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Abstract

Investigations of emergent symmetry breaking phenomena occurring in small finite-size
systems are reviewed, with a focus on the strongly correlated regime of electrons in two-
dimensional semiconductor quantum dots and trapped ultracold bosonic atoms in harmonic
traps. Throughout the review we emphasize universal aspects and similarities of symmetry
breaking found in these systems, as well as in more traditional fields like nuclear physics and
quantum chemistry, which are characterized by very different interparticle forces. A unified
description of strongly correlated phenomena in finite systems of repelling particles (whether
fermions or bosons) is presented through the development of a two-step method of symmetry
breaking at the unrestricted Hartree–Fock level and of subsequent symmetry restoration via
post Hartree–Fock projection techniques. Quantitative and qualitative aspects of the two-step
method are treated and validated by exact diagonalization calculations.

Strongly-correlated phenomena emerging from symmetry breaking include the following.

(I) Chemical bonding, dissociation and entanglement (at zero and finite magnetic fields) in
quantum dot molecules and in pinned electron molecular dimers formed within a single
anisotropic quantum dot, with potential technological applications to solid-state quantum-
computing devices.

(II) Electron crystallization, with particle localization on the vertices of concentric polygonal
rings, and formation of rotating electron molecules (REMs) in circular quantum dots.
Such electron molecules exhibit ro-vibrational excitation spectra, in analogy with natural
molecules.

(III) At high magnetic fields, the REMs are described by parameter-free analytic wave
functions, which are an alternative to the Laughlin and composite-fermion approaches,
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offering a new point of view of the fractional quantum Hall regime in quantum dots (with
possible implications for the thermodynamic limit).

(IV) Crystalline phases of strongly repelling bosons. In rotating traps and in analogy with
the REMs, such repelling bosons form rotating boson molecules (RBMs). For a small
number of bosons, the RBMs are energetically favored compared with the Gross–Pitaevskii
solutions describing vortex formation.

We discuss the present status concerning experimental signatures of such strongly
correlated states, in view of the promising outlook created by the latest experimental
improvements that are achieving unprecedented control over the range and strength of
interparticle interactions.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

1.1. Preamble

Fermionic or bosonic particles confined in manmade devices, i.e. electrons in two-dimensional
(2D) quantum dots (QDs, also referred to as artificial atoms) or ultracold atoms in harmonic
traps, can localize and form structures with molecular, or crystalline, characteristics. These
molecular states of localized particles differ in an essential way from the electronic-shell-
structure picture of delocalized electrons filling successive orbitals in a central-mean-
field potential (the Aufbau principle), familiar from the many-body theory of natural
atoms and the Mendeleev periodic table; they also present a different regime from that
exhibited by a Bose–Einstein condensate (BEC, often associated with the mean-field Gross–
Pitaevskii equation). The molecular states originate from strong correlations between the
constituent repelling particles and they are called electron (and often Wigner) or boson
molecules.

Such molecular states forming within a single confining potential well constitute new
phases of matter and allow for investigations of novel strongly-correlated phenomena arising
in physical systems with a range of materials’ characteristics unavailable experimentally
(and theoretically unexplored) until recently. One example is the range of values of the so-
called Wigner parameter (denoted as RW for charged particles and Rδ for neutral ones, see
section 2.1.2) which expresses the relative strength of the two-body repulsion and the one-
particle kinetic energy, reflecting and providing a measure of the strength of correlations in the
system under study. For the two-dimensional systems which we discuss here, these values are
often larger than the corresponding ones for natural atoms and molecules.

Other research opportunities offered by the quantum-dot systems are related to their
relatively large (spatial) size (arising from a small electron effective mass and large dielectric
constant), which allows the full range of orbital magnetic effects to be covered for magnetic
fields that are readily attained in the laboratory (less than 40 T). In contrast, for natural atoms
and molecules, magnetic fields of sufficient strength (i.e. larger than 105 T) to produce novel
phenomena related to orbital magnetism (beyond the perturbative regime) are known to occur
only in astrophysical environments (e.g. on the surface of neutron stars) [1]. For ultracold
gases, a similar extraordinary physical regime can be reached via the fast rotation of the
harmonic trap.

In addition to the fundamental issues unveiled through investigations of molecular states
in quantum dots, these strongly-correlated states are of technological significance because of
the potential use of manmade nanoscale systems for the implementation of qubits and quantum
logic gates in quantum computers.

The existence of electron and boson molecules is supported by large-scale exact
diagonalization (EXD) calculations, which provide the ultimate theoretical test. The discovery
of these ‘crystalline’ states has raised important fundamental aspects, including the nature of
quantum phase transitions and the conceptual issues relating to spontaneous symmetry breaking
(SSB) in small finite-size systems.

The present report addresses primarily the physics, theoretical description and fundamental
many-body aspects of molecular (crystalline) states in small systems. For a comprehensive
description of the electronic-shell-structure regime (Aufbau-principle regime) in quantum dots
and of Bose–Einstein condensates in harmonic traps, see the earlier reviews by Kouwenhoven
et al [2] (QDs), Reimann and Manninen [3] (QDs), Dalfovo et al [4] (BECs) and Leggett [5]
(BECs). Furthermore, in larger quantum dots, the symmetries of the external confinement that
lead to shell structure are broken, and such dots exhibit mesoscopic fluctuations and interplay
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between single-particle quantum chaos [6] and many-body correlations. For a comprehensive
description of this mesoscopic regime in quantum dots, see the reviews by Beenakker [7] and
Alhassid [8].

1.2. Spontaneous symmetry breaking: confined geometries versus extended systems

Spontaneous symmetry breaking is a ubiquitous phenomenon in the macroscopic world.
Indeed, there is an abundance of macroscopic systems and objects that are observed, or
can be experimentally prepared, with effective many-body ground states whose symmetry is
lower than the symmetry of the underlying many-body quantum-mechanical Hamiltonian; one
says that in such cases the system lowers its energy through spontaneous symmetry breaking,
resulting in a state of lower symmetry and higher order. It is important to stress that macroscopic
SSB strongly suppresses quantum fluctuations and thus it can be described appropriately by
a set of non-linear mean-field equations for the ‘order parameter.’ The appearance of the
order parameter is governed by bifurcations associated with the non-linearity of the mean-field
equations and has led to the notion of ‘emergent phenomena,’ a notion that helped promote
condensed-matter physics as a branch of physics on a par with high-energy particle physics
(in reference to the fundamental nature of the pursuit in these fields; see the seminal paper by
Anderson in [9]).

Our current understanding of the physics of SSB in the thermodynamic limit (when the
number of particles N → ∞) owes a great deal to the work of Anderson [10], who suggested
that the broken-symmetry state can be safely taken as the effective ground state. In arriving at
this conclusion Anderson invoked the concept of (generalized) rigidity. As a concrete example,
one would expect a crystal to behave like a macroscopic body, whose Hamiltonian is that of
a heavy rigid rotor with a low-energy excitation spectrum L2/2J of angular-momentum (L)

eigenstates, with the moment of inertia J being of order N (macroscopically large when
N → ∞). The low-energy excitation spectrum of this heavy rigid rotor above the ground
state (L = 0) is essentially gapless (i.e. continuous). Thus although the formal ground state
possesses continuous rotational symmetry (i.e. L = 0), ‘there is a manifold of other states,
degenerate in the N → ∞ limit, which can be recombined to give a very stable wave packet
with essentially the nature’ of the broken-symmetry state (see p 44 in [10]).

As a consequence of the ‘macroscopic heaviness’ as N → ∞, the relaxation of the
system from the wave packet state (i.e. the broken-symmetry state) to the exact symmetrical
ground state becomes exceedingly long. Consequently, in this limit, when symmetry breaking
occurs, there is practically no need to follow up with a symmetry restoration step; that is the
symmetry-broken state is admissible as an effective ground state.

The present report addresses the much less explored question of symmetry breaking
in finite condensed-matter systems with a small number of particles. For small systems,
spontaneous symmetry breaking appears again at the level of mean-field description (e.g. the
Hartree–Fock (HF) level). A major difference from the N → ∞ limit, however, arises from
the fact that quantum fluctuations in small systems cannot be neglected. To account for the
large fluctuations, one has to perform a subsequent post-Hartree–Fock step that restores the
broken symmetries (and the linearity of the many-body Schrödinger equation). Subsequent
to symmetry restoration, the ground state obeys all the original symmetries of the many-
body Hamiltonian; however, effects of the mean-field symmetry breaking do survive in the
properties of the ground state of small systems and lead to emergent phenomena associated
with the formation of novel states of matter and with characteristic behavior in the excitation
spectra. In the following, we will present an overview of the current understanding of SSB
in small systems focusing on the essential theoretical aspects, as well as on the contributions
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made by SSB-based approaches to the fast developing fields of two-dimensional semiconductor
quantum dots and ultracold atomic gases in harmonic and toroidal traps.

1.3. Historical background from nuclear physics and chemistry

The mean field approach, in the form of the Hartree–Fock theory and of the Gross–Pitaevskii
(GP) equation, has been a useful tool in elucidating the physics of finite-size fermionic and
bosonic systems, respectively. Its applications cover a wide range of systems, from natural
atoms, natural molecules, and atomic nuclei, to metallic nanoclusters, and most recently two-
dimensional quantum dots and ultracold gases confined in harmonic (parabolic) traps. Of
particular interest for the present review (due to spatial-symmetry-breaking aspects) has been
the mean-field description of deformed nuclei [11–13] and metal clusters [14–16] (exhibiting
ellipsoidal shapes). At a first level of description, deformation effects in these latter systems can
be investigated via semi-empirical mean-field models, like the particle-rotor model [11] of Bohr
and Mottelson (nuclei), the anisotropic-harmonic-oscillator model of Nilsson (nuclei [12] and
metal clusters [14]) and the shell-correction method of Strutinsky (nuclei [17] and metal clusters
[15, 16]). At the microscopic level, the mean field for fermions is often described [18, 19] via
the self-consistent single-determinantal Hartree–Fock theory. At this level, the description of
deformation effects mentioned above requires [18] consideration of unrestricted Hartree–Fock
(UHF) wave functions that break explicitly the rotational symmetries of the original many-
body Hamiltonian, but yield HF Slater determinants with lower energy compared with the
symmetry-adapted restricted Hartree–Fock (RHF) solutions1.

In earlier publications [20–26], we have shown that, in the strongly correlated regime, UHF
solutions that violate the rotational (circular) symmetry arise most naturally in the case of two-
dimensional single quantum dots, for both the cases of zero and high magnetic field; for a UHF
calculation in the lowest Landau level (LLL), see also [27]. Unlike the case of atomic nuclei,
however, where (due to the attractive interaction) symmetry breaking is associated primarily
with quadrupole shape deformations (a type of Jahn–Teller distortion), spontaneous symmetry
breaking in 2D quantum dots induces electron localization (or ‘crystallization’) associated
with formation of electron, or Wigner, molecules). The latter name is used in honor of Eugene
Wigner who predicted the formation of a classical rigid Wigner crystal for the 3D electron gas
at very low densities [28]. We stress, however, that because of the finite size, Wigner molecules
are most often expected to show a physical behavior quite different from the classical Wigner
crystal. Indeed, for finite N , Wigner molecules exhibit analogies closer to natural molecules,
and the Wigner-crystal limit is expected to be reached only for special limiting conditions.

For a small system the violation in the mean-field approximation of the symmetries of the
original many-body Hamiltonian appears to be paradoxical at first glance, and sometimes it
has been mistakenly described as an ‘artifact’ (in particular in the context of density-functional
theory [29]). However, for the specific cases arising in nuclear physics and quantum chemistry,
two theoretical developments had already resolved this paradox. They are (1) the theory of
restoration of broken symmetries via projection techniques2 [30–32] and (2) the group theoret-
ical analysis of symmetry-broken HF orbitals and solutions in chemical reactions, initiated by
Fukutome and coworkers [33] who used the symmetry groups associated with the natural 3D
molecules. Despite the different fields, the general principles established in these earlier theo-
retical developments in nuclear physics and quantum chemistry have provided a wellspring of

1 See in particular chapters 5.5 and 11 in [18]. However, our terminology (i.e. UHF versus RHF) follows the practice
in quantum chemistry (see [19]).
2 For the restoration of broken rotational symmetries in atomic nuclei, see [30] and chapter 11 in [18]. For the
restoration of broken spin symmetries in natural 3D molecules, see [31].
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assistance in our investigations of symmetry breaking for electrons in quantum dots and bosons
in harmonic traps. In particular, the restoration of broken symmetries in QDs and ultracold
atomic traps via projection techniques constitutes the main theme of the present report.

The theory of restoration of broken symmetries has been developed into a sophisticated
computational approach in modern nuclear physics. Using the broken-symmetry solutions of
the Hartree–Fock–Bogoliubov theory3 (that accounts for nuclear pairing and superfluidity),
this approach has been proven particularly efficient in describing the competition between
shape deformation and pairing in nuclei. For some recent papers in nuclear physics, see, e.g.
[34–39]; for an application to superconducting metallic grains, see [40]. Pairing effects arise
only in the case of attractive interactions and they are not considered in this report, since we
deal only with repulsive two-body interactions.

1.4. Scope of the review

Having discussed earlier the general context and historical background from other fields
regarding symmetry breaking, we give here an outline of the related methodologies and of
the newly discovered strongly correlated phenomena that are discussed in this report in the
area of condensed-matter nanosystems.

