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Superconductivity induced phase-controlled mesoscopic magnetic effects in a two-dimensional electron

gas that bridges two superconducting reservoirs are investigated. Giant paramagnetic response of the junc-

tion, occuring at certain values of the phase difference of the order parameter, is predicted. A geometrically

similar system, consisting of a graphene ribbon stretched between two superconducting leads, is also consi-

dered. The magnetic effects in this system are found to be small and the difference between the magnetic

properties of the two systems is discussed.
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74.45.+c Proximity effects; Andreev effect; SN and SNS junctions;
74.25.Bt Thermodynamic properties;
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1. Introduction

Low-dimensional mesoscopic systems exhibit a num-

ber of properties which are of fundamental scientific in-

terest, as well as some that may offer opportunities for the

use of such systems in future miniaturized electronic de-

vices. The new behavior exhibited by systems in this size

regime made them the subject of extensive theoretical and

experimental research over the past two decades.

Quantum wires (QW), are electric conductors with lat-

eral (transverse) dimensions reduced such that the motion

of the charge carriers in the wire becomes quantized.

Quantum wires can be fabricated in many different ways.

One of the common methods for the creation of QWs

is the gate voltage method applied to semiconducting

heterostructures with a two-dimensional electron gas

(2DEG) at the interface [1,2]. Another often used method

is the controlled break junction technique (CBJ). In this

case a contact is pulled apart (for example, separating a

contact formed between a tip and a surface) [3], or bent

[4], in such a way that at the point where it breaks one gets

a very narrow junction with a diameter comparable to the

wavelength of the electrons at the Fermi level, resulting

in conductance quantization [1,2,5,6] and/or force oscil-

lations [3,4] that emerge upon continuous pulling of the

contact. Quantum wires can also be made from quasi-

two-dimensional conductors, such as graphene, by re-

stricting the planar motion of the electrons in one of the

two planar directions through the formation of sufficient-

ly narrow ribbons [7].

Magnetic field effects in three-dimensional quantum

wires connecting two superconductors have been studied

previously in [8], where the phenomenon of giant magne-

tization oscillations was predicted. Here we focus on me-

soscopic magnetic effects of superconducting-normal-su-

perconducting (SNS) constrictions, shown schematically

in Fig. 1, where the narrow (normal) part that connects

the two bulk superconductors is a quasi-two-dimensional

conductor. We consider two cases: (i) a superconductor–

two-dimensional electron gas–superconductor (S/2DEG/S)

junction and (ii) a superconductor–graphene mono-

layer–superconductor (S/GM/S) junction. Both types of
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systems can be realized experimentally (see, e.g.,

[9–12]).

In the following section we consider the S/2DEG/S

system. We investigate the influence of the barriers and

the carrier effective mass differences at the interfaces be-

tween the semiconductor and superconductor on the

Andreev levels and calculate the magnetization. In Sec. 3

we discuss the differences between the S/2DEG/S junc-

tion and S/GM/S junction, and explain the smallness of

the magnetic field effects in the S/GM/S junction. We

summarize our results in Sec. 4.

2. Magnetic effects in S/2DEG/S junctions

In this section we consider a S/N/S contact made from

a semiconductor heterostructures, that bridges two bulk

superconductors. The difference in the electron band

structure of the InAs, In Ga Asx x1− and In Al Asx x1− semi-

conductors leads to the formation of a narrow (∼ λ F ) po-

tential well in the InAs layer [13]. As a result, some of the

conduction electrons of the semiconductors are trapped

in this well, forming a two-dimensional electron gas. The

quantum wires are fabricated by restricting the lateral di-

mensions of the two-dimensional electron gas in the semi-

conductor heterostructure through the use of electrostatic

voltage gates. The potential of the electric field of the gates

forms a bottleneck whose size in the narrowest part can be

reduced to reach the order of several Fermi wavelengths. In-

side this narrow region motion of the electrons in the direc-

tions that are transverse to the constriction axis is highly

quantized and, consequently, at low temperatures only few

transverse modes are populated and can conduct a current.

