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Unique nature of the lowest Landau level in finite graphene samples with zigzag edges:
Dirac electrons with mixed bulk-edge character
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Dirac electrons in finite graphene samples with zigzag edges under high magnetic fields (in the regime of
Landau-level formation) are investigated with regard to their bulk-type and edge-type character. We employ
tight-binding calculations on finite graphene flakes (with various shapes) to determine the sublattice components
of the electron density in conjunction with analytic expressions (via the parabolic cylinder functions) of the
relativistic-electron spinors that solve the continuous Dirac-Weyl equation for a semi-infinite graphene plane.
Away from the sample edge, the higher Landau levels are found to comprise exclusively electrons of bulk-type
character (for both sublattices); near the sample edge, these electrons are described by edge-type states similar
to those familiar from the theory of the integer quantum Hall effect for nonrelativistic electrons. In contrast, the
lowest (zero) Landau level contains relativistic Dirac electrons of a mixed bulk-edge character without an analog
in the nonrelativistic case. It is shown that such mixed bulk-edge states maintain also in the case of a square flake
with combined zigzag and armchair edges. Implications for the many-body correlated-electron behavior (relating
to the fractional quantum Hall effect) in finite graphene samples are discussed.
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I. INTRODUCTION

In the past few years, following the isolation of monolayer1

and the fabrication of epitaxial2 graphene, the physical
properties of graphene nanostructures (including elongated
graphene ribbons and finite graphene samples and flakes)
have established themselves as a major research direction in
condensed-matter physics. This development was propelled by
theoretical predictions (see, e.g., Refs. 3–9) that the electronic
properties of graphene nanostructures are strongly affected by
the presence and termination character (in particular, zigzag
or armchair) of the graphene edges, suggesting an unpar-
alleled versatility and potential for future nanoelectronics
applications. Crucial to the realization of this perspective
is the capability to characterize and engineer edges with
high purity and perfection, a need that has spurred an
ever-expanding experimental effort which has already yielded
highly promising results.10–16

In this context, a recent study17 of ours addressed the
influence of graphene edges on the properties of correlated
many-body fractional-quantum-Hall-effect (FQHE) states of
Dirac electrons. The most recent experimental observation18–20

of such FQHE correlated states [in suspended monolayer18,19

and bilayer20 graphene samples under high magnetic
fields (B)] has marked another milestone in demonstrating
the potential of graphene not only for future technological
applications but also for studying novel fundamental physics
behavior. In particular, in Ref. 17 we showed that the Dirac-
electron spinors in the lowest Landau level display a mixed
bulk-edge character for graphene samples with zigzag edges,
with the bulk component giving rise to the ν = 1/3 FQHE state
(but with an attenuated strength), while the edge component is
responsible for the insulating behavior observed18,19,21 at the
Dirac neutrality point.

Naturally, the complexity of the computational many-body
treatment of the interelectron repulsion necessitated the use
in Ref. 17 of certain simplified assumptions, i.e., a circular

shape for the graphene sample and an uninterrupted zigzag
edge. In this article, motivated by the widespread and ongoing
experimental activity on perfect-graphene-edge engineering
(see above), we present a systematic study of the properties of
Dirac-electron states (with respect to both their bulk-type and
edge-type character) forming the Landau levels in graphene
nanostructures with more realistic shapes22–27 (namely flakes
with triangular, hexagonal, and square shapes). To this end, we
utilize a combination of tight-binding calculations on graphene
flakes with analytic expressions (via the parabolic cylinder
functions28,29) for the relativistic-electron spinors associated
with the continuous Dirac-Weyl equation of a semi-infinite
graphene plane.

We demonstrate that, away from the graphene-flake edge,
the higher Landau levels contain exclusively electrons of a
bulk-type character (for both sublattices); near the graphene-
flake edge, these electrons are described by edge-type states
reminiscent of those familiar from the theory of the integer
quantum Hall effect for nonrelativistic electrons.30 In contrast,
the lowest (zero) Landau level of the graphene flakes contains
relativistic Dirac electrons of a mixed bulk-edge character
without an analog in the nonrelativistic case. It is shown that
such mixed bulk-edge states maintain also in the case of a
square flake with combined zigzag and armchair edges.

The article is organized as follows: Section II is devoted
to the description of the methodologies employed. Specif-
ically, Sec. II A derives the analytic expressions for the
Dirac-Weyl spinors in the case of a semi-infinite graphene
plane with zigzag edge termination; the solutions for both
the K (Sec. II A 1) and K ′ (Sec. II A 2) graphene valleys
are given. An outline of the tight-binding approach used
here is given in Sec. II B. Our tight-binding results at high
magnetic field (concerning the electron-density components of
the two graphene sublattices and their interpretation through
comparison with the continuum-model Dirac-Weyl spinors)
are presented in Sec. III A for triangular flakes, Sec. III B
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for hexagonal flakes, and Sec. III C for square flakes. Finally,
Sec. IV offers a summary.