In particular, a two-step method [20–25] of symmetry breaking at the unrestricted Hartree–
Fock level and of subsequent post-Hartree–Fock restoration of the broken symmetries via
projection techniques is reviewed for the case of two-dimensional (2D) semiconductor quantum
dots and ultracold bosons in rotating traps with a small number (N ) of particles. The general
principles of the two-step method can be traced to nuclear theory (Peierls and Yoccoz, see
the original [30], but also the recent [34–39]) and quantum chemistry (Löwdin, see [31]);
in the context of condensed-matter nanophysics and the physics of ultracold atomic gases, it
constitutes a novel powerful many-body approach that has led to unexpected discoveries in
the area of strongly correlated phenomena. The successes of the method have generated a
promising theoretical outlook, bolstered by the unprecedented experimental and technological
advances, pertaining particularly to control of system parameters (most importantly of the
strength and variety of two-body interactions), that can be achieved in manmade nanostructures.

In conjunction with exact diagonalization calculations [26,41–44] and recent experiments
[41, 44, 45], it is shown that the two-step method can describe a wealth of novel strongly
correlated phenomena in quantum dots and ultracold atomic traps. These include the following.

(I) Chemical bonding, dissociation and entanglement in quantum dot molecules [20, 22, 46]
and in electron molecular dimers formed within a single elliptic QD [41–44], with potential
technological applications to solid-state quantum logic gates [47–49].

(II) Electron crystallization, with localization on the vertices of concentric polygonal rings,
and formation of rotating electron molecules (REMs) in circular QDs. At zero magnetic
field (B), the REMs can approach the limit of a rigid rotor [50, 51]; at high B, the REMs
are highly floppy and ‘supersolid’-like, that is, they exhibit [51–53] a non-rigid rotational
inertia [54], with the rings rotating independently of each other [52, 53].

(III) At high magnetic fields and under the restriction of the many-body Hilbert space to
the lowest Landau level, the two-step method yields fully analytic many-body wave
functions [24, 26], which are an alternative to the Jastrow/Laughlin (JL) [55] and
composite-fermion (CF) [56,57] approaches, offering a new point of view of the fractional
quantum Hall regime (FQHE) [58,59] in quantum dots (with possible implications for the
thermodynamic limit).

3 See chapter 7 in [18].



2074 C Yannouleas and U Landman

To
ta

l  
E

ne
rg

y

Restricted Hartree-Fock (RHF)
All spin and space symmetries are preserved

Single Slater determinant (central mean field)
/ e-densities: circularly symmetric

Unrestricted Hartree-Fock (UHF)

Single Slater determinant (non-central mean field)
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Non-linear equations
Bifurcations

EMERGENT
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Restoration of linearity
of many-body equatons

A HIERARCHY OF APPROXIMATIONS

Correlations

Figure 1. Synopsis of the method of hierarchical approximations (also referred to as the ‘two-step
method,’ emphasizing that symmetry breaking at the mean-field level must be accompanied by a
subsequent post-Hartree–Fock step of symmetry restoration, with a subsequent further lowering of
the energy). See text for a detailed description.

Large scale exact-diagonalization calculations [26, 52, 53] support the results of the two-
step method outlined in items II and III above.

(IV) The two-step method has been used [60] to discover crystalline phases of strongly repelling
ultracold bosons (impenetrable bosons/Tonks–Girardeau regime [61,62]) in 2D harmonic
traps. In the case of rotating traps, such repelling bosons form rotating boson molecules
(RBMs) [63] that are energetically favorable compared with the Gross–Pitaevkii solutions,
even for weak repulsion and, in particular, in the regime of GP vortex formation.

We will not discuss in this report specific applications of the two-step method to atomic
nuclei. Rather, as the title conveys, the report aims at exploring the universal characteristics of
quantum correlations arising from symmetry breaking across various fields dealing with small
finite systems, such as 2D quantum dots, trapped ultracold atoms and nuclei—and even natural
3D molecules. Such universal characteristics and similarities in related methodologies persist
across the aforementioned fields in spite of the differences in the size of the physical systems
and in the range, nature, and strength of the two-body interactions. For specific applications
to atomic nuclei, the interested reader is invited to consult the nucler physics literature cited
in this report.

1.5. Using a hierarchy of approximations versus probing of exact solutions

Figure 1 presents a synopsis of the hierarchy of approximations associated with the two-step
method, and in particular for the case of 2D quantum dots. (A similar synopsis can also be
written for the case of bosonic systems.) This method produces approximate wave functions
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with lower energy at each approximation level (as indicated by the downward vertical arrow
on the left of the figure).

At the lowest level of approximation (corresponding to higher energy with no correlations
included), one places the restricted Hartree–Fock, whose main restriction is the double
occupancy (up and down spins) of each space orbital. The many-body wave function is a
single Slater determinant associated with a ‘central mean field.’ The RHF preserves all spin
and space symmetries. For 2D quantum dots, the single-particle density (also referred to as
electron density (e-density)) is circularly symmetric.

The next approximation involves the unrestricted Hartree–Fock, which employs different
space orbitals for the two different spin directions. The UHF preserves the spin projection, but
allows the total-spin and space symmetries (i.e. rotational symmetries or parity) to be broken.
The broken symmetry solutions, however, are not devoid of any symmetry; they exhibit
characteristic lower symmetries (point-group symmetries) that are explicit in the electron
densities. The UHF many-body wave function is a single Slater determinant associated with
a ‘non-central mean field.’

Subsequent approximations aim at restoring the broken symmetries via projection
techniques. The restoration-of-symmetry step goes beyond the mean field approximation
and it provides a many-body wave function |�PRJ〉 that is a linear superposition of Slater
determinants (see detailed description in section 2.2). The projected (PRJ) many-body wave
function |�PRJ〉 preserves all the symmetries of the original many-body Hamiltonian; it has
good total spin and angular momentum quantum numbers, and as a result the circular symmetry
of the electron densities is restored.

However, the lower (point-group) spatial symmetry found at the broken-symmetry UHF
level (corresponding to the first step in this method) does not disappear. Instead, it becomes
intrinsic or hidden, and it can be revealed via an inspection of conditional probability
distributions (CPDs), defined as (within a proportionality constant)

P(r, r0) =
〈
�PRJ

∣∣∣∣ ∑
i �=j

δ(ri − r)δ(rj − r0)

∣∣∣∣�PRJ

〉
, (1.1)

where �PRJ(r1, r2, . . . , rN) denotes the projected many-body wave function under
consideration.

If one needs to probe the intrinsic spin distribution of the localized electrons, one has to
consider spin-resolved two-point correlation functions (spin-resolved CPDs), defined as

Pσσ0(r, r0) =
〈
�PRJ

∣∣∣∣ ∑
i �=j

δ(r − ri )δ(r0 − rj )δσσi
δσ0σj

∣∣∣∣�PRJ

〉
. (1.2)

The spin-resolved CPD gives the spatial probability distribution of finding a second electron
with spin projection σ under the condition that a first electron is located (fixed) at r0 with spin
projection σ0; σ and σ0 can be either up (↑) or down (↓). The meaning of the space-only CPD
in (1.1) is analogous, but without consideration of spin.

Further signatures of the intrinsic lower symmetry occur in the excitation spectra of circular
quantum dots that exhibit ro-vibrational character related to the intrinsic molecular structure,
or in the dissociation of quantum dot molecules.

As the scheme in figure 1 indicates, the mean-field HF equations are non-linear and the
symmetry breaking is associated with the appearance of bifurcations in the total HF energies.
The occurrence of such bifurcations cannot be predicted a priori from a mere inspection of
the many-body Hamiltonian itself; it is a genuine many-body effect that belongs to the class
of so-called emergent phenomena [9, 64, 65] that may be revealed only through the solutions
of the Hamiltonian themselves (if obtainable) or through experimental signatures. We note
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that the step of symmetry restoration also recovers the linear properties of the many-body
Schrödinger equation.

The relation between quantum correlations and the two-step method (also called the
method of hierarchical approximations) is portrayed by the downward vertical arrow on
the right of figure 1. Indeed, the correlation energy is defined [66] as the difference between
the restricted Hartree–Fock and exact ground-state energies, i.e.

Ecorr = ERHF − EEXD. (1.3)

As seen from figure 1, starting with the broken-symmetry UHF solution, each further
approximation captures successively a larger fraction of the correlation energy (1.3); a specific
example of this process is given in figure 5 (in section 2.2).

An alternative approach for studying the emergence of crystalline structures is the exact-
diagonalizaion method that will be discussed in detail in section 4.1. Like the projected
wave functions, the EXD many-body wave functions preserve, of course, all the symmetries
of the original Hamiltonian. As a result, the intrinsic, or hidden, point-group symmetry
associated with particle localization and molecule formation is not explicit, but it is revealed
through inspection of CPDs (one simply uses the exact-diagonalization wave function
�EXD(r1, r2, . . . , rN) in equation (1.1) and equation (1.2)), or recognized via characteristic
trends in the calculated excitation spectra. When feasible, the EXD results provide a definitive
answer in terms of numerical accuracy, and as such they serve as a test of the results obtained
through approximation methods (e.g. the above two-step method). However, the underlying
physics of electron or boson molecule formation is less transparent when analyzed with the
exact-diagonalization method compared with the two-step approach. Indeed, many exact-
diagonalization studies of 2D quantum dots and trapped bosons in harmonic traps have focused
simply on providing high accuracy energetics and they omitted calculation of CPDs. However,
the importance of using CPDs as a tool for probing the many-body wave functions cannot be
overstated. For example, while exact-diagonalization calculations for bosons in the lowest
Landau level have been reported rather early [67–71], the analysis in these studies did not
include calculations of the CPDs, and consequently formation of rotating boson molecules
and particle ‘crystallization’ was not recognized (for further discussion of these issues, see
Romanovsky et al [60, 63] and Baksmaty et al [72]).

From the above, it is apparent that both methods, i.e. the two-step method and the exact-
diagonalization one, complement each other, and it is in this spirit that we use them in this
report.

1.6. Experimental signatures of quantum correlations

Historically, the isolation of a small number (N < 20) of electrons down to a single electron
was experimentally realized in the so-called ‘vertical’ quantum dots [2]. The name vertical QDs
derives from the fact that the leads and voltage gates are located in a vertical arrangement, above
and below the two-dimensional dot. At zero magnetic field, experimental measurements [2,73]
of addition energies,

�2EN = µN+1 − µN, (1.4)

where the chemical potential µN = EN − EN−1, indicated that correlation effects at zero and
low B are rather weak in such dots, a property that was later attributed to the strong screening of
the Coulomb interaction in these devices. The measured addition energies exhibited maxima
at closed electronic shells (N = 2, 6, 12, . . .) and at mid-shells (N = 4, 9, . . .) in agreement
with a 2D-harmonic-oscillator central-mean-field model and the Hund’s rules, and in analogy
with the Aufbau principle and the physics of natural 3D atoms. It was found that the measured
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ground-state energy spectra for low magnetic fields could be understood on the basis of a
simple ‘constant-interaction’ model where the effect of the two-body Coulomb interaction is
reduced phenomenologically to an overall classical capacitance, C, characterizing the charging
energy Z2e2/(2C) of the quantum dot.

As a result of screening, strong correlation effects and formation of Wigner molecules can
be expected to occur in vertical dots particularly under the influence of high magnetic fields.
Evidence about the formation of Wigner molecules in vertical quantum dots has been provided
recently in [74], where measured ground-state spectra as a function of B for N = 3e and
N = 4e were reanalyzed with exact-diagonalization calculations that included screening. At
the time of submission of this report, a second ground-state crossing at high B due to strong
correlations was also demonstrated experimentally in a two-electron vertical quantum dot with
an external confinement that was smaller than the previously used ones [75].

Early theoretical work [20] at zero magnetic field using simply the symmetry broken
UHF solutions suggested that an unscreened Coulomb repulsion may result in a violation of
Hund’s rules. However, following the two-step method of [20–25], it has been shown [76]
most recently that the companion step of symmetry restoration recovers the Hund’s rules in
the case of N = 4e.

In addition, the B = 0 results of [20] suggested that both the maxima of the addition
energies at closed shells and at mid-shells become gradually weaker (and they eventually
disappear) as the strength of the Coulomb interaction (and consequently the strength of
correlations) increases, leading to the formation of ‘strong’ Wigner molecules. The qualitative
trend of formation of strong Wigner molecules obtained from a relatively simple UHF
calculation at B = 0 was confirmed later by more accurate EXD [50,77] and quantum Monte
Carlo [78] calculations, as well as through symmetry restoration calculations [23,76], although
its experimental demonstration still remains a challenge.

A more favorable experimental configuration for the development and observation of
strong interelectron correlations is the so-called ‘lateral’ dot, where the leads and gates are
located on the sides of the dot and thus screening effects are reduced. Tunability of these
dots down to a single electron has been achieved only in the last few years [79]. Most
recently, continually improving experimental techniques have allowed precise measurements
of excitation spectra of 2e lateral (and anisotropic) quantum dots at zero and low magnetic
fields [41, 45, 80]. As discussed in detail in section 5, the behavior of these excitation
spectra [41,45] as a function of B provides unambiguous signatures for the presence of strong
correlations and the formation of Wigner molecules.

Experimentally observed behavior of two electrons in lateral double QDs [81] provides
further evidence for strong correlation phenomena. Indeed, instead of successively populating
delocalized states over both QDs according to a molecular-orbital scheme, the two electrons
localize on the individual dots according to a Heitler–London picture [82]. Theoretically, such
strongly correlated phenomena in double quantum dots were described in [20, 22, 46]; see
section 2.1.4.

Correlations are expected to not only influence the spectral properties of quantum dots but
also to effect transport characteristics. Indeed correlation effects may underlie the behavior of
the transmission amplitudes (magnitude and phase) of an electron tunneling through a quantum
dot. Such transmission measurements have been performed using Aharonov–Bohm interfer-
ometry [83], and an interpretation involving strongly correlated states in the form of Wigner
molecules has been proposed recently [84]. The quantity that links transport experiments with
many-body theory of electrons in QDs is the overlap between many-body states with N − 1
and N electrons, i.e. 〈�(N − 1)|cj |�(N)〉, where cj annihilates the j th electron.
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The strength of correlations in quantum dots at zero B can be quantified by the Wigner
parameter RW , which is the ratio between the strength of the Coulomb repulsion and the
one-electron kinetic energy (see section 2.1.2). Naturally, for the case of neutral repelling
bosons, the corresponding parameter is the ratio between the strength of the contact interaction
and the one-particle kinetic energy in the harmonic trap, and it is denoted as Rδ . Larger values
of these parameters (RW or Rδ) result in stronger correlation effects.

