.1 Polarization Selection Rules for 1D Zig-Zagged Chains

In studying the quantum liquid candidate Ba4Ir3O10 [17], I have tabulated polarization selection
rules for inelastic Raman spectroscopy of 1D zig-zagged spin chains. As a minimal model for this
material, consider the antiferromagnetic J1-J2 Hamiltonian in 1D

H0 =
X

j

J1Sj · Sj+1 + J2Sj · Sj+2 (5)

for J1 � J2 � 0. We will further allow the 1D chain to be zig-zagged and parametrized by an angle
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✓0 as in Fig. 1. Note, a zig-zag chain does not a↵ect H0, but it will a↵ect the form of the Raman

Figure 1: Bond and polarization angle parametrization [22].

operator.
We choose to work in this minimal model since the elementary excitations for (5) are spinons.

Moreover, in the J2 ! 0 and ✓0 ! 0 limits independently, we also obtain Hamiltonians whose
elementary excitations are fractional. Using the coordinates provided in Fig. 1, we proceed to
compute the Raman operators for various input and output photon polarizations. We find3

R = A1

2

4f(✓i, ✓s, ✓0)
X

j

Sj · Sj+1 + h(✓i, ✓s, ✓0)
X

j

(�1)jSj · Sj+1

3

5+A2g(✓i, ✓s, ✓0)
X

j

Sj · Sj+2

(6)
For

f(✓i, ✓s, ✓0) = cos ✓i cos ✓s cos
2
✓0 + sin ✓i sin ✓s sin

2
✓0 (7)

h(✓i, ✓s, ✓0) =
1

2
sin(2✓0) sin(✓i + ✓s) (8)

g(✓i, ✓s, ✓0) = 4 cos ✓i cos ✓s cos
2
✓0 (9)

and A2/A1 ⇠ O(J2/J1). We next consider limiting cases of (5) and compute the associated Raman
operator for di↵erent bare Hamiltonians. In doing so, we will find selection rules based on photon
polarization angles.

For concreteness, consider the orientation of a Ba4Ir3O10 crystal as in Fig. 2. The e↵ective
1D chain is highlighted in purple and lies in bc-plane. Let ✓0 be the angle made by bonds with
respect to the c-axis and ✓i,s parametrize the photon polarization direction as in Fig. 1. Thus, a bb

polarization amounts to ✓i = ✓s = �⇡/2, while a bc polarization amounts to ✓i = �⇡/2 and ✓s = 0.
Using the results of the previous sections, we summarize the polarization selection rules for

Raman scattering of di↵erent bare Hamiltonians in Table 2.

3.2.2 Spinon Mean-Field Calculation of Raman Spectra for Ba4Ir3O10

Within mean field, the inelastic scattering spectrum can be computed4 following Brenig [18].
Up to spectral equivalence, the Raman operator for the J1-J2 model can be transformed using
Jordan-Wigner fermionization. We write (for unit lattice spacing)

S
+

j
= c

†
j
exp

"
�i⇡

j�1X

i=1

c
†
i
ci

#
, S

�
j
= exp

"
i⇡

j�1X

i=1

c
†
i
ci

#
cj , S

z

j = c
†
j
cj �

1

2
(10)

3See Appendix A.
4See Appendix B.
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Polarization In Polarization Out Zig-Zag J2 H R Equivalent R

not c any none none H1 0 0
any not c none none H1 0 0
c c none none H1 H1 0
a any yes none H1 0 0

any a yes none H1 0 0
b b yes none H1 0 0
b c yes none H1 H1 +RD RD

c b yes none H1 H1 +RD RD

c c yes none H1 0 0
not c any none yes H0 0 0
any not c none yes H0 0 0
c c none yes H0 H0 H0

a any yes yes H0 0 0
any a yes yes H0 0 0
b b yes yes H0 H1 H0

b c yes yes H0 RD RD

c b yes yes H0 RD RD

c c yes yes H0 H0 H0

Table 2: Polarization selection rules for Raman scattering of various bare Hamiltonians. The H

column gives the Hamiltonian (H1 = J
P

j
Sj · Sj+1 having only 1st neighbor interactions while

H0 = H1+J↵
P

j
Sj ·Sj+2 having both 1st and 2nd neighbor interactions). The R column gives the

general form of the full Raman operator (H1, H0, or a dimerization term RD /
P

j
(�1)jSj ·Sj+1).