Since the motion of the electrons in the transverse di-

rection is quantized, the motion of the electrons in each

transverse mode inside the 2DEG is effectively one-di-

mensional. Assuming that reflection at the interfaces be-

tween the semiconducting bridge and the superconduct-

ing reservoirs is specular (i.e., electrons from different

modes do not mix and, therefore, can be treated indepen-

dently), we can describe each mode with a simplified

one-dimensional model [15]. We assume that the left and

right superconductors have uniform order parameters of

the same magnitude Δ, but with different phases, φ1 and

φ2. The order parameter inside the semiconducting bridge

vanishes, i.e.
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In our model we neglect interelectron interactions inside

the 2DEG. For such a quasi-1D constriction we could

have used a Luttinger liquid model to describe the one-di-

mensional transverse channels between the superconduc-

tors (see, e.g., Refs. 16 and 17). It turns out, however, that

for an adiabatic constriction both models produce the

same final result.

The influence of a magnetic field on the electrons in

the 2DEG is twofold. First, the magnetic field acts on the

magnetic moments of the electrons and holes, and second

it affects the spatial motion of the charge carriers via the

Lorentz force. However, if the magnetic field is applied

parallel to the plane of the 2D electron gas, orbital effects

can be neglected. In this article we consider only the ef-

fects of Zeeman interactions.

We assume that the properties of the 2DEG/S interface

are very similar to the properties of a normal (N) metal/su-

perconductor (S), N–S, interface, namely, the electrons

and holes from the nonsuperconducting part of the con-

striction, whose energies are lower than the energy gap Δ
in the spectrum of the superconductors, cannot leave the

normal part of our S/2DEG/S junction. Instead they are

being Andreev reflected [18] at the 2DEG/S interfaces.

The interference of the incident electron and the reflected

hole produces a set of discrete Andreev–Kulik (AK)

states [19], that are responsible for the occurence of a

Josephson current through the system. The spectrum of

the AK states can be found by solving the Bogolyubov–

De Gennes equations [15]
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Fig. 1. A schematic description of the superconductor–2DEG–su-

perconductor junction. Two superconductors with different pha-

ses of the order parameter are connected via a two-dimensional

normal electron gas, or, alternatively, a narrow ribbon of gra-

phene. A magnetic field is applied locally between the super-

conductors, parallel to the plane of the 2D conductor and is

taken to be negligibly weak near the SN interfaces. A similar

system has been considered in Ref. 14, where the effects of

Zeeman splitting and spin-orbit interaction on the Josephson

current were studied.
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where the two-component spinors u( ) ( ( ), ( ))x u x u x= ↑ ↓
and v( ) ( ( ), ( ))x v x v x= ↑ ↓ are, respectively, electron and

hole probability amplitudes, and the ↑ and ↓ subscripts

determine the quasiparticle spin projection. The Hamil-

tonian �H is a 2 2× matrix
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Here h p m x U xe F= + −2 2/ ( ) ( ) ε and μ μ= g B / 2. The

first term in Eq. (3) describes the nonmagnetic part of the

Hamiltonian with εF being the Fermi energy, and m x( )

the effective mass of the quasiparticles. The effective

mass ms in the superconductors can be different from the

effective mass mn in the semiconductor. The function

U x( ) describes the external potential. We assume that

the S/2DEG/S junction is clean and, therefore, U x( ) = 0

everywhere except at the interfaces. At the interfaces

( / )x L= ± 2 the difference in material composition of su-

perconductor and semiconductor commonly leads to for-

mation of potential barriers. We will model these poten-

tial barriers by Dirac delta-functions of equal strength

W , i.e.