Progress in the ability to experimentally control the above parameters has been particularly
impressive in the case of ultracold trapped bosons. Indeed, realizations of continuous tunability
of Rδ over two orders of magnitude (from 1 to 5 [85] and from 5 to 200 [86]) has been
most recently reported in quasi-linear harmonic traps. Such high values of Rδ allowed
experimental realization of novel strongly correlated states drastically different from a Bose–
Einstein condensate. This range of high values of Rδ is known as the Tonks–Girardeau regime
and the corresponding states are one-dimensional analogues of molecular structures made out
of localized bosons. In two dimenional traps, it has been predicted that such large values of
Rδ lead to the emergence of crystalline phases [60, 63].

The high experimental control of optical lattices has also been exploited for the creation
[87] of novel phases of ultracold bosons analogous to Mott insulators; such phases are related
to the formation of electron puddles discussed in section 2.1.4 and to the fragmentation of
Bose–Einstein condensates [88].

1.7. Plan of the report

The plan of the report can be visualized through the table of contents. Special attention has
been given to the introduction, which offers a general presentation of the subject of symmetry
breaking and quantum correlations in confined geometries—including a discussion of the
differences with the case of extended systems, a historical background from other fields, and
a diagrammatic synopsis of the two-step method of symmetry breaking/symmetry restoration.

The theoretical framework and other technical methodological background are presented
in section 2 (symmetry breaking/symmetry restoration in quantum dots), section 3
(symmetry breaking/symmetry restoration for trapped ultracold bosons) and section 4 (exact-
diagonalization approaches). Section 4 also includes a commentary on quantum Monte Carlo
methods.

For the case of semiconductor quantum dots, the main results and description of the
strongly correlated regime are presented in sections 5–7, with section 5 focusing on the case
of two electrons and its historical significance. Section 8 is devoted to a description of the
strongly-correlated regime of trapped repelling bosons.

Finally, a summary is given in section 9, and the appendix offers an outline of the Darwin–
Fock single-particle spectra for a two-dimensional isotropic oscillator under a perpendicular
magnetic field or under rotation.

We note that the sections on trapped bosons (sections 3 and 8) can be read independently
from the sections on quantum dots.

2. Symmetry breaking and subsequent symmetry restoration for electrons in confined
geometries: theoretical framework

The many-body Hamiltonian describing N electrons confined in a two-dimensional QD and
interacting via a Coulomb repulsion is written as

H =
N∑

i=1

H(i) +
N∑

i=1

N∑
j>i

e2

κrij

. (2.1)
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In equation (2.1), κ is the dielectric constant of the semiconducting material and rij = |ri −rj |.
The single-particle Hamiltonian in a perpendicular external magnetic field B is given by

H = (p − eA/c)2

2m∗ + V (x, y) +
g∗µB

h̄
B · s, (2.2)

where the external confinement is denoted by V (x, y), the vector potential A is given in the
symmetric gauge by

A(r) = 1
2 B × r = 1

2 (−By, Bx, 0), (2.3)

and the last term in (2.2) is the Zeeman interaction with g∗ being the effective Landé factor, µB

the Bohr magneton, s the spin of an individual electron and m∗ is the effective electron mass.
The external potential confinement V (x, y) can assume various parametrizations in order to
model a single circular or elliptic quantum dot or a quantum dot molecule. Of course, in the
case of an elliptic QD, one has

V (x, y) = 1
2m∗(ω2

xx
2 + ω2

yy
2), (2.4)

which reduces to the circular QD potential when ωx = ωy = ω0. The appropriate
parametrization of V (x, y) in the case of a double QD is more complicated. In our work,
we use a parametrization based on a 2D two-center oscillator with a smooth necking. This
latter parametrization is described in detail in [23, 46], where readers are directed for further
details. In contrast to other parametrizations based on two displaced inverted Gaussians [89],
the advantage of the two-center oscillator is that the height of the interdot barrier, the
distance between the dots, the ellipticity of each dot and the gate potentials of the two dots
(i.e. the relative potential wells in the neighboring dots) can be varied independently of each
other.

A prefactor multiplying the Coulomb term in equation (2.1) (being either an overall
constant γ as in section 5.1, or having an appropriate position-dependent functional form
[42, 43]) is used to account for the reduction of the Coulomb interaction due to the finite
thickness of the electron layer and additional screening (beyond that produced by the dielectric
constant of the material) arising from the formation of image charges in the gate electrodes [90].

2.1. Mean-field description and unrestricted Hartree–Fock

Vast literature is available concerning mean-field studies of electrons in quantum dots. Such
publications are divided mainly into applications of density functional theory [3,91–96] and the
use of Hartree–Fock methods [20,25,27,93,97–104]. The latter include treatments according to
the restricted Hartree–Fock [97], unrestricted Hartree–Fock with spin, but not space, symmetry
breaking [98–100], unrestricted Hartree–Fock with spin and/or space symmetry breaking
[20, 25, 27, 93, 101–103] and the so-called Brueckner Hartree–Fock [104, 105].

From the several Hartree–Fock variants mentioned above, only the UHF (with both the
spin and space symmetries treated as unrestricted) has been able to describe the formation of
Wigner molecules, and in the following we will exclusively use this unrestricted version of
Hartree–Fock theory. The inadequacy of the density-functional theory in describing Wigner
molecules will be discussed in section 2.3.

2.1.1. The self-consistent Pople–Nesbet equations. The unrestricted Hartree–Fock equations
used by us are an adaptation of the Pople–Nesbet [106] equations described in detail in
chapter 3.8 of [19]. For completeness, we present here a brief description of these equations,
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along with pertinent details of their computational implementation by us to the 2D case of
semiconductor QDs.

We start by requesting that the unrestricted Hartree–Fock many-body wave function for
N electrons is represented by a single Slater determinant

�UHF(x1, . . . , xN) = 1√
N !

det[χ1(x1), χ2(x2), . . . , χN(xN ], (2.5)

where [χi(x)] are a set of N spin orbitals, with the index x denoting both the space and spin
coordinates. Furthermore, we take χi(x) = ψi(r)α for a spin-up electron and χi(x) = ψi(r)β
for a spin-down electron. As a result, the UHF determinants in this report are eigenstates of
the projection of the total spin with eigenvalue Sz = (Nα − Nβ)/2, where Nα(β) denotes the
number of spin up (down) electrons. However, these Slater determinants are not eigenstates
of the square of the total spin, S2, except in the fully spin polarized case.

According to the variational principle, the best spin orbitals must minimize the total energy
〈�UHF|H|�UHF〉. By varying the spin orbitals [χi(x)] under the constraint that they remain
orthonormal, one can derive the UHF Pople–Nesbet equations described below.

A key point is that electrons with α (up) spin will be described by one set of spatial
orbitals {ψα

j |j = 1, 2, . . . , K}, while electrons with β (down) spin are described by a

different set of spatial orbitals {ψβ

j |j = 1, 2, . . . , K}; of course in the restricted Hartree–

Fock ψα
j = ψ

β

j = ψj . Next, one introduces a set of basis functions {ϕµ|µ = 1, 2, . . . , K}
(constructed to be orthonormal in our 2D case) and expands the UHF orbitals as

ψα
i =

K∑
µ=1

Cα
µiϕµ, i = 1, 2, . . . , K, (2.6)

ψ
β

i =
K∑

µ=1

C
β

µiϕµ, i = 1, 2, . . . , K. (2.7)

The UHF equations are a system of two coupled matrix eigenvalue problems resolved
according to up and down spins,

FαβCα = CαEα (2.8)

FβαCβ = CβEβ, (2.9)

where Fαβ(βα) are the Fock-operator matrices and Cα(β) are the vectors formed with the
coefficients in the expansions (2.6) and (2.7). The matrices Eα(β) are diagonal, and as a
result equations (2.8) and (2.9) are canonical (standard). Notice that non-canonical forms of
HF equations are also possible (see chapter 3.2.2 of [19]). Since the self-consistent iterative
solution of the HF equations can be computationally implemented only in their canonical form,
canonical orbitals and solutions will always be implied, unless otherwise noted explicitly. We
note that the coupling between the two UHF equations (2.8) and (2.9) is given explicitly in the
expressions for the elements of the Fock matrices below ((2.12) and (2.13)).

Introducing the density matrices Pα(β) for α(β) electrons,

P α
µν =

Nα∑
a

Cα
µa(C

α
νa)

∗, (2.10)

P β
µν =

Nβ∑
a

Cβ
µa(C

β
νa)

∗, (2.11)
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where Nα + Nβ = N , the elements of the Fock-operator matrices are given by

Fαβ
µν = Hµν +

∑
λ

∑
σ

P α
λσ [(µσ |νλ) − (µσ |λν)] +

∑
λ

∑
σ

P
β

λσ (µσ |νλ), (2.12)

Fβα
µν = Hµν +

∑
λ

∑
σ

P
β

λσ [(µσ |νλ) − (µσ |λν)] +
∑

λ

∑
σ

P α
λσ (µσ |νλ), (2.13)

where Hµν are the elements of the single electron Hamiltonian (with an external magnetic field
B and an appropriate potential confinement), and the Coulomb repulsion is expressed via the
two-electron integrals

(µσ |νλ) = e2

κ

∫
dr1 dr2ϕ

∗
µ(r1)ϕ

∗
σ (r2)

1

|r1 − r2|ϕν(r1)ϕλ(r2), (2.14)

with κ being the dielectric constant of the semiconductor material. Of course, the Greek indices
µ, ν, λ and σ run from 1 to K .

The system of the two coupled UHF matrix equations (2.8) and (2.9) is solved
selfconsistently through iteration cycles. For obtaining the numerical solutions, we have used
a set of K basis states ϕis that are chosen to be the product wave functions formed from the
eigenstates of one-center (single QD) and/or two-center [22,46] (double QD) one-dimensional
oscillators along the x and y axes. Note that for a circular QD a value K = 78 corresponds to
all the states of the associated 2D harmonic oscillator up to and including the 12th major shell.

The UHF equations preserve at each iteration step the symmetries of the many-body
Hamiltonian, if these symmetries happen to be present in the input (initial) electron density of
the iteration (see section 5.5 of [18]). The input densities into the iteration cycle are controlled
by the values of the P α

λσ and P
β

λσ matrix elements. Two cases arise in practice: (i) symmetry
adapted RHF solutions are extracted from (2.8) and (2.9) by using as input P α

λσ = P
β

λσ =0 for
the case of closed shells (with or without an infinitesimally small B value). For open shells,
one needs to use an infinitesimally small value of B. With these choices, the output of the first
iteration (for either closed or open shells) is the single-particle spectrum and corresponding
electron densities at B = 0 associated with the Hamiltonian in (2.2) (the small value of B

mentioned above guarantees that the single-particle total and orbital densities are circular).
(ii) For obtaining broken-symmetry UHF solutions, the input densities must be different in
an essential way from the ones mentioned above. We have found that the choice P α

λσ = 1
and P

β

λσ = 0 usually produces broken-symmetry solutions (in the regime where symmetry
breaking occurs).

Having obtained the selfconsistent solution, the total UHF energy is calculated as

EUHF = 1

2

∑
µ

∑
ν

[(P α
νµ + P β

νµ)Hµν + P α
νµFαβ

µν + P β
νµFβα

µν ]. (2.15)

We note that the Pople–Nesbet UHF equations are primarily employed in Quantum
Chemistry for studying the ground states of open-shell molecules and atoms. Unlike our
studies of QDs, however, such chemical UHF studies consider mainly the breaking of the total
spin symmetry, and not that of the space symmetries. As a result, for purposes of emphasis
and clarity, we have often used (see, e.g. our previous papers) prefixes to indicate the specific
unrestrictions (that is removal of symmetry restrictions) involved in our UHF solutions, i.e. the
prefix s- for the total-spin and the prefix S- for the space unrestriction.

The emergence of broken-symmetry solutions is associated with instabilities of the
restricted HF solutions, i.e. the restricted HF energy is an extremum whose nature as a minimum
or maximum depends on the positive or negative value of the second derivative of the HF energy.
The importance of this instability problem was first highlighted in a paper by Overhauser [107].
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Soon afterwards, the general conditions for the appearance of such instabilities (analyzed
within linear response and the random-phase approximation) were discussed by Thouless
in the context of nuclear physics [108]. Subsequently, the Hartree–Fock stability/instability
conditions were re-examined [109,110], using a language from (and applications to) the field
of quantum chemistry. For comprehensive reviews of mean-field symmetry breaking and the
Hartree–Fock methods and instabilities in the context of quantum chemistry, see the collection
of papers in [111].

2.1.2. The Wigner parameter and classes of spontaneous symmetry breaking solutions. Using
the self-consistent (spin-and-space) unrestricted Hartree–Fock equations presented in the
previous section, we found [20], for zero and low magnetic fields, three classes of spontaneous
symmetry breakings in circular single QDs and in lateral quantum dot molecules (i.e. formation
of ground states of lower symmetry than that of the confining potentials). These include the
following.

(I) Wigner molecules in both QDs and quantum dot molecules, i.e. (spatial) localization of
individual electrons within a single QD or within each QD comprising the quantum dot
molecule;

(II) formation of electron puddles in quantum dot molecules, that is, localization of the
electrons on each of the individual dots comprising the quantum dot molecule, but without
localization within each dot, and

(III) pure spin-density waves (SDWs) which are not accompanied by spatial localization of the
electrons [91].