II. METHODOLOGY

A. Solutions of the Dirac-Weyl equation for a semi-infinite
graphene plane

1. K valley

For a semi-infinite graphene plane under a perpendicular
magnetic field B (with the graphene plane extending for 0 �
x < ∞ and exhibiting a zigzag edge along the y axis at x = 0),
the Dirac-electron wave function corresponding to the K valley
can be written as a two-component spinor (the zigzag boundary
condition does not couple the two graphene valleys)

ψ(x,y) = eiqyy

√
2

(
χA(x)
χB(x)

)
. (1)

In Eq. (1), qy = ky − Ky , with ky , Ky being the linear momenta
of the electron and the K valley along the y direction; the
magnetic length lB = √

h̄c/eB.
With the introduction of reduced (dimensionless) variables

x/lB → x and xc = qylB , the continuous Dirac-Weyl equation
coupling the χA(x) and χB(x) components is given by

d

dx
χB + (x − xc)χB = εχA (2a)

d

dx
χA − (x − xc)χA = −εχB, (2b)

where the reduced energy ε = E/(h̄vF / lB), with vF being the
Fermi velocity of graphene.

In general, and prior to invoking any boundary condi-
tions (that is considering the complete graphene sheet for
−∞ < x < ∞), the solutions of the system of coupled
equations in Eq. (2) fall into two classes, i.e., for ε �= 0
and ε = 0.

Solutions for ε �= 0. In this case, one can multiply both
sides of Eq. (2b) with ε, and then use Eq. (2a) to eliminate χA.
The result is the following second-order equation for χB :

d2

dξ 2
χB(ξ ) +

(
ν + 1

2
− 1

4
ξ 2

)
χB(ξ ) = 0, (3)

where

ξ =
√

2(x − xc) and ν = ε2/2. (4)

Equation (3) has the standard form of a Weber differential
equation, and thus its solutions coincide with the parabolic
cylinder functions,28,29,31 i.e.,

χB(ξ ) = CνDν(ξ ), (5)

where Cν is a normalization constant.
Using Eq. (2a), the recurrence relation

d

dξ
Dν(ξ ) + 1

2
ξDν(ξ ) − νDν−1(ξ ) = 0, (6)

and Eq. (4), the corresponding A component is given by:

χA(ξ ) = Cν

√
νDν−1(ξ ). (7)
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FIG. 1. (Color online) The eigenenergies (specifically the
index ν) that solve the transcendental equation as a function of xc (a)
for the K valley [see Eq. (9)] and (b) for the K ′ valley [see Eq. (16)].
The almost flat segments of the curves correspond to Landau levels
with energies ε ≈ √

2n, n = 0, 1, 2, . . .; the approximate symbol ≈
signifies that ν does not take integer values but comes extremely close
to them. The rising-in-energy branches correspond to double-edge
states (i.e., states of edge character on both the A and B sublattices);
they cross the vertical axis at xc = 0 for (a) odd integer values and
(b) even integer values. Note that the K valley (a) exhibits a dispersive
(varying with xc = qylB ) quasiflat band with ν ≈ 0, while the
K ′ valley (b) exhibits a dispersionless flat band with ν = 0 [see text
and thick line (magenta color online)]; this is the only case when ν

takes an integer (ν = 0) value.

When ν is a nonnegative integer, n � 0, the parabolic
cylinder functions reduce to the familiar wave functions of
the one-dimensional unconfined harmonic oscillator,

Dn(ξ ) = 2−n/2e−ξ 2/4Hn

(
ξ√
2

)
, (8)

where Hn are Hermite polynomials. The wave functions in
Eq. (8) have the property Dn(±∞) = 0, appropriate for an
unconfined harmonic oscillator; they also exhibit n zeros.
When ν �= n > 0, Dν(+∞) = 0, and for ξ < 0 an additional
zero (compared to the case of ν = n) develops, through which
the parabolic cylinder function crosses the x axis and then
develops an exponentially growing tail; an example for a
state with (energy) ν = 2 + 9.229 × 10−18 and xc = 7 [see
Fig. 1(a)] is given in Fig. 2. Specifically the number of zeros
of Dν(ξ ) (with ν > 0) is given by the ceiling function32 �ν	
(this includes the case when ν is a positive integer n); for
ν � 0, Dν(ξ ) has no zeros.

In the case of a semi-infinite graphene sheet with zigzag
edges (extending for 0 � x < ∞), one can require that
the additional zero for the χB spinor component coincides
with the origin of axes (x = 0); this provides the following
transcendental equation for determining the energy levels of
the Dirac electrons (remember that ν = ε2/2):

Dν(−
√

2xc) = 0. (9)

The single-particle energies ε [which are solutions of
Eq. (9)] as a function of xc are displayed in Fig. 1(a). One sees
that Landau levels (with energy ε ≈ √

2n, n = 0, 1, 2, . . .) are
formed when the centroid xc of the orbitals is far away from the
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FIG. 2. (Color online) A bulk-bulk state in the third (n = 2)
LL: The χB (top frame) and χA (bottom frame) Dirac-spinor
components are displayed for xc = 7 and ν = 2 + 9.229 × 10−18 [see
the transcendental Eq. (9)]. This state lies well inside the quasiflat
segment of the third LL curve in Fig. 1(a). The vertical arrows mark
the position of the boundary at x = 0. In the range −∞ < xc < 0,
note the development of exponentially growing tails, associated with
the fact that the value of ν above is very close, but not equal, to an
integer (here 2). Apart from the tails, both orbitals portrayed here are
very close to the eigenfunctions of a 1D harmonic oscillator centered
at xc; see Eq. (8).

physical edge; the approximate symbol ≈ signifies that ν does
not take integer values but comes extremely close to them. An
illustrative case of the corresponding Dirac-spinor orbitals χB

and χA are portrayed in Fig. 2. In the domain −∞ < x < 0,
a tail develops due to the fact that the index ν is not an
integer. In the physically relevant domain 0 � x < +∞, the
two components are bulklike and very similar to the familiar
wave functions of a 1D unconstrained harmonic oscillator.
Similar orbitals (differing only in the number of zeros) apply
for all Landau levels with ν ≈ n � 1.