U x W x L x L( ) ( ( / ) ( / ))= + + −δ δ2 2 . (4)

The second term in Eq. (3) is the Zeeman coupling of

the magnetic momenta of the electrons to the external

field B x( ). We assume that the magnetic field is weak

( ( )g B xBμ << Δ, where μB is the Bohr magneton and g is

the Lande g-factor), and that it acts only in the nonsuper-

conducting part of the junction

B x
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These requirements are important in order to guarantee

that the field does not create currents (or equivalently,

phase gradients) along the S/2DEG interfaces. Finally,

the off-diagonal potential �D( )x , which enters Eq. (2) is

equal to
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where Δ( )x is the order parameter, Eq. (1). The use of the

Bogolyubov–de Gennes equations to describe a S/2DEG/S

structure is valid only when the nonsuperconducting seg-

ment of the system is shorter than the electron–hole pair

correlation decay length l v k TT F B= � / ( ) (see, e.g., dis-

cussion in Ref. 20). The Andreev–Kulik levels are ob-

tained by matching the solutions for the uniform regions

at the S/2DEG interfaces. The result of the matching pro-

cedure is quite cumbersome. To simplify it we will use the

Andreev approximation [18,19]. That is, to the lowest

nonvanishing order in max ( , ) /Δ E Fε we (approximate-

ly) replace the wave vectors of the electrons and holes in-

side the S and 2DEG parts of the junction with the Fermi

wave vectors k k ke h F
n≈ ≈ ( )

and q q ke h F
s≈ ≈ ( )

, where

k k m m
F
s

F
n

s n
( ) ( )

/ /= ; and for the differences between

the wave vectors we write k k m ke h n F
n− ≈ ε / ( )

( )
�

2 and

q q m ke h s F
s− ≈ Δ / ( )

( )
�

2 .

In a long junction (L vF>> =ξ 0 � / Δ) the bound state

energies close to the Fermi level, ε << Δ, are
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Here Z Wm k F= / ( )� is the parameter which describes the

barrier strength and ωL Fv L= � / is the energy level spac-

ing. If the effective masses of the charge carriers in the

superconducting leads and in the 2DEG are equal, the re-

sults obtained in Refs. 21–23 are recovered. Equation (6)

describes two sets (±) of discrete levels, labeled by inte-

ger indices n = ± ± …0 1 2, , , and an additional index

σ = ±1 which characterizes the splitting of the energy

levels in a magnetic field. Since the scattering properties

of the interfaces are assumed to be spin-independent, spin

is conserved in both the Andreev and normal reflections.

The magnetization of each populated AK level is, accord-

ing Eq. (6), g Bμ / 2. The mesoscopic harmonic factors,

sin ( )2Lk F and cos ( )2Lk F in Eq. (7), are associated with

interference of the incident and normally reflected quasi-

particle waves. They appear due to a large change in the

quasimomentum of the quasiparticle at the interface in

normal reflection. In a transparent SNS junction (Z = 0)

with equal effective masses, these oscillations are absent

since in pure Andreev reflection processes momentum is
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approximately conserved. As a result, Eq. (6) reduces to

the well known Kulik spectrum [19].

For a transparent SNS junction in zero magnetic field,

B, the AK levels, corresponding to two different sets

( ± φ), intersect at φ = +r rπ π2 (r = ± ± …0 1 2, , , ). At these

special points the levels are four-fold degenerate for a

single channel junction. The situation is changed if the

junction is not transparent. Even if the barriers are very

small, levels do not intersect and they oscillate periodi-

cally with phase, approaching each other at the points

φ = = ± ±πk k( , , )0 1 2 . Every AK level is now two-fold

degenerate. An external magnetic field removes the re-

maining degeneracy. The magnetization generated by the

AK state nσ( )± of the transverse mode l is given by

M n
l

l n

,
( )

, ,
( )

( )
exp ( ( ))

σ
σ

μσ

βε
±

±
= −

+ − φ1
. (8)

The subscript l which enters this formula implies that the

transverse modes are different. The total magnetization of

a single transverse mode is given by a sum over all the

AK states.