It can be shown that a central-mean-field description (associated with the RHF) at zero
and low magnetic fields may apply in the case of a circular QD only for low values of the
Wigner parameter

RW ≡ Q/h̄ω0, (2.16)

where Q is the Coulomb interaction strength and h̄ω0 is the energy quantum of the harmonic
potential confinement (being proportional to the one-particle kinetic energy); Q = e2/(κl0),
with κ being the dielectric constant, l0 = (h̄/(m∗ω0))

1/2 the spatial extension of the lowest
state’s wave function in the harmonic (parabolic) confinement and m∗ the effective electron
mass.

Furthermore, we find that Wigner molecules (SSB class I) occur in both QDs and quantum
dot molecules forRW > 1. Depending on the value ofRW , one may distinguish between ‘weak’
(for smaller RW values) and ‘strong’ (for larger RW values) Wigner molecules, with the latter
termed sometimes as ‘Wigner crystallites’ or ‘electron crystallites.’ The appearance of such
crystalline structures may be regarded as a quantum phase transition of the electron liquid upon
increase of the parameter RW . Of course, due to the finite size of QDs, this phase transition is
not abrupt, but it develops gradually as the parameter RW varies.

For quantum dot molecules with RW < 1, Wigner molecules do not develop and instead
electron puddles may form (SSB class II). For single QDs with RW < 1, we find in the
majority of cases that the ground-states exhibit a central-mean-field behavior without symmetry
breaking; however, at several instances (see an example below), a pure SDW (SSB class III)
may develop.

2.1.3. Unrestricted Hartree–Fock solutions representing Wigner molecules. As a typical
example of a Wigner-molecule solution that can be extracted from the UHF equations, we
mention the case of N = 19 electrons for h̄ω0 = 5 meV, RW = 5 (κ = 3.8191), and B = 0.
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Figure 2. UHF electron density in a parabolic QD for N = 19 and Sz = 19/2, exhibiting breaking
of the circular symmetry at RW = 5 and B = 0. The choice of the remaining parameters is
h̄ω0 = 5 meV and m∗ = 0.067me. Distances along the horizontal x- and y-axes are in nanometres
and the electron density in 10−4 nm−2.

Figure 2 displays the total electron density of the broken-symmetry UHF solution for these
parameters, which exhibits breaking of the rotational symmetry. In accordance with electron
densities for smaller dot sizes published by us earlier [20, 21] the electron density in figure 2
is highly suggestive of the formation of a Wigner molecule, with a (1,6,12) ring structure
in the present case; the notation (n1, n2, . . . , nr) signifies the number of electrons in each
ring: n1 in the first, n2 in the second, and so on. This polygonal ring structure agrees with
the classical one (that is the most stable arrangement of 19 point charges in a 2D circular
harmonic confinement [112–114]4), and it is sufficiently complex to instill confidence that the
Wigner-molecule interpretation is valid. The following question, however, arises naturally at
this point: is such molecular interpretation limited to the intuition provided by the landscapes
of the total electron densities, or are there deeper analogies with the electronic structure of
natural 3D molecules? The answer to the second part of this question is in the affirmative.
Indeed, it was found [25] that SSB results in the replacement of a higher symmetry by a lower
one. As a result, the molecular UHF solutions exhibit point-group spatial symmetries that are
amenable to a group-theoretical analysis in analogy with the case of 3D natural molecules.

2.1.4. Unrestricted Hartree–Fock solutions representing electron puddles. An example of
formation of electron puddles in quantum dot molecules, that is, localization of the electrons
on each of the individual dots comprising the quantum dot molecule, but without localization
within each dot, is presented in figure 3. We consider the case of N = 6 electrons in a
double dot under field-free conditions (B = 0); with parameters h̄ω0 = 5 meV (harmonic
confinement of each dot), d = 70 nm (distance between dots), Vb = 10 meV (interdot barrier)
and m∗ = 0.067me (electron effective mass). Reducing the RW value (with reference to each
constituent QD) to 0.95 (i.e. for a dielectric constant κ = 20) guarantees that the ground-state
of the 6e quantum dot molecule consists of electron puddles (SSB of type II, figure 3). In this
case, each of the electron puddles (on the left and right dots) is spin-polarized with total spin

4 These references presented extensive studies pertaining to the geometrical arrangements of classical point charges
in a two-dimensional harmonic confinement.
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Figure 3. UHF ground-state of a 6e quantum dot molecule (double dot), with parameters resulting
in the formation of two non-crystallized electron puddles (akin to dissociation of the quantum dot
molecule in two QDs with 3 electrons each). Left: total electronic density. Right: contour plots
of the densities (orbital squares) of the three individual orbitals localized on the left dot, with spin
polarization of the orbitals as indicated. The choice of parameters is h̄ω0 = 5 meV (harmonic
confinement of each dot), d = 70 nm (distance between dots), Vb = 10 meV (interdot barrier),
m∗ = 0.067me (electron effective mass) and κ = 20 (dielectric constant). Lengths (x and y axes)
in nm, density distribution (vertical axis) in 10−3 nm−2.

projection Sz = 1/2 on the left QD and Sz = −1/2 on the right QD. As a result, the singlet
and triplet states of the whole quantum dot molecule are essentially degenerate. Note that the
orbitals on the left and right dots (see, e.g. those on the left dot in figure 3 (right)) are those
expected from a central-mean-field treatment of each individual QD, but with slight (elliptical)
distortions due to the interdot interaction and the Jahn–Teller distortion associated with an
open shell of three electrons (in a circular harmonic confinement). Note the sharp contrast
between these central-mean-field orbitals and corresponding electron density (figure 3) with
the electron density and the three orbitals associated with the formation of a Wigner molecule
inside a single QD (see, e.g. figure 6 in section 2.2.2).

The formation of electron puddles described above can also be seen as a form of
dissociation of the quantum dot molecule. We found that only for much lower values of
RW (< 0.20, i.e. κ > 90.0) the electron orbitals do extend over both the left and the right QDs,
as is usually the case with 3D natural molecules (molecular-orbital theory). Further examples
and details of these two regimes (dissociation versus molecular-orbital description) can be
found in [22, 46].

2.1.5. Unrestricted Hartree–Fock solutions representing pure spin density waves within a
single quantum dot. Another class of broken-symmetry solutions that can appear in single
QDs are the spin density waves. The SDWs are unrelated to electron localization and are
thus quite distinct from the Wigner molecules [20]; in single QDs, they were obtained [91]
earlier within the framework of spin density functional theory. To emphasize the different
nature of spin density waves and Wigner molecules, we present in figure 4 an example of a
SDW obtained with the UHF approach (the corresponding parameters are: N = 14, Sz = 0,
RW = 0.8 (κ = 23.8693), and B = 0). Unlike the case of Wigner molecules, the SDW
exhibits a circular electron density (see figure 4(a)), and thus it does not break the rotational
symmetry. Naturally, in keeping with its name, the SDW breaks the total spin symmetry and
exhibits azimuthal modulations in the spin density (see figure 4(b); however, the number of
humps is smaller than the number of electrons).

We mention here that the possibility of ground-state configurations with uniform electron
density, but non-uniform spin density, was first discussed for 3D bulk metals using the HF
method in [115].
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Figure 4. UHF solution in a parabolic QD exhibiting a pure spin density wave for N = 14, Sz = 0,
RW = 0.8 and B = 0. (a) The total electron density exhibiting circular symmetry; (b) the spin
density exhibiting azimuthal modulation (note the 12 humps whose number is smaller than the
number of electrons; on the contrary in the case of a Wigner molecule, the number of humps in the
electron density is always equal to N ). The choice of the remaining parameters is h̄ω0 = 5 meV and
m∗ = 0.067me. Distances along the horizontal x- and y-axes are in nanometres and the electron
(ED) and spin (SD) densities in 10−4 nm−2.

The SDWs in single QDs appear for RW � 1 and are of lesser importance; thus in the
following we will exclusively study the case of Wigner molecules. However, for RW � 1,
formation of a special class of SDWs (often called electron puddles, see section 2.1.4) plays
an important role in the coupling and dissociation of quantum dot molecules (see [22, 46]).

2.2. Projection techniques and post-Hartree–Fock restoration of broken symmetries

As discussed in section 1.5, for finite systems the symmetry broken UHF solutions are only an
intermediate approximation. A subsequent step of post-Hartree–Fock symmetry restoration
is needed. Here we present the essentials of symmetry restoration while considering for
simplicity the case of two electrons in a circular parabolic QD.

Results obtained for various approximation levels for a two-electron QD with B = 0
and RW = 2.40 (that is, in the Wigner-molecule regime) are displayed in figure 5. In
these calculations [23], the spin projection was performed following reference [31], i.e. one
constructs the wave function

�Spin-P(s) = Pspin(s)�UHF, (2.17)

where �UHF is the original symmetry-broken UHF determinant (which is already by
construction an eigenstate of the projection Sz of the total spin). In (2.17), the spin projection
operator (projecting into a state which is an eigenstate of the square of the total spin) is given by

Pspin(s) ≡
∏
s ′ �=s

Ŝ
2 − s ′(s ′ + 1)

s(s + 1) − s ′(s ′ + 1)
, (2.18)

where the index s ′ runs over the quantum numbers associated with the eigenvalues s ′(s ′ + 1)

of Ŝ
2

(in units of h̄2), with Ŝ being the total spin operator. For two electrons, the projection
operator reduces to Ps,t

spin = 1 ∓�12, where the operator �12 interchanges the spins of the two
electrons; the upper (minus) sign corresponds to the singlet (s supersript), and the lower (plus)
sign corresponds to the triplet (t superscript) state.
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Figure 5. Various approximation levels for the lowest singlet state of a field-free two-electron
QD with RW = 2.40. The corresponding energies (in meV) are shown at the bottom of the
figure. (a) Electron density of the RHF solution, exhibiting circular symmetry (due to the imposed
symmetry restriction). The correlation energy, Ecorr = 2.94 meV, is defined as the difference
between the energy of this state and the exact solution (shown in frame (e)). (b1) and (b2) The two
occupied orbitals (modulus square) of the symmetry-broken ‘singlet’ UHF solution (b1), with the
corresponding total electron density exhibiting non-circular shape (b2). The energy of the UHF
solution shows a gain of 44.3% of the correlation energy. (c) Electron density of the spin-projected
singlet (Spin-P), showing broken spatial symmetry, but with an additional gain of correlation
energy. (d) the spin-and-angular-momentum projected state (S&AMP) exhibiting restored circular
symmetry with a 73.1% gain of the correlation energy. The choice of parameters is: dielectric
constant κ = 8, parabolic confinement h̄ω0 = 5 meV and effective mass m∗ = 0.067me. Distances
along the horizontal x- and y-axes are in nanometres and the densities in 10−4 nm−2.

The angular momentum projector (projecting into a state with total angular momentum
L) is given by

2πPL ≡
∫ 2π

0
dγ exp[−iγ (L̂ − L)], (2.19)

where L̂ = l̂1 + l̂2 is the total angular momentum operator. As seen from (2.19), application
of the projection operator PL to the spin-restored state �Spin−P(s) corresponds to a continuous
configuration interaction expansion of the wave function that uses, however, non-orthogonal
orbitals (compare section 4.1).

The application of the projection operator PL to the state �Spin-P(s) generates a whole
rotational band of states with good angular momenta (yrast band). The energy of the projected
state with total angular momentum L is given by

EPRJ(L) =
∫ 2π

0
h(γ )eiγL dγ

/ ∫ 2π

0
n(γ )eiγL dγ, (2.20)

with h(γ ) = 〈�Spin-P(s; 0)|H|�Spin-P(s; γ )〉 and n(γ ) = 〈�Spin-P(s; 0)|�Spin-P(s; γ )〉, where
�Spin-P(s; γ ) is the spin-restored (i.e. spin-projected) wave function rotated by an azimuthal
angle γ and H is the many-body Hamiltonian. We note that the UHF energies are simply given
by EUHF = h(0)/n(0).

In the following we focus on the ground state of the two-electron system, i.e. L = 0. The
electron densities corresponding to the initial RHF approximation (shown in figure 5(a)) and the
final spin-and-angular-momentum projection (S&AMP) (shown in figure 5(d)) are circularly
symmetric, while those corresponding to the two intermediate approximations, i.e. the UHF
and spin-projected solutions (figures 5(b2) and (c), respectively), break the circular symmetry.
This behavior graphically illustrates the meaning of the term ‘restoration of symmetry,’ and the
interpretation that the UHF broken-symmetry solution refers to the intrinsic (rotating) frame
of reference of the electron molecule. In light of this discussion the final projected state is
called a rotating electron or (Wigner) molecule.
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Expressions (2.19) and (2.20) apply directly to REMs having a single polygonal ring of
N localized electrons, with L̂ = ∑N

i=1 l̂i . For a generalization to electron molecules with
multiple concentric polygonal rings, see section 2.2.1.

For restoring the total spin, an alternative method to the projection formula (2.18) can be
found in the literature [33]. We do not make use of this alternative formulation in this report,
but we briefly describe it here for the sake of completeness. Based on the formal similarity
between the 3D angular momentum and the total spin, one can apply the formula by Peierls
and Yoccoz [30] and obtain the projection operator

Ps
Szq

= 2s + 1

8π2

∫
d�Ds∗

Szq
(�)R(�), (2.21)

where Ds∗
Szq

(�) are the 3D Wigner D functions [116], � is a shorthand notation for the set of
the three Euler angles (φ, θ, ψ) and

R(�) = e−iφŜze−iθŜy e−iψŜz (2.22)

is the rotation operator in spin space. In (2.21), the indices of the Wigner D functions are s,
Sz and q.