For positive values of xc near the boundary, and also
for negative values of xc, double-edge states are formed
reminiscent of the single-edge states familiar from the theory
of the integer quantum Hall effect.30 The corresponding
orbitals for an illustrative case (with xc = −1 and ν = 7.5266)
are displayed in Fig. 3. Again, one sees the development of a
tail in the domain −∞ < x < 0, due to the fact that the index
ν is not an integer.

The case of large and positive xc in the LLL (n = 0) is
special and of particular significance regarding the strongly
correlated Dirac-electron states in finite graphene samples
under high magnetic field.17 Indeed in this case, the Dirac
spinor contains orbitals of both bulk and edge character.
An illustrative case (with xc = 7 and ν = 2.049 × 10−21) is
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FIG. 3. (Color online) A double-edge state associated with the
third (n = 2) LL: The χB (top frame) and χA (bottom frame)
Dirac-spinor components are displayed for xc = −1 and ν = 7.5266
[see the transcendental Eq. (9)]. This state lies on the rising branch
extending out from the flat segment of the third LL curve in Fig. 1(a).
The vertical dashed lines mark the position of the physical boundary
at x = 0. In the range −∞ < xc < 0, note the development of
exponentially growing tails, associated with the fact that the value
of ν above is not equal to an integer. In the range −∞ < x < +∞,
the number of zeros associated with the B component is �ν	 = 8;
for the A component it is �ν − 1	 = 7. The physically relevant range
0 � x < +∞ contains only two zeros for both the cases of the B and
A spinor components.

portrayed in Fig. 4. One sees that the B component is bulklike
and similar to the ground state of a 1D harmonic oscillator in
the physically relevant domain 0 � x < +∞. However, in the
same domain, the A component is clearly edgelike.

Further understanding of this LLL behavior can be achieved
through the observation that for xc 
 0 the LLL χA component
can be approximated by

χ
LLL,app
A (x) ≈ C̃D−1(ξ )

= C̃e
1
2 (x−xc)2

√
π

2
erfc(x − xc). (10)

Taking into consideration that erfc(−xc) → 2 for (large) xc 

1, and keeping the lowest order in x/xc in the exponent, one can
determine the normalization constant C̃. The final simplified
expression is:

χ
LLL,app
A (x) =

√
2xce

−xxc . (11)

Equation (11) has the form of an exponential function
decaying inside the graphene sheet. This form agrees very well
with the full solution of χA in Fig. 4 [see Eq. (7) with xc = 7
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FIG. 4. (Color online) A bulk-edge state in the LLL (n = 0): The
χB (top frame) and χA (bottom frame) Dirac-spinor components are
displayed for xc = 7 and ν = 2.049 × 10−21 [see the transcendental
Eq. (9)]. This state lies well inside the quasiflat segment of the LLL
curve in Fig. 1(a). The vertical arrows mark the position of the
boundary at x = 0. In the top frame, note the development (in the
range −∞ < xc < 0) of an exponentially growing tail, associated
with the fact that the value of ν above is very close, but not equal,
to an integer (here 0). Apart from the tail, the orbital portrayed in
the top frame is very close to the ground-state eigenfunction of a 1D
harmonic oscillator centered at xc; see Eq. (8).

and ν = 2.049 × 10−21]. We note that the surface character of
this edgelike LLL A-component becomes more pronounced
(i.e., it exhibits a narrower 1/xc width) the larger the (positive)
value of the centroid xc.

Solutions for ε = 0. In this case, the two equations in Eq. (2)
decouple, yielding the two solutions

χB(ξ ) = CBe−ξ 2/4 (12a)

χA(ξ ) = 0, (12b)

and

χB(ξ ) = 0 (13a)

χA(ξ ) = CAeξ 2/4. (13b)

For the nontrivial case (CA or CB �= 0), neither of these
two solutions satisfy the boundary conditions χB(−√

2xc) = 0
and χB(+∞) = χA(+∞) = 0. Thus there is no dispersionless
solution with ε = 0 associated with the K valley. However, as
we will see below, such ε = 0 solutions exist for the K ′ valley.