It is useful to define the magnetizations produced

by pairs of levels with opposite directions of the mag-

netic moment M n M n M n
l l l
( )

,
( )

,( ) ( ) ( )
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+
±
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±

1 1 and then

sum up the pair contributions M n
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Such ordering guarantees convergence of the first and

second terms in Eq. (9). The total magnetization of the

single transverse mode is [8]

M
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where χ μ ω= g BB L/ .

The first term in Eq. (10) does not depend on the phase

difference and the temperature. This term describes

magnetization of the junction in the absence of Andreev

reflection; that is, for nonsuperconducting reservoirs

(Pauli magnetization). It is the second term which is re-

sponsible for superconductivity-induced oscillations of

the magnetization. At high temperatures (T L>> ω ), when

the Fermi distribution is smeared over many AK levels

the amplitude of these oscillations is small in comparison

with the first term in Eq. (10). The sum in Eq. (10) can be

truncated at k = 1 so that the magnetization of each trans-

verse mode oscillates as A cos Θ with an amplitude

A g BT TL L= −( / ) exp ( / )4 22 2 2μ ω π ω .

In the opposite limiting case, at low temperatures

( )T g BB< μ , only a small number of states near the Fermi

energy contributes to the magnetization. The AK levels

are shifted in energy because of the change of the phase

difference φ between the superconductors. At certain val-

ues of the phase difference some AK states approach very

close to the Fermi energy. At these phase differences the

magnetization of the junction will increase.

Taking into account only a single pair of states which

is the closest (at the given φ = φr) to the Fermi energy and

neglecting the contribution of the other states, we can ap-

proximate the previous formula by a simple expression

M
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where the angle Θ is defined by Eq. (7). The same result

can be achieved if we use the Euler–Maclaurin summa-

tion formula to approximate Eq. (10) in the vicinity of the

points φ = +r rπ( )1 2 .

Formally Eq. (10) describes only the part of the mag-

netization that is due to the discrete spectrum of AK

states. The continuous spectrum (| |ε > Δ) also contributes

to the magnetization [24]. At temperatures T << Δ the ef-

fect of continuous spectrum is to compensate the

nonsmooth contributions of the discrete spectrum arising

when summing up to the finite number of bound states in-

side the energy interval | |ε < Δ. In our calculation method

(see Eqs. (9) and (10)) the superconducting gap was for-

mally put equal to infinity, and as a result only the discrete

spectrum survives. This method reproduces the correct

results for thermodynamic properties of a long SNS junc-

tion at temperatures T << Δ (see the corresponding

discussion in a recent review [25]).

In order to evaluate the total magnetization of the junc-

tion we have to sum up the contributions of all the open

transverse modes (channels). A channel is open if the en-

ergy of its lowest longitudinal mode is smaller than the

Fermi energy of the superconducting leads that it is con-

nected to. Since the barriers at the S/2DEG interfaces are

assumed small the motion in the longitudinal direction is

almost unperturbed. This situation corresponds to the

case of junctions fabricated in InGaAs heterostructures

with Nb electrodes [9]. Confinement in the lateral direc-

tion is usually created by an electrostatic potential gene-

rated by gate electrodes etched on the surface of the

semiconductor.
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We obtained results for two simple models of the con-

fining potential: i) a hard wall potential, and ii) a para-

bolic potential. For more accurate description one needs

to solve the Schr�dinger and Poisson equations self-con-

sistently as described in Refs. 26 and 27.

For hard wall boundary conditions, we can express the

velocity of the electrons and the holes, with energies near

the Fermi energy in the lth channel, in the form

v
m m

l

dF
l

n
F

n

( ) = − ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2 1

2

2

ε π�
. (12)

The velocities of quasiparticles in a multichannel junc-

tion with parabolic confinement U y m y /n( ) = ⊥Ω 2 2 2 are

v
m

l
F
l

n
F

( ) = − +⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟⊥

2 1

2
ε �Ω , (13)

where the lateral frequency Ω⊥ = 8 2εF nm d/ ( ) was

chosen such that U y d F( / )= ± =2 ε .