The operator Ps
Szq

extracts from the symmetry broken wave function a state with a total

spin Ŝ and projection Sz along the laboratory z axis. However, q is not a good quantum number
of the many-body Hamiltonian, and the most general symmetry restored state is written as a
superposition over the components of q, i.e.

�Spin−P(s, Sz; i) =
∑

q

gi
qPs

Szq
�UHF, (2.23)

where the coefficients gi
q are determined through a diagonalization of the many-body

Hamiltonian in the space spanned by the non-orthogonal Ps
Szq

�UHF (see also [117, 118]).
In (2.23), the index i reflects the possible degeneracies of spin functions with a given good
total-spin quantum number s [119], which is not captured by (2.18).

The Peierls–Yoccoz formulation for recovering spin-corrected wave functions also applies
in the case when the UHF determinants violate, in addition, the conservation of spin projection
[33], unlike the projector Pspin(s) (see (2.18)) which acts on UHF determinants having a good
Sz = (Nα − Nβ)/2 according to the Pople–Nesbet theory presented in section 2.1.1.

In the literature [18], there are two distinguishable implementations of symmetry
restoration: variation before projection (VBP) and variation after projection (VAP). In the
former, which is the one that we mostly use in this report, mean-field solutions with broken
symmetry are first constructed and then the symmetry is restored via projection techniques as
described above. In the latter, the projected wave function is used as the trial wave function
directly in the variational principle (in other words the trial function is assured to have the
proper symmetry).

The VAP is in general more accurate, but more difficult to implement numerically, and
it has been used less often in the nuclear-physics literature. In quantum chemistry, the
generalized valence bond method [120], or the spin-coupled valence bond method [121],
describing covalent bonding between pairs of electrons, employ a variation after projection.

For quantum dots, the variation after projection looks promising for reducing the error
of the VBP techniques in the transition region from mean-field to Wigner-molecule behavior,
where this error is the largest. In fact, it has been found that the discrepancy between variation-
before-projection techniques and exact solutions is systematically reduced [23, 76, 122] for
stronger symmetry breaking (increasing RW and/or increasing magnetic field).

Moreover, in the case of an applied magnetic field (quantum dots) or a rotating trap (Bose
gases), our VBP implementation corresponds to projecting cranked symmetry-unrestricted
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Slater determinants [123]. This is because of the ‘cranking’ terms −h̄ωcL/2 or −h̄�L

that contribute to the many-body Hamiltonian H, respectively, with ωc = eB/(m∗c)
being the cyclotron frequency and � the rotational frequency of the trap; these terms arise
in the single-particle component of H (see equation (2.2) in section 2 and equation (8.3) in
section 8). The cranking form of the many-body Hamiltonian is particularly advantageous to
the variation before projection, since the cranking method provides a first-order approximation
to the variation-after-projection restoration of the total angular-momentum L̂ [124] (see also
chapter 11.4.4 in [18]).

2.2.1. The REM microscopic method in medium and high magnetic field. In our method
of hierarchical approximations, we begin with a static electron molecule, described by
an unrestricted Hartree–Fock determinant that violates the circular symmetry [20, 23, 25].
Subsequently, the rotation of the electron molecule is described by a post-Hartree–Fock step
of restoration of the broken circular symmetry via projection techniques [22–26,51,53]. Since
we focus here on the case of strong B, we can approximate the UHF orbitals (first step of our
procedure) by (parameter-free) displaced Gaussian functions; that is, for an electron localized
at Rj (Zj ), we use the orbital [53]

u(z, Zj ) = 1√
πλ

exp

(
−|z − Zj |2

2λ2
− iϕ(z, Zj ; B)

)
, (2.24)

with λ = l̃ ≡ √
h̄/m∗ω̃; ω̃ =

√
ω2

0 + ω2
c/4, where ωc = eB/(m∗c) is the cyclotron frequency

and ω0 specifies the external parabolic confinement. We have used complex numbers to
represent the position variables, so that z = x + iy, Zj = Xj + iYj . The phase guarantees
gauge invariance in the presence of a perpendicular magnetic field and is given in the symmetric
gauge by ϕ(z, Zj ; B) = (xYj − yXj )/2l2

B , with lB = √
h̄c/eB.

For an extended 2D system, the Zj s form a triangular lattice [59, 125]. For finite N ,
however, the Zj s coincide [24,26,51–53] with the equilibrium positions (forming r concentric
regular polygons denoted as (n1, n2, . . . , nr )) of N = ∑r

q=1 nq classical point charges inside
an external parabolic confinement [114]. In this notation, n1 corresponds to the innermost ring
with n1 > 0. For the case of a single polygonal ring, the notation (0, N) is often used; then it
is to be understood that n1 = N .

The wave function of the static electron molecule is a single Slater determinant |�UHF[z]〉
made out of the single-electron wave functions u(zi, Zi), i = 1, . . . , N . Correlated many-body
states with good total angular momenta L can be extracted [24, 26, 51, 53] (second step) from
the UHF determinant using projection operators. The projected rotating electron molecule
state is given by

|�REM
L 〉 =

∫ 2π

0
. . .

∫ 2π

0
dγ1 . . . dγr |�UHF(γ1, . . . , γr)〉 exp


i

r∑
q=1

γqLq


 . (2.25)

Here L = ∑r
q=1 Lq and |�UHF[γ ]〉 is the original Slater determinant with all the single-

electron wave functions of the qth ring rotated (collectively, i.e. coherently) by the same
azimuthal angle γq . Note that (2.25) can be written as a product of projection operators acting
on the original Slater determinant (i.e. on |�UHF(γ1 = 0, . . . , γr = 0)〉). Setting λ = lB

√
2

restricts the single-electron wave function in (2.24) to be entirely in the lowest Landau level (see
the appendix in [53]). The continuous-configuration-interaction form of the projected wave
functions (i.e. the linear superposition of determimants in (2.25)) implies a highly entangled
state. We require here that B is sufficiently strong so that all the electrons are spin-polarized and
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that the ground-state angular momentum L � L0 ≡ ∑N−1
i=0 i = N(N − 1)/2 (or equivalently

that the fractional filling factor ν ≡ L0/L � 1). The state corresponding to L0 is a single Slater
determinant in the lowest Landau level and is called the ‘maximum density droplet’ [126]. For
high B, the calculations in this paper do not include the Zeeman contribution, which, however,
can easily be added (for a fully polarized dot, the Zeeman contribution to the total energy is
Ng∗µBB/2, with g∗ being the effective Landé factor and µB the Bohr magneton).

Due to the point-group symmetries of each polygonal ring of electrons in the UHF wave
function, the total angular momenta L of the rotating crystalline electron molecule are restricted
to the so-called magic angular momenta, i.e.

Lm = L0 +
r∑

q=1

kqnq, (2.26)

where the kqs are non-negative integers (when n1 = 1, k1 = 0).
Magic angular momenta associated with multiple rings have been discussed in

[24, 26, 51–53]. For the simpler cases of (0, N) or (1, N − 1) rings, see, e.g. [127, 128].
The partial angular momenta associated with the qth ring, Lq (see (2.25)), are given by

Lq = L0,q + kqnq, (2.27)

where L0,q = ∑iq+nq

i=iq+1(i − 1) with iq = ∑q−1
s=1 ns (i1 = 0) and L0 = ∑r

q=1 L0,q .
The energy of the REM state (2.25) is given [24, 51–53] by

EREM
L =

∫ 2π

0
h([γ ])ei[γ ]·[L] d[γ ]

/ ∫ 2π

0
n([γ ])ei[γ ]·[L] d[γ ], (2.28)

with the Hamiltonian and overlap matrix elements h([γ ]) = 〈�UHF([0])|H|�UHF([γ ])〉 and
n([γ ]) = 〈�UHF([0])|�UHF([γ ])〉, respectively, and [γ ] · [L] = ∑r

q=1 γqLq . The UHF
energies are simply given by EUHF = h([0])/n([0]).

The crystalline polygonal-ring arrangement (n1, n2, . . . , nr) of classical point charges is
portrayed directly in the electron density of the broken-symmetry UHF, since the latter consists
of humps centered at the localization sites Zj s (one hump for each electron). In contrast, the
REM has good angular momentum and thus its electron density is circularly uniform. To probe
the crystalline character of the REM, we use the conditional probability distribution (CPD)
defined in (1.1). P(r, r0) is proportional to the conditional probability of finding an electron at
r, given that another electron is assumed at r0. This procedure subtracts the collective rotation
of the electron molecule in the laboratory frame of reference, and, as a result, the CPDs reveal
the structure of the many body state in the intrinsic (rotating) reference frame.

2.2.2. Group structure and sequences of magic angular momenta. It has been demonstrated
[25] that the broken-symmetry UHF determinants and orbitals describe 2D electronic molecular
stuctures (Wigner molecules) in close analogy with the case of natural 3D molecules. However,
the study of Wigner molecules at the UHF level restricts their description to the intrinsic
(non-rotating) frame of reference. Motivated by the case of natural atoms, one can take a
subsequent step and address the properties of collectively rotating Wigner molecules in the
laboratory frame of reference. As is well known, for natural atoms, this step is achieved by
writing the total wave function of the molecule as the product of the electronic and ionic
partial wave functions. In the case of the purely electronic Wigner molecules, however, such a
product wave function requires the assumption of complete decoupling between intrinsic and
collective degrees of freedom, an assumption that might be justifiable in limiting cases only.
The simple product wave function was used in earlier treatments of Wigner molecules; see,
e.g. [128]. The projected wave functions employed here are integrals over such product wave
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Figure 6. The UHF solution exhibiting breaking of the circular symmetry for N = 3 and
Sz = 1/2 at RW = 10 and B = 0. (a) and (b) Real orbitals for the two spin-up electrons.
(c) Real orbital for the single spin-down electron. (d) Total electron density (ED). (e) Spin density
(SD, difference of the spin-up minus the spin-down partial electron densities). The choice of the
remaining parameters is h̄ω0 = 5 meV and m∗ = 0.067me. Distances along the horizontal x- and
y-axes are in nanometres. The real orbitals are in 10−3 nm−1 and the densities (electron density
and spin density) in 10−4 nm−2. The arrows indicate the spin direction.

functions, and thus they account for quantal fluctuations in the rotational degrees of freedom.
The reduction of the projected wave functions to the limiting case of a single product wave
function is discussed in chapter 11.4.6.1 of [18].

As was discussed earlier, in the framework of the broken-symmetry UHF solutions, a
further step is needed—and this companion step can be performed by using the post-Hartree–
Fock method of restoration of broken symmetries via projection techniques (see section 2.2).
In this section, we use this approach to illustrate through a couple of concrete examples how
certain universal properties of the exact solutions, i.e. the appearance of magic angular momenta
[127–133] in the exact rotational spectra, relate to the symmetry broken UHF solutions. Indeed,
we demonstrate that the magic angular momenta are a direct consequence of the symmetry
breaking at the UHF level and that they are determined fully by the molecular symmetries of
the UHF determinant.

As an illustrative example, we have chosen the relatively simple, but non-trivial case, of
N = 3 electrons. For B = 0, both the Sz = 1/2 and Sz = 3/2 polarizations can be considered.
We start with theSz = 1/2 polarization, whose broken-symmetry UHF solution [25] is portayed
in figure 6 and which exhibits a breaking of the total spin symmetry in addition to the rotational
symmetry. Let us denote the corresponding UHF determinant (made out of the three spin
orbitals in figures 6(a)–(c)) as | ↓↑↑〉. We first proceed with the restoration of the total spin
by noticing that | ↓↑↑〉 has a lower point-group symmetry (see [25]) than the C3v symmetry
of an equilateral triangle. The C3v symmetry, however, can be readily restored by applying the
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projection operator (2.19) to | ↓↑↑〉 and by using the character table of the cyclic C3 group
(see table I in [25]). Then for the intrinsic part of the many-body wave function, one finds two
different three-determinantal combinations, namely,

�E′
intr(γ0) = | ↓↑↑〉 + e2π i/3| ↑↓↑〉 + e−2π i/3| ↑↑↓〉 (2.29)

and

�E′′
intr(γ0) = | ↓↑↑〉 + e−2π i/3| ↑↓↑〉 + e2π i/3| ↑↑↓〉, (2.30)

where γ0 = 0 denotes the azimuthal angle of the vertex of the equilateral triangle associated
with the original spin-down orbital in | ↓↑↑〉. We note that, unlike the intrinsic UHF Slater
determinant, the intrinsic wave functions �E′

intr and �E′′
intr here are eigenstates of the square of

the total spin operator Ŝ
2

(Ŝ = ∑3
i=1 ŝi) with quantum number s = 1/2. This can be verified

directly by applying Ŝ
2

to them5.
To restore the circular symmetry in the case of a (0,N ) ring arrangement, one applies the

projection operator (2.19). Note that the operator PL is a direct generalization of the projection
operators for finite point-groups discussed in [25] to the case of the continuous cyclic group
C∞ (the phases exp(iγL) are the characters of C∞).

The symmetry-restored projected wave function, �PRJ (having both good total spin and
angular momentum quantum numbers), is of the form

2π�PRJ =
∫ 2π

0
dγ�E

intr(γ )eiγL, (2.31)

where the intrinsic wave function (given by (2.29) or (2.30)) now has an arbitrary azimuthal
orientation γ . We note that, unlike the phenomenological Eckardt-frame model [128, 132]
where only a single product term is involved, the PRJ wave function in (2.31) is an average
over all azimuthal directions over an infinite set of product terms. These terms are formed by
multiplying the intrinsic part �E

intr(γ ) with the external rotational wave function exp(iγL) (the
latter is properly characterized as ‘external’, since it is an eigenfunction of the total angular
momentum L̂ and depends exclusively on the azimuthal coordinate γ )6.