2. K ′ valley

The continuous Dirac-Weyl equation coupling the χ ′
A(x)

and χ ′
B(x) components in graphene’s K ′ valley is given by

d

dx
χ ′

B − (x − xc)χ ′
B = −ε(−χ ′

A), (14a)

d

dx
(−χ ′

A) + (x − xc)(−χ ′
A) = εχ ′

B. (14b)

We note that Eq. (14) has the same form as Eq. (2) with the
substitution χA ↔ χ ′

B and χB ↔ −χ ′
A. As a result, for ε �= 0,

one has the following solutions for the Dirac spinor in the K ′
valley

χ ′
B(ξ ) = Cν

√
νDν−1(ξ ) (15a)

χ ′
A(ξ ) = −CνDν(ξ ), (15b)

with the index ν = ε2/2 as was the case in the K valley.
The transcendental equation in the K ′ valley for the indices

ν (or energies ε) as a function of xc is written as

Dν−1(−
√

2xc) = 0. (16)

The solutions of Eq. (16) as a function of xc are plotted
in Fig. 1(b). Note that the index ν > 1 in this case [Dν−1(ξ )
has no zeros for ν � 1]. This contrasts with the case of the K

valley shown in Fig. 1(a), where ν > 0.
For ε = 0, the two equations in Eq. (14) decouple, and there

is a physically valid solution

χ ′
A(ξ ) = −C ′

Ae−ξ 2/4 (17a)

χ ′
B(ξ ) = 0. (17b)

Assuming a relation ν = ε2/2, this dispersionless band of
edge states can be associated with an index ν = 0, and it is
denoted by a thick dashed line in Fig. 1(b). This band maintains
also for zero-magnetic field, since

lim
B→0

e−ξ 2/4 ∝ ex̃qy , (18)

which represents an edge state for qy < 0; the tilded x̃ denotes
the x position in the original dimensions of length (before the
introduction of the reduced variable x = x̃/ lB ; see Ref. 7).

B. Tight-binding approach for finite graphene flakes

In the tight-binding (TB) calculations, we use the Hamilto-
nian

HTB = −
∑
〈i,j〉

tij c
†
i cj + H.c., (19)

with 〈〉 indicating summation over the nearest-neighbor33 sites
i,j . The hopping matrix element

tij = t exp

(
ie

h̄

∫ rj

ri

ds · A(r)

)
, (20)

where t = 2.7 eV, ri and rj are the positions of the carbon
atoms i and j , respectively, and A is the vector potential
associated with the applied perpendicular magnetic field B.

The calculations were carried out for two shapes that
support a zigzag edge on all sides of the graphene flake,
that is, equilateral triangles and regular hexagons, as well as
for a square shape which exhibits both zigzag and armchair
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edges. The number of carbon atoms considered is N = 6397
for the triangular flakes, N = 6144 for the hexagonal ones,
and N = 2074 for the square one. The diagonalization of the
TB Hamiltonian [Eq. (19)] is implemented with the use of the
sparse-matrix solver ARPACK.34

III. RESULTS OF TIGHT-BINDING CALCULATIONS
AND THEIR INTERPRETATION

A. Trigonal graphene flakes

In Fig. 5, we display the TB energies for the triangular flake
with φ = 0.01, φ = eSB/(hc) being the dimensionless mag-
netic flux through an hexagonal unit of the two-dimensional
graphene lattice; S is the area enclosed by the hexagon and
B is the magnetic field. The value φ = 0.01 corresponds to
a magnetic field sufficiently high so that Landau levels have
been formed but at the same time low enough so that Hofstadter
butterfly35 effects (due to the periodicity of the lattice) have
not developed.23 The TB-energy curve in Fig. 5 exhibits a
well-defined trend, i.e., several almost-flat horizontal segments
are connected via fast-varying and rising-in-energy branches.
The flat segments correspond to the Landau levels with energy
E/t ∝ sign(n)

√|n|, n = 0,±1,±2, . . ..
A close inspection of the properties and behavior of the

states associated with the TB energies in the n = 0 level reveals
that this level contains two different bands: (i) a nondispersive
one with energies close to the available machine precision
(E/t ∼ 10−14) [that correspond to the ε = 0 solutions of the
continuous model; see Sec. II A] and (ii) a quasidegenerate
dispersive band with energies that are still very small (starting
at E/t ∼ 10−8) but increase gradually and then merge with
the rising-in-energy branch; this band corresponds [see the
transcendental Eq. (9)] to the ε � 0 solutions of the continuous
model in the flat region of the lowest curve in Fig. 1(a).
The nondispersive zero states coincide with the midgap
surface states under field-free conditions and they have been
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E
/t

p
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FIG. 5. (Color online) The TB energies at high magnetic field
(φ = 0.01) for a triangular flake with zigzag edges comprising
N = 6397 carbon atoms. The n = 0, ±1, ±2, and ±3 Landau
levels correspond to the flat segments of the curve. The double-edge
states correspond to the rising-in-energy branches between the flat
segments. The integer index p counts the TB states (negative p values
correspond to negative energies).

studied extensively;3–7,25 these states are not influenced by the
magnetic field and will not be discussed any further here. The
close-to-zero dispersive states are formed as a consequence of
the external magnetic field, and they will be the primary focus
of this article.