From this formula we see that the velocities and, con-

sequently, the separation between the AK levels

ω ω= =l F
l

v L�
( )

/ are different for different transverse

modes. If the 2DEG junction is wide the number of modes

is large and we can replace the summation over them by

an integration and write the magnetization of the

S/2DEG/S junction as

M N g D dB≈ ⊥ ∫μ ξ α β λ ξ ξ( , , ) ( )

0

1

. (14)

The function D f f( , , ) ( ) ( )ξ α β αξ β αξ β= − − + is the dif-

ference between the occupation of the two states with op-

posite momenta, f ( ) / ( )η η= +1 1e is the Fermi distribu-

tion, α = �v LTFΘ / ( )2 and β μ= g B TB / ( )2 . The weight

function λ ξ( ) is equal to 2ξ for the «soft walls» potential

and to ξ ξ/ 1 2− for the «hard walls» potential.

The integral on the right hand side of Eq. (14) cannot

be calculated analytically, but we can find the asymptotic

behavior of the magnetization in the vicinity of several

values of the of phase difference φ. In the vicinity of the

resonance points φr where Θ << LT vF/ ( )� , the magneti-

zation is the highest, and it is approximately equal to

M N g g B T

C v

LT
g

B B

F
B

≈ ×

× − ⎛
⎝⎜

⎞
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⊥ μ μ

μ

tanh

sech
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1
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1
2

2Θ�
B T/ ) .4
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⎣
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⎢

⎤

⎦
⎥
⎥

(15)

The constant C1 is equal to 1 2/ in the «hard wall» po-

tential and to 2 3/ in the «soft wall» potential model. On

the other hand, if the phase is far away from resonance

( / ( ))Θ >> LT vF� the magnetization approaches slowly

the value

M C N g BT
L

v
B

F

≈ ⎛
⎝
⎜

⎞
⎠
⎟⊥2

2 2
2

2
2μ

� Θ
ln . (16)

The constant C 2 is equal to 1 for the «hard wall» model

and it takes the value 2 for the «soft wall» model. While

Eq. (15) works well for transparent S/2DEG/2 junction, it

may be inaccurate if the barriers at the interfaces are not

small enough. In this case the condition Θ << 1 cannot be

satisfied at any phase φ.

In Fig. 2 we show the result of numerical calculations

for the magnetization as a function of the phase differ-

ence, and compare this numerical result with the asymp-

totic behavior in Eqs. (15) and (16). Figure 3 shows the

behavior of the magnetization at several different temper-

atures. Higher temperatures lead to smearing of the Fermi

distribution and the resonance peaks become smaller and

broader.

Since for transparent clean junction the resonance con-

dition φ = φr is the same for all transverse modes, magne-

tization at the resonances is proportional to the number of

transverse modes. This effect is analogous to the giant

oscillations of the conductance considered in Ref. 28.

Therefore, the wider the junction, the higher would be the

magnetization at the resonances. This behavior is illus-
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Fig. 2. Magnetization of a transparent (Z = 0) S/2DEG/S junc-

tion with a harmonic (parabolic) lateral confining potential in

a magnetic field B = 10 Oe, plotted as a function of the phase

difference. Also shown are its asymptotes MA (Eq. (15)) and

MB (Eq. (16)). For this demonstration we choose materials with

the same effective masses. We assume that the superconduc-

tors are made from niobium, with a Fermi energy

εF ( ) .Nb erg= ⋅ −8 52 10 12 , and effective masses m ms n= . The

length of the 2DEG part of the junction is L = −10 4 cm, and it's

width is d = ⋅ −6 10 5 cm. Results are shown for a temperature

T = 0 1. K, which is much lower than the critical temperature of

niobium Tc( ) .Nb K= 9 2 . Note that the resonance peaks are ex-

tremely narrow, their width δ μ ωφ ∼ g BB L/ is approximately

equal to the phase change necessary to shift the spectrum of

AK levels by an amount equal to Zeeman splitting.



trated in Fig. 4. On the other hand, varying the length of

the junction will affect only the width of the peaks,

whereas their height will remain unchanged (see Fig. 5).