The operator R̂(2π/3) ≡ exp(−i2πL̂/3) can be applied onto �PRJ in two different ways,
namely, either on the intrinsic part �E

intr or on the external part exp(iγL). Using (2.29) and the
property R̂(2π/3)�E′

intr = exp(−2π i/3)�E′
intr, one finds

R̂(2π/3)�PRJ = exp(−2π i/3)�PRJ, (2.32)

from the first alternative, and

R̂(2π/3)�PRJ = exp(−2πLi/3)�PRJ, (2.33)

from the second alternative. Now if �PRJ �= 0, the only way that equations (2.32) and (2.33)
can be simultaneously true is if the condition exp[2π(L − 1)i/3] = 1 is fulfilled. This leads
to a first sequence of magic angular momenta associated with total spin s = 1/2, i.e.

L = 3k + 1, k = 0, ±1, ±2, ±3, . . . . (2.34)

Using (2.30) for the intrinsic wave function, and following similar steps, one can derive a
second sequence of magic angular momenta associated with good total spin s = 1/2, i.e.

L = 3k − 1, k = 0, ±1, ±2, ±3, . . . . (2.35)

5 For the appropriate expression of S2, see equation (6) in [46].
6 Although the wave functions of the Eckardt-frame model are inaccurate compared with the PRJ ones (see (2.31)),
they are able to yield the proper magic angular momenta for (0, N) rings. This result is intuitively built in this
model from the very beginning via the phenomenological assumption that the intrinsic wave function, which is never
specified, exhibits CNv point-group symmetries.
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Figure 7. The UHF case exhibiting breaking of the circular symmetry for N = 3 and Sz = 3/2
at RW = 10 and B = 0. (a)–(c) Real orbitals. (d) The corresponding electron density (ED).
The choice of the remaining parameters is h̄ω0 = 5 meV and m∗ = 0.067me. Distances along
the horizontal x- and y-axes are in nanometres. The real orbitals are in 10−3 nm−1 and the total
electron density in 10−4 nm−2. The arrows indicate the spin direction.

In the fully spin-polarized case, the UHF determinant is portrayed in figure 7. This UHF

determinant, which we denote as | ↑↑↑ 〉, is already an eigenstate of Ŝ
2

with quantum number
s = 3/2. Thus only the rotational symmetry needs to be restored, that is, the intrinsic wave
function is simply �A

intr(γ0) = | ↑↑↑ 〉. Since R̂(2π/3)�A
intr = �A

intr, the condition for the
allowed angular momenta is exp[−2πLi/3] = 1, which yields the following magic angular
momenta,

L = 3k, k = 0, ±1, ±2, ±3, . . . . (2.36)

We note that in high magnetic fields only the fully polarized case is relevant and that only
angular momenta with k > 0 enter in (2.36) (see [24]). In this case, in the thermodynamic
limit, the partial sequence with k = 2q + 1, q = 0, 1, 2, 3, . . . is directly related to the
odd filling factors ν = 1/(2q + 1) of the fractional quantum Hall effect (via the relation
ν = N(N − 1)/(2L)). This suggests that the observed hierarchy of fractional filling factors
in the quantum Hall effect may be viewed as a signature originating from the point group
symmetries of the intrinsic wave function �intr, and thus it is a manifestation of symmetry
breaking at the UHF mean-field level.

We further note that the discrete rotational (and more generally rovibrational) collective
spectra associated with symmetry-breaking in a QD may be viewed as finite analogs to the
Goldstone modes accompanying symmetry breaking transitions in extended media (see [10]).
Recently there has been some interest in studying Goldstone-mode analogs in the framework
of symmetry breaking in trapped BECs with attractive interactions [88].

2.3. The symmetry breaking dilemma and density functional theory

Density functional theory (and its extension for cases with a magnetic field known as current
density functional theory) was initially considered [3] (and was extensively applied [3,92,94])
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a promising method for studying 2D semiconductor QDs. However, it soon became apparent
[22, 23, 25, 46] that density functional approaches exhibited severe drawbacks when applied
to the regime of strong correlations in QDs, where the underlying physics is associated with
symmetry breaking leading to electron localization and formation of Wigner molecules. The
inadequacies of density functional approaches in the field of QDs have by now gained broad
recognition [41, 134, 135].

In particular, unlike the Hartree–Fock case for which a consistent theory for the restoration
of broken symmetries has been developed (see, e.g. the earlier [18–32, 33]; for developments
in the area of quantum dots, see the more recent [22–25, 46), the breaking of space symmetry
within the spin-dependent density functional theory poses [136] a serious dilemma. This
dilemma has not been resolved [137] to date; several remedies are being proposed, but none of
them appears to be completely devoid of inconsistencies. In particular, a theory for symmetry
restoration of broken-symmetry solutions [134,135] within the framework of density functional
theory has not been developed as yet. This puts the density functional methods in a clear
disadvantage with regard to the modern fields of quantum information and quantum computing;
for example, the description of quantum entanglement (see section 5.1.4) requires the ability
to calculate many-body wave functions exhibiting good quantum numbers, and thus it lies
beyond the reach of density functional theory.

Moreover, due to the unphysical self-interaction error, the density-functional theory
becomes erroneously more resistant to space symmetry breaking [138] compared with the
UHF (which is free from such an error), and thus it fails to describe a whole class of broken
symmetries involving electron localization, e.g. the formation at B = 0 of Wigner molecules
in quantum dots [20,46] and in thin quantum wires [139], the hole trapping at Al impurities in
silica [140], or the interaction driven localization-delocalization transition in d- and f- electron
systems, like plutonium [141].

Recently, the shortcomings of the density functional theory to properly describe magnetic
phenomena (such as exchange coupling constants associated with symmetry breaking of the
total spin) has attracted significant attention in the quantum chemistry literature (see, e.g.
[142–144]).

2.4. More on symmetry restoration methods

In the framework of post-Hartree–Fock hierarchical approximations, projection techniques
are one of the methods used to treat correlations beyond the unrestricted Hartree–Fock. Two
other methods are briefly discussed in this section, i.e. the method of symmetry restoration via
random phase approximation (RPA) and the generator coordinate method (GCM).

2.4.1. Symmetry restoration via random phase approximation. This method introduces
energy correlations by considering the effect of the zero-point motion of normal vibrations
associated with the small amplitude motion of the time-dependent-Hartree–Fock mean field
(which is equivalent to the RPA). In the case of space symmetry breaking, one of the RPA
vibrational frequencies vanishes, and the corresponding motion is associated with the rotation
of the system as a whole (rotational Goldstone mode), with a moment of inertia given by the
so-called Thouless–Valatin expression [145].

The method has been used to calculate correlation energies of atomic nuclei [146, 147]
and most recently to restore the broken symmetry in circular quantum dots [148] (mainly for
the case of two electrons at zero magnetic field). As discussed in [148], restoration of the total
spin cannot be treated within RPA.
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2.4.2. The generator coordinate method. The projection techniques by themselves do not
take into account quantum correlation effects arising from the vibrations and other large-
amplitude intrinsic collective distortions of the Wigner molecule. For the inclusion of the
effects of such collective motions, a natural extension beyond projection techniques is the
generator coordinate method (see chapter 10 in [18]). Unlike the RPA, the GCM can treat
large-amplitude collective motion in combination with the restoration of the total spin. Indeed,
it has been shown that the RPA harmonic vibrations are a limiting small-amplitude case of the
large-amplitude collective motion described via the generator coordinate method [18].

The GCM represents an additional step in the hierarchy of approximations described
in section 1.5 and its use will result in a further reduction of the difference from the exact
solutions. The GCM is complicated and computationally more expensive compared with
projection techniques. Recent computational advances, however, have allowed rather extensive
applications of the method in nuclear physics (see, e.g. [38]). As yet, applications of the GCM
to quantum dots or trapped atomic gases have not been reported.

The GCM employs a very general form for the trial many-body wave functions expressed
as a continuous superposition of determinants |�[a]〉 (or permanents for bosons), i.e.

|�〉 =
∫

d[a]f [a]|�[a]〉, (2.37)

where [a] = (a1, a2, . . . , ak) is a set of collective parameters depending on the physics of
the system under consideration. An example of such parameters are the azimuthal angles
(γ1, γ2, . . . , γr) in the REM trial wave function (2.25). Of course the crucial difference between
the REM wave function (2.25) and the general GCM function (2.37) is the fact that the weight
coefficients f [a] in the former are known in advance (they coincide with the characters of
the underlying symmetry group), while in the latter they are calculated numerically via the
Hill–Wheeler–Griffin equations [149, 150]

∫
d[a′]h(a, a′)f [a′] = E

∫
d[a′]n(a, a′)f [a′], (2.38)

where E are the eigenenergies and

h(a, a′) = 〈�[a]|H|�[a′]〉, (2.39)

n(a, a′) = 〈�[a]|�[a′]〉 (2.40)

are the Hamiltonian and overlap kernels. The Hill–Wheeler–Griffin equation (2.38) is usually
solved numerically by discretization; then one can describe it as a diagonalization of the
many-body hamiltonian in a non-orthogonal basis formed with the determinants |�[a]〉.

An example of a potential case for the application of the GCM is an anisotropic quantum
dot (ζ < 1, with ζ = ωx/ωy). In this case, one cannot use projection techniques to restore the
total angular momentum, since the external confinement does not possess circular symmetry.
Application of the GCM, however, will produce numerical values for the expansion coefficients
f [γ ], and these values will reduce to exp[i

∑r
q=1 γqLq] for the circular case ζ = 1 (while

the GCM wave function will reduce to the REM wave function (2.25)). It is apparent that the
GCM many-body wave function changes continuously with varying anisotropy ζ , although the
symmetry properties of the confinement potential change in an abrupt way at the point ζ → 1.
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3. Symmetry breaking and subsequent symmetry restoration for neutral and charged
bosons in confined geometries: theoretical framework

3.1. Symmetry breaking for bosons, Gross–Pitaevskii wave functions and permanents

Mean-field symmetry breaking for bosonic systems is transparent in the context of two-
component condensates, where each species is necessarily associated with a different space
orbital [151, 152]. For one species of bosons, symmetry breaking can be considered through
a generalization of the UHF method of different orbitals for different spins known from the
case of electrons in quantum chemistry and in quantum dots (section 2.1.1). Indeed, as shown
in [60,63,153], one can allow each bosonic particle to occupy a different orbital φi(ri ). Then
the permanent |�N 〉 = Perm[φ1(r1), . . . , φN(rN)] serves as the many-body wave function of
an unrestricted Bose–Hartree–Fock (UBHF) approximation. This wave function reduces to
the Gross–Pitaevskii form with the restriction that all bosons occupy the same orbital φ0(r),
i.e. |�GP

N 〉 = ∏N
i=1 φ0(ri ), and φ0(r) is determined self-consistently at the restricted Bose–

Hartree–Fock (RBHF) level via the equation [154]

[H0(r1) + (N − 1)

∫
dr2φ

∗
0 (r2)v(r1, r2)φ0(r2)]φ0(r1) = ε0φ0(r1). (3.1)

Here v(r1, r2) is the two-body repulsive interaction, which is taken to be a contact potential,
vδ = gδ(r1 − r2), for neutral bosons, or the Coulomb repulsion vC = e2Z2/(κ|r1 − r2|) for
charged bosons. The single-particle Hamiltonian is given by

H0(r) = −h̄2∇2/(2m) + mω2
0r2/2, (3.2)

where ω0 characterizes the circular harmonic confinement, and where we have considered a
non-rotating trap.

Compared with the fermionic case (see section 2.1.1), the self-consistent determination
of the UBHF orbitals is rather complicated and numerically highly demanding (see section
2.5.3 in [155]). In fact, the self-consistent UHBF equations cannot be put into a standard
(canonical) eigenvalue-problem form for two reasons: (i) unitary transformations cannot be
used to simplify the equations, since the permanent of the product of two matrices does not
factorize into a product of two simpler terms (unlike the electronic case where the determinant
of the product of two matrices is equal to the product of the corresponding determinants) and
(ii) as a result of boson statistics, the bosonic orbitals cannot be assumed to be (and remain)
orthogonal, which leads to additional coupling terms between the non-orthogonal orbitals.

In the literature [156], an attempt has been made to derive unrestricted self-consistent
equations for bosons by disregarding point (ii) mentioned above and invoking the assumption
of orthonormal orbitals. Such equations of course are not of general validity, although they
appear to be useful for describing fragmentation of Bose condensates in double wells.

The difficulties of the self-consistent treatment can be bypassed and the UBHF problem
can be simplified through consideration of explicit analytic expressions for the space orbitals
φi(ri ). In particular, for repulsive interactions, the bosons must avoid each other in order to
minimize their mutual repulsion, and thus, in analogy with the case of electrons in QDs, one
can take all the orbitals to be of the form of displaced Gaussians, namely,

φi(ri ) = π−1/2σ−1 exp[−(ri − ai )
2/(2σ 2)]. (3.3)

The positions ai describe the vertices of concentric regular polygons, with both the width σ

and the radius a = |ai | of the regular polygons determined variationally through minimization
of the total energy

EUBHF = 〈�N |H|�N 〉/〈�N |�N 〉, (3.4)
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where

H =
N∑

i=1

H0(ri ) +
N∑

i<j

v(ri , rj ) (3.5)

is the many-body Hamiltonian.
With the above choice of localized orbitals the unrestricted permanent |�N 〉 breaks the

continuous rotational symmetry. However, the resulting energy gain becomes substantial for
stronger repulsion. Controlling this energy gain (the strength of correlations) is the ratio Rδ

(or RW ) between the strength of the repulsive potential and the zero-point kinetic energy.
Specifically, for a 2D trap, one has

Rδ = gm/(2πh̄2) (3.6)

for a contact potential (for RW , see section 2.1.2). Note that in this section, we refer to the
case of a non-rotating trap; the generalization to rotating traps is presented in section 8.