In Fig. 6, we display the TB electron densities (specifically
the square root of the densities36) for states associated with the
LLL in the case of a triangular graphene flake under the same
magnetic field φ = 0.01. The electron densities of the A (left,
online red) and B (right, online blue) sublattices are plotted
separately. Figures 6(a) and 6(b) correspond to TB states with
energies (E/t = 0.1699 × 10−7 and E/t = 0.1475 × 10−3,
respectively) that lie well inside the flat segment of the LLL
(n = 0) energy curve in Fig. 5. It is apparent that these states
are of a mixed bulk-edge character, with the B-sublattice
component being bulklike and the A-sublattice component
being edgelike. They are analogous to the mixed bulk-edge
LLL states described in Sec. II A within the continuous
relativistic Dirac-Weyl-equation framework. In particular, the
spatial profile of the A-sublattice component of the TB

N=6397
=0.01

E=0.1699e-07

φ

E=0.1475e-03

E=0.3033

(a)

(c)

(b)

FIG. 6. (Color online) Examples of TB electron densities at high
magnetic field (φ = 0.01) for the A (left) and B (right) sublattices
associated with: (a) + (b) mixed bulk-edge dispersive states in the
n = 0 Landau level (whose TB energies reside on the flat step at E ∼
0 in Fig. 5). (c) Double-edge states situated on the rising-in-energy
branch between the n = 0 and n = 1 Landau levels. Energies in units
of the hopping coupling parameter t .
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E=0.326846

E=0.326848

E=0.384558

N=6397
=0.01φ(a)

(b)

(c)

FIG. 7. (Color online) Examples of TB electron densities at high
magnetic field (φ = 0.01) for the A (left) and B (right) sublattices
associated with: (a) + (b) double-bulk states in the n = 1 Landau
level. (c) Double-edge states situated on the rising-in-energy branch
between the n = 1 and n = 2 Landau levels. Energies in units of the
hopping coupling parameter t .

densities in Figs. 6(a) and 6(b) agrees well with the surface-
state Dirac-spinor component in Eq. (11); see also Fig. 4
(bottom frame). Moreover, the profiles of the TB densities
for the B sublattices in these figures exhibit the qualitative
behavior of a Dν[

√
2(x − xc)] function with ν � 0 described

in Sec. II A; see also Fig. 4 (top frame). Note that a lower
TB energy [case of Fig. 6(a)] corresponds to a continuous
Dν[

√
2(x − xc)] state with a larger centroid xc > 0, farther

away from the physical edge. For states with higher TB
energies, lying on the rising-in-energy branch, the B-sublattice
component moves toward the physical edge and transforms
into an edge state, as illustrated by the double-edge TB state
in Fig. 6(c) (with energy E/t = 0.3033).

In Figs. 7(a) and 7(b), we portray TB densities for two states
associated with the second Landau level (with index n = 1 at
an energy E/t ≈ 0.326 85). Figure 7(a) corresponds to a Dirac
spinor in the K valley having an A component consisting of
a D0(ξ ) state (no nodes inside the graphene flake) and a B
component consisting of a D1(ξ ) state (a single node inside
the graphene flake). Figure 7(b) portrays a similar TB state
in the K ′ valley, since the A and B sublattices correspond
to the continuous functions D1(ξ ) and D0(ξ ), respectively,
which is the opposite from the K-valley case in Fig. 7(a);

E=0.458268

E=0.501967

(a)

(b)

N=6397
=0.01φ

FIG. 8. (Color online) Examples of TB electron densities at high
magnetic field (φ = 0.01) for the A (left) and B (right) sublattices
of a triangular flake with N = 6397 carbon atoms and zigzag edges.
(a) Double-bulk states in the n = 2 Landau level. (b) Double-edge
states situated on the rising-in-energy branch between the n = 2
and n = 3 Landau levels. Energies in units of the hopping coupling
parameter t .

see Sec. II A 2. Figure 7(c) portrays a double-edge state with
energy E/t = 0.384 558 (lying in Fig. 5 on the rising-in-
energy branch between the n = 1 and n = 2 Landau levels).
It is apparent that this double-edge TB state is associated
with the K ′ valley and has been evolved out of the double-
bulk state in Fig. 7(b); note the preservation of the single
node (no node) topology in the A-sublattice (B-sublattice)
electron-density component.

In Fig. 8(a), we portray TB densities for a double-bulk
state associated with the third Landau level (with index n = 2
at an energy E/t ≈ 0.458 268; see Fig. 5). The TB densities
in Fig. 8(a) correspond to a continuous Dirac spinor in the
K ′ valley having an A component consisting of a D2(ξ ) state
(two nodes inside the graphene flake) and a B component
consisting of a D1(ξ ) state (a single node inside the graphene
flake); see Sec. II A 2 and Fig. 2 [but with B replaced by A′ and
A replaced by B′ (online: blue ↔ red)]. Figure 8(b) portrays
a double-edge state with energy E/t = 0.501 967 (lying in
Fig. 5 on the rising-in-energy branch between the n = 2 and
n = 3 Landau levels). It is apparent that this double-edge TB
state is associated also with the K ′ valley and has been evolved
out of the double-bulk state in Fig. 8(a); note the preservation
of the two-node (single-node) topology in the A-sublattice
(B-sublattice) electron-density component. Note the similar-
ities with the double-edge continuous Dirac spinor within the
physical semi-infinite graphene plane portrayed in Fig. 3.