In the case of nontransparent junctions, the electrons

and holes incident on the surface may be reflected nor-

mally from the S/2DEG interface. This process modifies

the spectrum of the AK levels. The AK levels do not inter-

sect and do not cross the Fermi energy at any value of the

phase φ. As a consequence, the amplitude of the magneti-

zation peaks decreases. Differences between the effective

masses of the 2DEG and the superconductors have a simi-

lar effect on the magnetization as the presence of barriers

at the interfaces. Namely, because of the mismatch be-

tween the Fermi velocities some of the electrons are being

normally reflected at the 2DEG/S surface. For larger dif-

ference between the effective masses, larger fraction of

all of the incident electrons will be reflected from the

interfaces normally.

In clean S/2DEG/S or S/N/S junctions every Andreev

ref lected electron picks up an addi t ional phase

δφ = ± φ +1 2, ( / )arccos E Δ at the interface, whereas nor-

mal electrons do not pick up such a phase. The wave func-

tion of the reflected electron-hole pair is a mixture of

Andreev and normally reflected electrons and holes. The

resonance conditions for this mixture are different from

the resonance conditions for the wave function in the

clean S/2DEG/S junction, where only Andreev reflection

can occur. The resonance conditions in the junction with

barriers, or with different effective masses, depend not

only on the phase difference, but also on the length of the

junction. Although it is always possible to achieve reso-

nance for one channel, it is difficult to satisfy the reso-

nance conditions for many channels simultaneously,

since different transverse channels have different longitu-

dinal velocities. The resonant peaks for magnetization of

each single channel are very narrow, with the majority of

the channels being off resonance even for small barriers

or slightly different materials. As a result, the total mag-

netization of the junction for both barrier models (hard

and soft walls) and for different masses, is strongly sup-

pressed. Therefore, for observation of strong resonance

behavior the use of materials with similar effective

masses is recommended.

The magnetization, as well as the superconducting

current in a S/2DEG/S junction, result from the difference

in the population of the different AK levels. Josephson

current through the junction is possible only when the en-
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ergy levels of the two sets (dE dn / φ > 0 and dE dn / φ < 0)

are unequally populated. Similarly, magnetization of the

S/2DEG/S junction is a result of different population of

states with opposite directions of the magnetic moments.

It is most interesting to note that the magnetization is

more sensitive to the barriers and mass differences than

the Josephson current. Indeed, since we are constrained to

use weak external magnetic fields in order to avoid de-

struction of superconductivity, Zeeman splitting of the

AK levels is small (μ ωB Z LB = <<Δ ). In this situation,

impurities, barriers, or effective mass difference that

modify the spectrum of the AK levels can move them

away from the region (∼ T ) where the gradient of the

Fermi distribution is high. Even a small shift Δ b of the en-

ergy levels from the Fermi level may result in the situa-

tion T Z b<< <<Δ Δ when both levels with opposite direc-

tion of the magnetic moment are almost equally

populated, combining to give a small magnetization

M l B<< μ . This situation does not occur for levels which

belong to different sets. These levels are well separated

∼ Δ L and small change Δ Δb L<< in their positions

cannot affect their population significantly.

3. Differences between properties of S/2DEG/S and

S/GM/S junctions

We turn now to analysis of a junction with the geome-

try similar to that of the S/2DEG/S junction dicussed

above, but where the two superconducting leads are con-

nected to each other through a monolayer of graphene.