3.2. Repelling bosons in harmonic traps: restoration of broken symmetry.

Although the optimized UBHF permanent |�N 〉 performs very well regarding the total energies
of the trapped bosons, in particular in comparison with the restricted wave functions (e.g. the
GP ansatz), it is still incomplete. Indeed, due to its localized orbitals, |�N 〉 does not preserve
the circular (rotational) symmetry of the 2D many-body Hamiltonian H . Instead, it exhibits a
lower point-group symmetry, i.e. a C2 symmetry for N = 2 and a C5 one for the (1, 5) structure
of N = 6 (see section 8). As a result, |�N 〉 does not have a good total angular momentum. In
analogy with the case of electrons in quantum dots, this paradox is resolved through a post-
Hartree–Fock step of restoration of broken symmetries via projection techniques [23–25,60],
yielding a new wave function |�PRJ

N,L〉 with a definite angular momentum L, that is

2π |�PRJ
N,L〉 =

∫ 2π

0
dγ |�N(γ )〉eiγL, (3.7)

where |�N(γ )〉 is the original UBHF permanent having each localized orbital rotated by an
azimuthal angle γ , with L being the total angular momentum. The projection yields wave
functions for a whole rotational band. Note that the projected wave function |�PRJ

N,L〉 in (3.7)
may be regarded as a superposition of the rotated permanents |�N(γ )〉, thus corresponding to
a ‘continuous-configuration-interaction’ solution.

The energies of the projected states are given by

EPRJ
L = 〈�PRJ

N,L|H|�PRJ
N,L〉/〈�PRJ

N,L|�PRJ
N,L〉. (3.8)

4. Other many-body methods

4.1. Exact diagonalization methods: theoretical framework

We will discuss the essential elements of the exact-diagonalization method here by considering
the special, but most important case of a many-body Hilbert space defined via the restriction
that the single-particle states belong exclusively to the lowest Landau level. For 2D electrons,
this LLL restriction is appropriate in the case of very high B. For rotating bosons in a harmonic
trap, the LLL restriction is appropriate for � ∼ ω0 and a very weak repulsive contact potential.
The particulars of the EXD method for quantum dots in the case of field-free (and/or low B)
conditions will be discussed in section 5.1.2.
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For sufficiently high magnetic field values (i.e. in the fractional quantum Hall effect,
regime), the electrons are fully spin-polarized and the Zeeman term (not shown here) does not
need to be considered. In the B → ∞ limit, the external confinement V (x, y) can be neglected,
and the many-body H can be restricted to operate in the lowest Landau level, reducing to the
form [24, 26, 52, 53]

HLLL = N
h̄ωc

2
+

N∑
i=1

N∑
j>i

e2

κrij

, (4.1)

where ωc = eB/(m∗c) is the cyclotron frequency. Namely, one needs to diagonalize the
interaction Hamiltonian only.

For the case of rotating bosons in the LLL, one needs to replace in (4.1) the Coulomb
interaction by gδ(ri − rj ) and the cyclotron frequency by 2� (see the appendix for the details
of the equivalence between magnetic field B and rotational frequency �; in short ωc → 2�).

For a given total angular momentum L = ∑N
k=1 lk , the exact-diagonalization N -body

wave function is a linear superposition of Slater determinants for fermions (or permanents
for bosons) �(J ) made out of lowest-Landau-level single-particle wave functions (see the
appendix),

φl(z) = 1

�
√

πl!

( z

�

)l

e−zz∗/(2�2), (4.2)

where � = √
2h̄c/(eB) = lB

√
2 for the case of electrons in QDs (lB being the magnetic

length) and � = √
h̄/(mω0) for the case of bosons in rotating traps. In (4.2), we used complex

coordinates z = x + iy, instead of the usual vector positions r = (x, y); below we will use
either notation interchangeably as needed.

Thus, the many-body EXD wave function is written as

�EXD(z1, z2, . . . , zN) =
K∑

J=1

CJ �(J ) (4.3)

with the indexJ denoting any set ofN single-particle angular momenta {l1, l2, . . . , lN } such that

l1 < l2 < . . . < lN (4.4)

for fermions and

l1 � l2 � . . . � lN (4.5)

for bosons, the absence or presence of the equal signs being determined by the different
statistics between fermions and bosons, respectively.

Using expansion (4.3), one transforms the many-body Schrödinger equation

H�EXD(z1, z2, . . . , zN) = E�EXD(z1, z2, . . . , zN) (4.6)

into a matrix eigenvalue problem. When the single-particle states are orthonormal (like the
LLL ones in (4.2)), the matrix elements 〈�(I)|H|�(J )〉 between two Slater determinants
are calculated using the so-called Slater rules (see, e.g. chapter 2.3.3 of [19]). For the case
of bosons, the corresponding rules for the matrix elements 〈�(I)|H|�(J )〉 between two
permanents are given in the appendix of [72].

We remark here that the calculation of energies associated with projected wave functions
(see, e.g. equation (3.8)) requires calculation of similar matrix elements between two Slater
determinants (or permanents) with non-orthogonal orbitals; the corresponding formulae for
the case of fermions can be found in chapter 6.3. of [157], and for the case of bosons in [155].
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Of course a necessary ingredient for the application of the above rules is the knowledge
of the matrix elements of the two-body interaction v(r1, r2), i.e.

vαβγ� ≡
∫

dr1 dr2φ
∗
α(1)φ∗

β(2)v(1, 2)φγ (1)φ�(2). (4.7)

In the general case, these two-body matrix elements need to be calculated numerically.
For the simpler case specified by the LLL orbitals (4.2), the two-body matrix elements are
given by analytic expressions. In particular, for the Coulomb repulsion, see [26, 158]; for a
contact potential, see [159].

The dimension D of the Hilbert space increases very fast with the number of particles N

and the value of the total angular momentum L and is controlled by the maximum allowed
single-particle angular momentum lmax, such that lk � lmax, 1 � k � N . By varying lmax, we
can check that this choice produces well converged numerical results.

For the solution of the large scale, but sparse, EXD matrix eigenvalue problem associated
with the special Hamiltonian HLLL (or the general one in (2.1)), we use the ARPACK computer
code [160].

The availabilty of analytic expressions for the two-body interaction has greatly facilitated
exact-diagonalization calculations in the lowest Landau level (appropriate for quantum dots
at high B), and in this case (starting with [26, 161]) diagonalization of large matrices of
dimensions of order 500 000 × 500 000 has become a commom occurrence. For circular
quantum dots, similar analytic expressions for the matrix elements of the Coulomb interaction
between general Darwin–Fock orbitals [162,163] (i.e. the single-particle orbitals of a circular
2D harmonic oscillator under a perpendicular magnetic field B) are also available [129, 164],
but they are not numerically as stable as Tsiper’s expressions [158] in the lowest Landau level.

Exact-diagonalization calculations for field-free (and/or low B) conditions have been
presented in several papers. Among them, we note the exact-diagonalization calculations of
[77,97,165–170]. EXD calculations employing Coulombic two-body matrix elements that are
calculated numerically have also been reported for elliptic quantum dots (see section 5.1.2).
Furthermore, some authors have used the method of hyperspherical harmonics [171] for circular
quantum dots, while others have carried out exact-diagonalization calculations for quantum
dots with a polygonal external confinement [172].

Concerning EXD calculations in the lowest Landau level, we mention [26, 95, 128–
132, 173–176] for the case of quantum dots (high B) and [67–69, 72, 177, 178] for the
case of bosons in rapidly rotating traps. A version of EXD in the LLL uses a correlated
basis constructed out of composite-fermion wave functions [176], while another exact-
diagonalization version used non-orthogonal floating Gaussians in the place of the usual single-
particle states (4.2) in the LLL.

For two electrons in a single quantum dot, exact calculations have been carried out
through separation into center-of-mass and relative coordinates [50, 179, 180]. In addition,
EXD calculations have been reported for two electrons in a double quantum dot [89, 181].

It is of interest to note that the EXD approach is also used in other fields, but under different
names. In particular, the term ‘shell model calculations’ is used in nuclear theory, while the
term ‘full configuration interaction’ is employed in quantum chemistry.

4.1.1. An example involving spin-resolved CPDs. Here we present an example of an
EXD calculation exhibiting formation of a Wigner molecule in quantum dots. The case
we chose is that of N = 3 electrons under zero magnetic field in an anisotropic quantum
dot with h̄ωx = 4.23 meV and h̄ωy = 5.84 meV (i.e. with an intermediate anisotropy
ζ = ωx/ωy = 0.724) and dielectric constant κ = 1 (strong interelectron repulsion). In
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Figure 8. Exact-diagonalization electron densities (EDs) and spin-resolved CPDs for N = 3
electrons in an anisotropic quantum dot at zero magnetic field (B = 0) and in the case of a
strong Coulomb repulsion with a dielectric constant κ = 1. (a) and (b) Results for the ground
state (which has total spin s = 1/2 and spin projection Sz = 1/2) when h̄ωx = 4.23 meV
and h̄ωy = 5.84 meV (i.e. for an intermediate anisotropy ζ = 0.724). (c)–(f ) Results for
the first excited state (which has also total spin s = 1/2 and spin projection Sz = 1/2) when
h̄ωx = 3.137 meV and h̄ωy = 6.274 meV (i.e. for a strong anisotropy ζ = 0.5). The thick arrows
and solid dots in the CPDs indicate the spin direction σ0 and position r0 of the fixed electron (see
(1.2)). The thin arrows indicate the spin direction of the remaining two electrons. The effective
mass is m∗ = 0.070me for the intermediate anisotropy (a) and (b) and m∗ = 0.067me for the
strong anisotropy (c)–(f ). Lengths are in nanometres. The vertical axes are in arbitrary units.

particular, figure 8 displays results for the ground state of the three electrons with total spin
s = 1/2 and spin projection Sz = 1/2.

The electron density in figure 8(a) has the shape of a diamond and suggests formation
of a Wigner molecule resonating between two isosceles triangular isomers (which are the
mirror image of each other). The detailed interlocking of the two triangular configurations
is further revealed in the spin-resolved CPD that is displayed in figure 8(b). It can be
concluded that one triangle is formed by the points R1 = (0, −20) nm, R2 = (−43, 10) nm
and R3 = (43, 10) nm, while the second one (its mirror with respect to the x-axis) is formed
by the points R′

1 = (0, 20) nm, R′
2 = (−43, −10) nm and R′

3 = (43, −10) nm.
The two-triangle configuration discussed for three electrons above may be seen as the

embryonic precursor of a quasilinear structure of two intertwined ‘zigzag’ crystalline chains.
Such double zigzag crystalline chains may also be related to the single zigzag Wigner-
crystal chains discussed recently in relation to spontaneous spin polarization in quantum
wires [182, 183].

For strong anisotropies (e.g. ζ � 1/2), the three electrons form a straightforward linear
Wigner molecule (see the electron density in figure 8(c)), and the spin-resolved CPDs can
be used to demonstrate [184] formation of prototypical entangled states, like the so-called
W states [185, 186]. From the CPDs (displayed in figures 8(d)–(f )) of the first excited state
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(having s = 1/2 and Sz = 1/2), one can infer that its intrinsic spin structure is of the form
| ↑↑↓ 〉 − | ↓↑↑ 〉. The ground state (not shown) of this linear Wigner molecule also has a
total spin s = 1/2 and spin projection Sz = 1/2, and its intrinsic spin structure corresponds to
a form 2| ↑↓↑ 〉 − | ↑↑↓ 〉 − | ↓↑↑ 〉 [184].

4.2. Particle localization in Monte-Carlo approaches

Quantum Monte-Carlo (MC) approaches [187] have been successfully used in many areas
of condensed-matter physics; they are divided in two main branches, path-integral MC
(PIMC) and variational/diffusion MC (V/DMC). Unlike the exact diagonalization, quantum
MC approaches cannot calculate excited states, and they are restricted to the description of
ground-state properties.

Applied to the case of circular quantum dots at zero magnetic field, PIMC calculationss
[188–192] have been able to reproduce and describe electron localization with increasing RW

and formation of Wigner molecules. In 2D quantum dots, a focus of the PIMC studies [188,191]
has been the determination of the critical value, Rcr

W , for the Wigner parameter at which the
phase transition from a Fermi liquid to a Wigner molecule occurs. Naturally, only an estimate
of this critical value can be determined, since the phase transition is not sharp, but smooth,
due to the finite size of the quantum dot. Obtaining a precise value of Rcr

W is also hampered by
the variety of criteria employed by different researchers in the determination of this transition
(e.g. height of localized density humps, appearance of a hump at the center of the dot, etc).

In the literature of PIMC studies [188,191], one finds the critical value Rcr
W ∼ 4, which is

in agreement with exact-diagonalization studies [77]. This is also in general agreement with
the estimate Rcr

W ∼ 1 based on the abrupt onset of spatial symmetry breaking in unrestricted
Hartree–Fock [20]. Of course the unrestricted-Hartree–Fock estimate has to be refined through
the subsequent step of symmetry restoration. We believe that it is most appropriate to consider
these two estimates mentioned above as the lower and upper limit of a transition region. The
important conclusion is that the transition to Wigner crystallization in quantum dots takes place
for much higher electron densities compared with the infinite two-dimensional electron gas
(for which a value Rcr

W ∼ 37 [193] has been reported)7.
A disadvantage of the PIMC method is that the case of an applied magnetic field cannot

be easily incorporated in its formalism, and therefore related studies have not been reported.
Other well-known difficulties are the fermion sign problem and the non-conservation of total
spin [77, 188].