B. Hexagonal graphene flakes

In Sec. III A, we studied the nature of the TB states in
the case of a trigonal flake with zigzag edge terminations.
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FIG. 9. (Color online) The TB energies at high magnetic field
(φ = 0.01) for an hexagonal graphene flake with zigzag edges
comprising N = 6144 carbon atoms. The n = 0, ±1, and ±2 Landau
levels correspond to the flat segments of the curve. The double-edge
states correspond to the rising-in-energy branches between the flat
segments. The integer index p counts the TB states (negative p values
correspond to negative energies).

A characteristic property of triangular flakes is that the
same sublattice participates in the edge terminations of two
adjacent polygonal sides (forming an angle of 60◦). In this
section, we study hexagonal graphene flakes23 with zigzag
edge terminations, which is a more complicated case. This
is due to the fact that the sublattices A and B alternate in
providing the edge termination of adjacent polygonal sides
(having an angle of 120◦).

In Fig. 9, we display the TB energies for an hexagonal
flake with φ = 0.01 (corresponding to a high magnetic field
where Landau levels have been formed). As was the case
with the trigonal TB energies in Fig. 5, the TB-energy curve
in Fig. 9 exhibits also a well defined trend, i.e., several
almost-flat horizontal segments which are connected via fast-
varying (rising-in-energy) branches. The flat segments corre-
spond to the Landau levels with energies E ∝ sign(n)

√|n|,
n= 0,±1,±2, . . ..

Furthermore, as was also the case with the trigonal flakes,
a close inspection of the properties and behavior of the
states associated with the TB energies in the n = 0 level in
Fig. 9 reveals that this level contains two different bands:
(i) a nondispersive one with energies close to the available
machine precision (E/t ∼ 10−14) [that correspond to the
ε = 0 solutions of the continuous model; see Sec. II A] and (ii)
a quasidegenerate dispersive band with energies that are still
very small (starting at E/t ∼ 10−6) but increase gradually
and then merge with the rising energy branch; this band
corresponds [see the transcendental Eq. (9)] to the ε � 0
solutions of the continuous model in the flat region of the
lowest curve (i.e., in the LLL) in Fig. 1(a). Here, we study
these dispersive states in the LLL that are formed due to the
presence of the magnetic field.

In Fig. 10, we display the TB electron densities (specifically
the square root of the densities36) for states associated with
the LLL in the case of an hexagonal graphene flake under
the same magnetic field φ = 0.01. The electron densities of
the A (left, online red) and B (right, online blue) sublat-

N=6144

E=0.1459e-03

φ=0.01

(a)

(b)

E=0.2576
A

BA

B

FIG. 10. (Color online) Examples of TB electron densities at high
magnetic field (φ = 0.01) for the A (left) and B (right) sublattices of
an hexagonal flake with N = 6144 carbon atoms and zigzag edges.
(a) A mixed bulk-edge state in the n = 0 Landau level. (b) A
double-edge state with energy situated on the rising-in-energy branch
between the n = 0 and n = 1 Landau levels. The labels A and B
indicate the (alternating) sublattice-type edge termination along the
sides forming the physical boundary of the hexagon. Energies in units
of the hopping coupling parameter t .

tices are plotted separately. Figure 10(a) corresponds to a
TB state with energy (E/t = 0.1459 × 10−3) that lies well
inside the flat segment of the LLL (n = 0) energy curve
in Fig. 9. This state is of a mixed bulk-edge character,
exhibiting, however, a more complex profile compared to
the corresponding mixed bulk-edge states for the trigonal
flake in Figs. 6(a) and 6(b). This is due to the alternation
of the A and B sublattices along the polygonal sides forming
the edge of the hexagonal flake. In particular, focusing on
a side with a B-sublattice termination (e.g., the one at the
upper-right corner), one sees that the A-sublattice density
(left, online red) exhibits an edge-state behavior, while the
B-sublattice density (right, online blue) exhibits a bulk-state
profile. Focusing on a side with an A-sublattice termination
(e.g., the one at the lower-left corner), one sees the opposite,
i.e., the A-sublattice density (left, online red) exhibits a
bulk-state behavior, while the B-sublattice density (right,
online blue) exhibits an edge-state profile. In the continuous
relativistic Dirac-Weyl model (Sec. II A), the former case is
associated with spinor components in the K valley (permitting
the vanishing of χB on the edge; see Sec. II A 1), while
the latter is associated with spinor components in the K ′
valley (permitting the vanishing of χ ′

A on the edge; see
Sec. II A 2).

Figure 10(b) displays the TB densities for states with a
higher TB energy, E/t = 0.2576, lying on the rising-in-energy
branch between the n = 0 and n = 1 Landau levels in Fig. 9.
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N=6144 φ=0.01

(a)

E=0.3271

(b)

BA

A

B

FIG. 11. (Color online) Examples of TB electron densities at high
magnetic field (φ = 0.01) for the A (left) and B (right) sublattices
of an hexagonal flake with N = 6144 carbon atoms and zigzag
edges. Both rows [(a) and (b)] portray double-bulk spinors in the
n = 1 Landau level. The labels A and B indicate the (alternating)
sublattice-type edge termination along the sides forming the physical
boundary of the hexagon. Energies in units of the hopping coupling
parameter t .