A sum in this column refers to a linear combination of two di↵erent operators. The rightmost
column gives the Raman operator up to spectral equivalence for the corresponding Hamiltonian.
Equivalent Raman operators in the H0 class are the only cases where the inelastic Raman scattering
spectrum can be used to observe spinon excitations.
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Figure 2: Sample Ba4Ir3O10 crystal coordinate system [27]. 1D chains are highlighted in purple.

with {cj , c
†
j0} = �jj0 and all other anticommutators zero. For R⌫ (⌫ = 1, 2), one finds5

R⌫ /

X

k,k0,q

h
(⌫)(k, k0, q)c†

k
ck+qc

†
k0ck0�q + ⇤(⌫)

1ph
(11)

where6

h
(2)(k, k0, q) = cos(2q)� cos(2k + q)� cos(2k0 � q), ⇤(2)

1ph
=

X

j

1

2
(c†

j
cj+2 + h.c.) +

1

4
� c

†
j
cj (12)

and

h
(1)(k, k0, q) = cos(q), ⇤(1)

1ph
=

X

j

1

2
(c†

j
cj+1 + h.c.) +

1

4
� c

†
j
cj (13)

Within mean-field, ⇤(⌫)

1ph
does not contribute to the inelastic scattering spectrum [18]. Having

expressed the Raman operators in terms of fermionic operators, we may now proceed to compute
the autocorrelation function of R⌫ in imaginary time ⌧ = it. We use the dispersion relation for
spinons

✏k = t cos k, t = �
⇡

2
Je↵ (14)

and the Fermi function

f(✏k) =
1

exp(�✏k) + 1
(15)

5See Appendix B.
6Note: here, the ⇤1ph term is written in real space.
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with � = 1/T as inverse temperature7. One finds8

hR⌫(⌧)R⌫(0)i /

2

4
X

k,k0,q

h
(⌫)(k, k0, q)f(✏k)(1� f(✏k+q))f(✏k0)(1� f(✏k0�q))e

�⌧(✏k+q+✏
k0�q

�✏k�✏
k0 )

3

5

⇥ 2
h
h
(⌫)(k, k0, q)� h

(⌫)(k, k0, k0 � k � q)
i

(16)

Having found the Wick decomposition, we now use the autocorrelation function (16) to compute
the inelastic Raman scattering spectrum. We integrate over t first with the phase e

i(!��✏)t, where
�✏ = ✏k+q+ ✏k0�q� (✏k+ ✏k0) is the change in spinon energy after a 2 body scattering process. This
gives a factor of

X

k0

�(! ��✏) ⇡
1

2⇡

Z
dk

0
�(! ��✏) =

1

2⇡

X

k0

1p
(2t sin(q/2))2 + (✏k+q � ✏k � !)2

(17)

where the second sum on the RHS is over k0 2 [�⇡,⇡] that satisfy

sin(k0 � q/2) =
✏k+q � ✏k � !

2t sin(q/2)
(18)

Taking the continuum limit on k, q as well, one finds the spectrum for R⌫

I
(⌫)(!) /

Z
⇡

�⇡

dk

Z
⇡

�⇡

dq

X

k0

h
(⌫)(k, k0, q)[h(⌫)(k, k0, q)� h

(⌫)(k, k0, k0 � k � q)]p
(2t sin(q/2))2 + (✏k+q � ✏k � !)2

(19)

⇥ f(✏k)(1� f(✏k+q))f(✏k0)(1� f(✏k0�q))

3.2.3 Comparison with Experimental Measurements

The spinon mean-field calculation of the inelastic Raman scattering spectrum (19) can be
numerically integrated to compare with experimental measurements of the quasi-1D spin chains in
Ba4Ir3O10. In Ref. [17], we compare the imaginary part of the Raman susceptibility �

00
R⌫ ,R⌫

(!) with
experimental measurements. The susceptibility is related to the intensity via I(!) = �

00(!)/(1 �

e
�!/T ) [18].