Graphene attracted much recent attention. In this material

the dispersion relation for the low-energy electrons and

holes is similar to the dispersion relation of relativistic

massless fermions. This quasi-relativistic behavior of the

electrons in graphene has many interesting consequences.

One of these is the existence of two types of Andreev re-

flections at the graphene/superconductor boundary [29].

Another consequence is the effect of Klein tunneling

through the a potential barrier [30]. One might expect that

Klein tunneling and specular Andreev reflection would

enhance magnetic effects by reducing the strong destruc-

tive interference between normally and Andreev reflected

electrons and holes in the nonsuperconducting (graphene)

part of the junction. In addition to specular Andreev re-

flection and Klein tunneling one should also take into ac-

count the fact that reflection of the electrons from the

edges of the graphene ribbon depends on the orientation

of the crystallographic axes with respect to the line of the

edge at the sides of the graphene ribbon — this affects the

quantization of the transverse motion within the ribbon

[31]; in our calculations we assumed infinite-mass

boundary conditions at the edges, and as a result our

transverse momentum is quantized as q l Wl = +( / ) /1 2 π .

Similar to the S/2DEG/S junction, by matching the so-

lutions of the Schr�dinger equation for each part of the

contact (see Ref. 32) one can find the spectrum of the AK

levels in the S/GM/S contact and use this spectrum to cal-

culate the total magnetization of the S/GM/S junction un-

der the same conditions as for the S/2DEG/S one. It turns

out, however, that the magnetization of the S/GM/S junc-

tion is very small even in the absence of potential barriers

at the interfaces between the superconductor leads and
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the graphene. In fact the magnetization is much smaller

than that found for the S/2DEG/S junction (see above).

There are several reasons for such a small effect. First is

the fact that the density of states of graphene near the

Fermi level (for undoped graphene) is very small and

therefore the number of AK levels in the range of energies

near the Fermi level for the S/GM/S junction should be

much smaller than for the S/2DEG/S junction. The other

reason for the smallness of magnetization is that the AK

levels in different transverse modes of the S/GM/S junc-

tion behave differently (see Fig. 6) and they do not con-

verge to a single degenerate state at the Fermi level for

the resonant phase differences, as happens for S/2DEG/S

junctions (see above). Since the energy levels of the trans-

verse modes in the S/GM/S junction never approach the

Fermi level and always stay away from the region with

maximal gradients of the Fermi distribution, their contri-

bution to the total magnetization is very small.

We conclude that the different behavior of the AK le-

vels in the semiconductor 2DEG and in graphene origi-

nate from the different type of dispersion relations of the

electrons in the two cases: a quasi-relativistic linear dis-

persion relation for the electrons in graphene versus the

regular quadratic dispersion relation in the two-dimen-

sional electron gas.

4. Summary

In summary, we considered magnetic effects in a

two-dimensional electron gas bridging two superconduct-

ing reservoirs. We demonstrated that this system can ex-

hibit interesting superconductivity-induced magnetic res-

onance effects. Namely, we predict sharp increases in the

magnetic susceptibility of the junction at special values

φ = +r rπ π2 of the phase difference φ = φ −φ1 2 of the or-

der parameter between the two superconductors.

This effect results from a change of the population of

the AK levels near the Fermi energy. In general, magneti-

zation of a single transverse mode due to the Andreev lev-

els is very small but since for transparent junctions the

resonance conditions are identical for all transverse

modes, the magnetic response at the resonances (at low

temperatures) is proportional to the number of transverse

modes. Consequently, when the number of transverse mo-

des is large, the total magnetization of the junction may

become large enough to allow experimental detection.

We also considered a junction made from a graphene

ribbon bridging the two superconductors. We found that

the giant magnetization oscillations that we predict for

the S/2DEG/S junction are absent in the Josephson con-

tact made with the monolayer graphene ribbon. Reasons

for the differences in magnetization response between the

S/2DEG/S and S/GM/S systems were discussed.
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