This state represents a double-edged one and it can be
interpreted as having continuously evolved form the state
portrayed in Fig. 10(a), with the bulk components having been
pushed against the edges.

Figure 11 portrays TB densities for two double-bulk states
associated with the second Landau level of the hexagonal flake
(with index n = 1 at an energy E/t ≈ 0.3270; see Fig. 9).
The sublattice densities in Fig. 11(a) correspond to a TB
state with the lowest energy (E/t ≈ 0.3268) in this Landau
level, and they are concentrated around the center of the flake,
far away from the edges. In addition, neither one of them
(A-sublattice density or B-sublattice density) exhibits any
nodes, which seems paradoxical at a first glance for a state
belonging to the first Landau level. The explanation can be
found in that the edge of the flake has very little influence in this
case, which thus corresponds to a nodeless l = 0 Dirac-Weyl
state of the n = 1 LL in a circular graphene dot with zigzag
termination; see Eqs. (A.2) and (A.4) in Ref. 17.

Figure 11(b) portrays TB densities for another double-bulk
state with energy E/t = 0.3271 belonging to the second
(n = 1) Landau level of the hexagonal flake; see Fig. 9.
The density profiles in Fig. 11(b) exhibit a zero-node and
a one-node structure in analogy with the D0(ξ ) and D1(ξ )
functions describing the n = 1 Landau level in the continuous
Dirac-Weyl model (see Sec. II A). However, in contrast to
the single-edge semiinfinite graphene plane in Sec. II A, in
Fig. 11(b) the zero-node/one-node topology is present in both
sublattices (in both the left and right panels) due to the
alternation of the edge termination along the hexagon’s sides
between the A and B sublattices.

E=0.3756

N=6144 φ=0.01

E=0.3323

(a)

(b)

B

B

A

A

FIG. 12. (Color online) Examples of TB electron densities at high
magnetic field (φ = 0.01) for the A (left) and B (right) sublattices
of an hexagonal flake with N = 6144 carbon atoms and zigzag
edges. Both rows [(a) and (b)] portray double-edge spinors with
energies in the rising-in-energy branch between the n = 1 and
n = 2 Landau level. The labels A and B indicate the (alternating)
sublattice-type edge termination along the sides forming the physical
boundary of the hexagon. Energies in units of the hopping coupling
parameter t .

Figure 12 portrays TB densities for two double-edge states
whose energies lie on the rising-in-energy branch between the
n = 1 and n = 2 Landau levels; see Fig. 9. The sublattice
densities in Fig. 12(a) correspond to a TB state with energy
E/t = 0.3756. It is apparent that they can be viewed as having
evolved out of the densities in Fig. 11(b), with the centroids of
the bulk densities having been pushed against the hexagonal
edges. Remarkably, at the same time, the zero-node/one-node
alternating nodal topology is preserved in the double-edge
state in Fig. 12(a) in complete analogy with the double-bulk
state in Fig. 11(b).

The sublattice densities in Fig. 12(b) correspond to a
TB state with energy E/t = 0.3323; they also represent a
double-edge state like the one in Fig. 12(a). However, a new
characteristic [compared to the double-edge state in Fig. 12(a)]
is the appearance of an additional nodal pattern resulting
from wave-function quantization along (and parallel to) the
hexagon’s sides. This additional pattern is superimposed on
the perpendicular-to-the-edge zero-node/one-node pattern (the
latter being present already in the continuous Dirac-Weyl
model of a semiinfinite graphene plane studied in Sec. II A).
We note that such combined parallel-to and perpendicular-to-
the-edge nodal patterns (not shown) have been found by us
also in several instances of TB states in the case of a trigonal
graphene flake in Sec. III A.

C. Square graphene flakes

In this section, we study the more complicated case
of a square graphene flake which necessarily has mixed

045421-8



UNIQUE NATURE OF THE LOWEST LANDAU LEVEL IN . . . PHYSICAL REVIEW B 83, 045421 (2011)

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-100 -50  0  50  100

E
/t

p

E levels square dot φ=0.01

FIG. 13. (Color online) The TB energies at high magnetic field
(φ = 0.01) for a square graphene flake with both zigzag and
armchair edges comprising N = 2074 carbon atoms. The lowest
(n = 0) Landau level corresponds to the flat segment of the curve
at E ≈ 0. The integer index p counts the TB states (negative p values
correspond to negative energies).

armchair and zigzag edge terminations (each type of ter-
mination developing on opposite sides of the square). In
Fig. 13, we display the TB energies for such a square flake
with φ = 0.01 as in the previous studied cases of trigonal
(Sec. III A) and hexagonal flakes (Sec. III B). Compared
to the energy curves in the previous cases [trigonal (see
Fig. 5) and hexagonal (see Fig. 9)], the TB energies in
Fig. 13 exhibit higher Landau levels (horizontal segments
in Fig. 13) with n � 1 that are not as well formed; this
may be due to the smaller number of carbon atoms in the
square flake (N = 2074). The LLL (n = 0) level, however,
is well formed, and this is sufficient for our purposes here,
namely to investigate whether the mixed LLL bulk-edge states
maintain in the presence of edge segments with armchair
termination.