At low temperatures (kBT/Je↵ < 1), the mean-field spectra arising from both R1 and R2

qualitatively agree with experimental measurements, as seen in Fig. 3. At high temperatures
(kBT/Je↵ > 1), the mean-field susceptibilities for R1 and R2 become qualitatively di↵erent as
shown in Fig. 4. This di↵erence quantifies the self-consistency breakdown of the mean-field theory
at high temperatures.

3.2.4 Spinon Mean-Field Theory for Dimerized Raman Operators

To better understand the Raman response of dimerized systems, I have also used spinon mean-
field theory to compute the inelastic scattering spectrum arising from a dimerized Raman operator
for a nearest neighbor Heisenberg Hamiltonian. This Raman response would arise, for example, for
a 1D zig-zag chain with nearest neighbor interactions when considering the bc or cb polarization
(in Table 2, H = H1 and the equivalent R = RD).

7Note: units are chosen such that ~ = c = kB = 1.
8See Appendix B.
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Figure 3: Raman susceptibility of quantum liquid candidate Ba4Ir3O10 and a sister compound
(Ba0.98Sr0.02)4Ir3O10 at T = 10 K plotted with spinon mean-field calculated susceptibilities �00

R1,R1

(blue, dashed) and �
00
R2,R2

(cyan, dot-dashed) (Je↵/kB ⇡ 75 K) [17]. Non-magnetic Sr substitution
produces magnetic order in the sister compound and eliminates the four-spinon continuum.

Within this theory, the quadratic fermionic terms reminiscent of ⇤(⌫)

1ph
do contribute to the

scattering spectrum within mean-field. In particular, one finds the quadratic fermionic terms to be

⇤ =
X

k

i sin(k)c†
k+⇡

ck (20)

Following the same approach as for R⌫ , I exactly find9 the Raman susceptibility arising from R = ⇤
to be

�
00
⇤,⇤(!) =

1

4⇡t

r
1�

⇣
!

2t

⌘
2

tanh(�!/4) (21)

for ! > 0 and � = 1/kBT . Within linear response theory, this susceptibility agrees with the first
order sum rule

R1
�1 d! !�

00(!) = �⇡ h[[H1,⇤],⇤]i at finite temperature.

3.3 Future Work

In preparation to study the Raman response of random dimerized domains, I will begin by
numerically computing the inelastic scattering spectrum for small finite chains using the density
matrix renormalization group (DMRG) algorithm [25]. Calculations will be performed using the
TeNPy Library [29] and carried out on various computing resources ranging from local machines
to GaTech supercomputing clusters.

9See Appendix C.
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Figure 4: Spinon Raman response computed within two mean field choicesR⌫=1,2, with J
⌫=1,2

e↵
/kB =

75 K at various temperatures [17].
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4 Conclusion

Thus far, I have performed preliminary work towards understanding the interplay between
spatial geometry and inelastic Raman spectroscopy. In exploring the Raman response of Ba4Ir3O10,
I found that zig-zagged 1D spin chains can possess London-Fleury Raman operators reminiscent
of Spin-Peierls dimerized Hamiltonians. Using a mean-field theory of free spinons, the inelastic
scattering spectrum can be deduced as a measure of the dynamics of a given Raman operator.
That a non-dimerized material can be used to study dynamics of a dimerized operator begs the
question of whether more exotic dynamics not exhibited by the Hamiltonian of a system can be
studied by introducing spatial defects into a crystal.

Through analytic and computational techniques, I propose to study the dynamics of random
dimerized domains in 1D spin chains by proxy using this unique role of spatial geometry in deter-
mining the inelastic Raman scattering spectrum. As a proof of principle, this study will determine
the practicality of engineering Raman operators to study dynamics of spin systems that have yet
to be probed or synthesized. Moreover, it has the potential to shed light on the role of long range
entanglement of isolated spins that exist in the domain walls between random dimerized domains.

Studying the dynamics of magnetic excitations in frustrated 1D spin systems is an essential
component of understanding quantum liquid phenomena. At this time, there does not exist a
complete understanding of the exotic collective behavior of quantum liquids. That such phases
of matter are host to interesting and technologically useful features is one of the many reasons to
contribute to their study.
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