Indeed, the TB sublattice densities for the LLL state (with
energy E/t = 0.2769 × 10−2) portrayed in Fig. 14 show that
the mixed LLL bulk-edge behavior maintains also in the case
of a square flake. Naturally, due to the coupling between the
K and K ′ valleys induced by the presence of the armchair
terminations, each sublattice [A (online red) and B (online
blue)] exhibits now both edge and bulk density contributions,
which, however, correspond to different valleys as explicitly
marked in Fig. 14.

Mixed bulk-edge states of a square graphene flake in a
perpendicular magnetic field were also reported in a recent
study.26 In this study the appearance of such mixed states with
significant weight at the zigzag edges were attributed to the
coupling between the K and K ′ valleys due to the armchair
edges (see in particular Sec. IV in Ref. 26). This interpretation
differs from the conclusion presented in our article where
the occurrence of mixed bulk-edge LLL states is shown to
originate solely from the zigzag edge termination.

IV. SUMMARY AND DISCUSSION

The properties of single-electron states in graphene flakes
with zigzag edge termination under high magnetic fields

E=0.2769e-02

N=2074 φ=0.01

zigzag

ar
m

ch
ai

r

A(K)

A(K')

B(K)

B(K')

FIG. 14. (Color online) Example of TB electron densities at high
magnetic field (φ = 0.01) for the A (online red; top frame) and
B (online blue; bottom frame) sublattices of a square flake with
N = 2074 carbon atoms and both zigzag and armchair edges. A
state representing a mixed bulk-edge state in the LLL is displayed.
The density contributions on each sublattice associated with a given
valley are also marked. Energies in units of the hopping coupling
parameter t .

(in the regime of Landau-level formation) were investigated
using tight-binding calculations. A systematic interpretation
of their character (bulklike versus edgelike) was achieved
via a comparison of the tight-binding electron densities with
analytic expressions (based on parabolic cylinder functions)
for the relativistic Dirac-Weyl spinors in the case of a semi-
infinite graphene plane. A variery of graphene flakes was
considered, namely trigonal, hexagonal, and square ones.

The higher Landau levels were found to comprise exclu-
sively electrons of bulk-type character (for both sublattices).
Furthermore, electrons with energies on the rising-in-energy
branches (connecting the Landau levels) are described by
edge-type states reminiscent of those familiar from the theory
of the integer quantum Hall effect for nonrelativistic electrons.
In contrast, in all cases studied, the lowest (n = 0) Landau level
contained relativistic Dirac electrons of a mixed bulk-edge
character without an analog in the nonrelativistic case. Most
importantly, it was shown that such mixed bulk-edge states
maintain also in the case of a square flake with combined
zigzag and armchair edge terminations.

The presence of mixed bulk-edge LLL states in graphene
samples with realistic shapes points at significant implications
concerning the many-body correlated FQHE excitations. We
recall that Ref. 17 studied the many-body correlated FQHE
excitations in the LLL in the simplified case of a circular
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graphene flake with zigzag edge termination, and it found that
the two-body Coulomb-interaction matrix elements are given
as a sum of four terms

1
4 (〈b̃1b̃2|b̃3b̃4〉 + 〈ẽ1ẽ2|ẽ3ẽ4〉 + 〈b̃1ẽ2|b̃3ẽ4〉 + 〈ẽ1b̃2|ẽ3b̃4〉),

(21)

where |b̃〉 and |ẽ〉 denote the bulk and edge components of
the mixed LLL state; note that, due to the equal weights
(50–50%) of the bulklike and edgelike components, a prefactor
of 1/4 appears in front of each term in Eq. (21). As a
consequence of Eq. (21) and of the 1/4 prefactor, a sizable
attenuation of the many-body correlated FQHE excitations in
the LLL (associated with the 〈b̃1b̃2|b̃3b̃4〉/4 term reflecting the
depletion of the bulk component) was found in the simplified
case of a circular graphene flake. Furthermore, it was shown17

that the insulating behavior at the Dirac neutrality point under
high B (experimentally observed18,19 in graphene samples

along with the 1/3 FQHE) is associated with the Coulombic
repulsion due to the accumulation of charge at the edges
[related to the 〈ẽ1ẽ2|ẽ3ẽ4〉/4 and the remaining two cross terms
in the Coulomb-interaction matrix elements given in Eq. (21)].

The current study shows that the appearance of mixed bulk-
edge LLL states is a property of the presence of segments in the
graphene-sample boundary having a zigzag edge termination,
independent of the precise shape of the graphene sample.
This finding suggests that the results of Ref. 17 concerning
the many-body correlated FQHE excitations in the LLL
can be generalized to graphene samples with more realistic
shapes.
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extent of the effect of higher-order neighbors on the mixed
bulk-edge states deserves a future study. Note that while the
second-nearest-neighbor hopping term is (at least) an order of
magnitude smaller than the nearest-neighbor one, it is of the same
order of magnitude (or smaller) as the third-nearest-neighbor term
(see S. Reich et al. above and C. Bena and L. Simon, e-print
arXiv:1007.3907).

34R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK
Users’ Guide: Solution of Large-Scale Eigenvalue Problems
with Implicitly Restarted Arnoldi Methods (SIAM, Philadelphia,
1998).

35D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
36A scaling factor is used in order to achieve the best legibility of the

figures.
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