Commenting on the other main branch of quantum Monte Carlo, i.e. the
variational/diffusion MC, we wish to stress the crucial role played by the general form of the
trial wave function used. Indeed, an early V/DMC study [194] using a single configurational
state function (i.e. a primitive combination of products of Slater determinants for the two spin
directions that is an eigenstate of the total angular momentum L̂, the square of the total spin

Ŝ
2

and the total-spin projection Sz) was unable to describe the formation of Wigner molecules
in quatum dots at zero magnetic field. Another V/DMC study [195] managed to demonstrate
electron localization, but at the cost of using a single product of two Slater determinants
(multiplied by a Jastrow factor) which violated the conservation of both the total angular
momentum and total spin (without the possibility of further corrections related to symmetry
restoration).

Most recently, more sophisticated trial wave functions involving a large number of
configurational state functions with good total angular momentum and total spin have been
7 Often the Wigner–Seitz radius rs , in units of the effective Bohr radius a∗

B = h̄2κ/(m∗e2) of the quantum dot, is
used instead of the Wigner parameter RW (denoted some times by λ). In these units, one has rs ≈ RW .
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employed, which eventually enabled confirmation of the formation of Wigner molecules via
V/DMC methods, both at zero [78] and at high magnetic field [196].

There are, however, disagreements between the V/DMC results [197] and those from
PIMC and EXD calculations concerning the details of Wigner-molecule formation in circular
quantum dots in the absence of an applied magnetic field. In particular, these disagreements
focus on the density scale for the cross-over and the strength of azimuthal and radial electron
correlations as a function of RW .

Such disagreements remain an open question for two reasons.

(i) The criterion of lowest energy (evoked by the V/DMC approaches) is not sufficient to
guarantee the quality of the variational many-body wave function. A counterexample
to this lowest-energy criterion was presented by us for the case of the Laughlin wave
functions in [24, 52] (see also section 6.4). Most recently, this point was also illustrated
within the framework of variational Monte Carlo calculations [198].

(ii) The V/DMC studies for larger N [78, 197] have presented only calculations for CPDs.
However, due to the presence of dummy integrations in (1.1) (which result in an averaging
over the remaining N − 2 particles), the ability of the CPDs to portray the intrinsic
crystalline structure of the Wigner molecule diminishes with increasing N . As a result,
higher-order correlation functions, like N -point correlations, may be required. The fact
that higher-order correlation functions reflect the crystalline correlations more accurately
than the CPDs was illustrated for the case of rotating boson molecules in [72] (see also
section 8.2).

A detailed comparison between ground-state energies calculated with quantum MC and
exact-diagonalization methods can be found in [77]. For a comparison between variation-
before-projection (see section 2.2) and V/DMC total energies, see [122].

5. The strongly correlated regime in two-dimensional quantum dots: the two-electron
problem and its significance

In sections 2 and 3, we focused on the general principles and the essential theoretical framework
of the method of symmetry breaking and of subsequent symmetry restoration for finite
condensed-matter systems. In addition, in section 4, we presented the basic elements of
the exact-diagonalization approach. In the following four sections, we will focus on specific
applications and predictions from these methods in the field of semiconductor quantum dots and
of ultracold bosons in harmonic traps, in particular regarding the emergence and properties of
Wigner molecules under various circumstances. At the same time we will continue to elaborate
and further expand on more technical aspects of these methods.

In this section, we start by concentrating on the description of two-electron molecules in
QDs. A discussion on the importance of the two-electron problem is given in section 5.3.

5.1. Two-electron elliptic dot at low magnetic fields

Here, we present an exact diagonalization and an approximate (generalized Heitler–London,
GHL) microscopic treatment for two electrons in a single elliptic QD specified by parameters
that correspond to a recently fabricated experimental device [41].

The two-dimensional Hamiltonian for the two interacting electrons is given by

H = H(r1) + H(r2) + γ e2/(κr12), (5.1)

where the last term is the Coulomb repulsion, κ (12.5 for GaAs) is the dielectric constant and
r12 = |r1 − r2|. The prefactor γ accounts for the reduction of the Coulomb strength due to the
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finite thickness of the electron layer in the z direction and for any additional screening effects
due to the gate electrons. H(r) is the single-particle Hamiltonian for an electron in an external
perpendicular magnetic field B and an appropriate confinement potential (2.2). For an elliptic
QD, the external potential is written as

V (x, y) = 1
2m∗(ω2

xx
2 + ω2

yy
2). (5.2)

Here the effective mass is taken to be m∗ = 0.07m0. In the Hamiltonian (2.2), we neglect the
Zeeman contribution due to the negligible value (g∗ ≈ 0) of the effective Landé factor in our
sample [199].

5.1.1. Generalized Heitler–London approach. The GHL method for solving the
Hamiltoninian (5.1) consists of two steps. In the first step, we solve selfconsistently the ensuing
unrestricted Hartree–Fock equations allowing for lifting of the double-occupancy requirement
(imposing this requirement gives the restricted HF method, RHF). For the Sz = 0 solution, this
step produces two single-electron orbitals uL,R(r) that are localized left (L) and right (R) of
the center of the QD (unlike the RHF method that gives a single doubly-occupied elliptic (and
symmetric about the origin) orbital). At this step, the many-body wave function is a single
Slater determinant �UHF(1 ↑, 2 ↓) ≡ |uL(1 ↑)uR(2 ↓)〉 made out of the two occupied UHF
spin-orbitals uL(1 ↑) ≡ uL(r1)α(1) and uR(2 ↓) ≡ uR(r2)β(2), where α(β) denotes the up
(down) [↑ (↓)] spin. This UHF determinant is an eigenfunction of the projection Sz of the
total spin Ŝ = ŝ1 + ŝ2, but not of Ŝ2 (or the parity space-reflection operator).

In the second step, we restore the broken parity and total-spin symmetries by applying to
the UHF determinant the projection operator (2.18). For two electrons, this operator reduces
to Ps,t

spin = 1 ∓ �12, where the operator �12 interchanges the spins of the two electrons; the
upper (minus) sign corresponds to the singlet. The final result is a generalized Heitler–London
two-electron wave function �

s,t
GHL(r1, r2) for the ground-state singlet (index s) and first-excited

triplet (index t), which uses the UHF localized orbitals,

�
s,t
GHL(r1, r2) ∝ (uL(r1)uR(r2) ± uL(r2)uR(r1))χ

s,t , (5.3)

where χs,t = (α(1)β(2) ∓ α(2)β(1)) is the spin function for the 2e singlet and triplet states.
The general formalism of the 2D UHF equations and of the subsequent restoration of broken
spin symmetries was presented in section 2.2.

The use of optimized UHF orbitals in the generalized Heitler–London method is suitable
for treating single elongated QDs [46], including the special case of elliptically deformed
ones discussed in this section. The GHL is equally applicable to double QDs with arbitrary
interdot-tunneling coupling [46]. In contrast, the Heitler–London (HL) treatment [82] (also
known as the simple valence bond), where non-optimized ‘atomic’ orbitals of two isolated
QDs are used, is appropriate only for the case of a double dot with small interdot-tunneling
coupling [48].

The orbitals uL,R(r) are expanded in a real Cartesian harmonic-oscillator basis, i.e.

uL,R(r) =
K∑

j=1

C
L,R
j ϕj (r), (5.4)

where the index j ≡ (m, n) and ϕj (r) = Xm(x)Yn(y), with Xm(Yn) being the eigenfunctions of
the one-dimensional oscillator in the x(y) direction with frequency ωx(ωy). The parity operator
P yields PXm(x) = (−1)mXm(x), and similarly for Yn(y). The expansion coefficients C

L,R
j

are real for B = 0 and complex for finite B. In the calculations we use K = 54 and/or K = 79,
yielding convergent results.
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Figure 9. Differentiated current dI/dVpg at Vbias = 2.5 mV (the subscript pg denotes the plunger
gate). Gray striped regions (red online) marked by symbols correspond to positive (peaks) dI/dVpg.
The dark black region (also black online) corresponds to negative dI/dVpg. Electron numbers N

are indicated. Transitions between the one-electron ground state and the 2e spin-singlet ground
(excited for B > 3.8 T) state (S0), spin-triplet excited (ground for B > 3.8 T) state (T+), spin-singlet
excited state (S2), and spin-triplet plus center-of-mass excited state (T+,CM) are labeled.

5.1.2. Exact diagonalization. In the EXD method, the many-body wave function is written
as a linear superposition over the basis of non-interacting two-electron determinants, i.e.

�
s,t
EXD(r1, r2) =

2K∑
i<j

As,t
ij |ψ(1; i)ψ(2; j)〉, (5.5)

where ψ(1; i) = ϕi(1 ↑) if 1 � i � K and ψ(1; i) = ϕi−K(1 ↓) if K + 1 � i � 2K

[and similarly for ψ(2, j)]. The total energies E
s,t
EXD and the coefficients As,t

ij are obtained
through a ‘brute force’ diagonalization of the matrix eigenvalue equation corresponding to the
Hamiltonian in (5.1). The exact-diagonalization wave function does not immediately reveal
any particular form, although, our calculations below show that it can be approximated by a
GHL wave function in the case of the elliptic dot under consideration.

5.1.3. Results and comparison with measurements. To model the experimental quantum dot
device, we take, following [41], h̄ωx = 4.23 meV, h̄ωy = 5.84 meV, κ = 12.5 and γ = 0.862.
The corresponding anisotropy is ωy/ωx = 1.38, indicating that the quantum dot considered
here is closer to being circular than in other experimental systems [45, 80].

As shown in [41], the experimental findings can be quantitatively interpreted by comparing
then with the results of the EXD calculations for two electrons in an anisotropic harmonic
confinement potential with the parameters listed above. All the states observed in the measured
spectra (as a function of the magnetic field) can be unambiguously identified [41] with
calculated ground-state and excited states of the two-electron Hamiltonian (compare figures 9
and 10).

Moreover, the calculated magnetic-field-dependent energy splitting, JEXD(B) =
Et

EXD(B) − Es
EXD(B), between the two lowest singlet (S0) and triplet (T+) states is found

to be in remarkable agreement with the experiment (see figure 11).
A deeper understanding of the structure of the many-body wave function can be acquired by

comparing the measured J (B) with that calculated within the GHL and RHF approximations.
To facilitate the comparisons, the calculated JGHL(B) and JRHF(B) curves are also plotted in
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Figure 10. Calculated exact-diagonalization energy spectrum in a magnetic field, referenced to

2h̄

√
ω2

0 + ω2
c/4, of a 2e dot with anisotropic harmonic confinement (for the dot parameters, see

text). We have adopted the notation (Nx, Ny, n, m), where (Nx, Ny) refer to the CM motion along
the x- and y-axes and (n, m) refer to the number of radial nodes and angular momentum of the
relative motion in the corresponding circular dot. Inset: the EXD spectrum of the corresponding
circular dot. Only the (n, m) indices are shown, since Nx = Ny = 0 for all the plotted curves.
Solid lines denote singlets. Dashed lines denote triplets.
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Figure 11. Comparison between the lowest-triplet/lowest-singlet energy splitting [J (B)] calculated
with different methods and the experimental results (open squares). Solid line (online magenta):
EXD. Dotted line (online green): GHL. Dashed line (online red): RHF. For the parameters used in
the calculation to model the anisotropic QD, see text.

figure 11, along with the exact-diagonalization result and the measurements. Both the RHF
and GHL schemes are intuitively appealing, because they minimize the total energy using
single-particle orbitals. It is evident, however, from figure 11 that the RHF method, which
assumes that both electrons occupy a common single-particle orbital, is not able to reproduce
the experimental findings. On the contrary, the generalized Heitler–London approach, which
allows the two electrons to occupy two spatially separated orbitals, appears to be a good
approximation. Plotting the two GHL orbitals (see figure 12) for the singlet state clearly
demonstrates that the two electrons do not occupy the same orbital, but rather fill states that
are significantly spatially separated.
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Figure 12. Single-particle UHF orbitals (modulus square) that are used in the construction of the
GHL wave function in (5.3). Arrows indicate up and down spins. For the parameters used in the
calculation to model the anisotropic QD, see text. Lengths along the horizontal x- and y-axes in
nm and orbital densities in 10−3 nm−2.

The UHF orbitals from which the GHL singlet state is constructed (see (5.3)) are displayed
in figure 12 for both the B = 0 and B = 3.8 T cases. The spatial shrinking of these orbitals at
the higher B-value illustrates the ‘dissociation’ of the electron dimer with increasing magnetic
field. The asymptotic convergence (beyond the ST point) of the energies of the singlet and
triplet states, (i.e. J (B) → 0 as B → ∞) is a reflection of the dissociation of the 2e molecule,
since the ground-state energy of two fully spatially separated electrons (zero overlap) does not
depend on the total spin. We stress again that the RHF, which corresponds to the more familiar
physical picture of a QD-Helium atom, fails to describe this dissociation, because JRHF(B)

diverges as the value of the magnetic field increases.
In contrast to the RHF, the GHL wave function is able to capture the importance of

correlation effects. Further insight into the importance of correlations in our QD device can be
gained through inspection [41] of the conditional probability distributions (see (1.1)) associated
with the EXD solutions; see an illustration in figure 13. Indeed, already at zero magnetic field,
the calculated CPDs provide further support of the physical picture of two localized electrons
forming a state resembling an H2-type [23, 41, 46] Wigner molecule [20, 188].

5.1.4. Degree of entanglement. Further connections between the strong correlations found
in our microscopic treatment and the theory of quantum computing [48] can be made
through specification of the degree of entanglement between the two localized electrons in
the molecular dimer. For two electrons, we can quantify the degree of entanglement by
calculating a well-known measure of entanglement such as the von Neumann entropy [42,200]
for indistinguishable particles. To this effect, one needs to bring the EXD wave function into
a diagonal form (the socalled ‘canonical form’ [200, 201]), i.e.

�
s,t
EXD(r1, r2) =

M∑
k=1

z
s,t
k |�(1; 2k − 1)�(2; 2k)〉, (5.6)
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Figure 13. CPDs extracted from the exact-diagonalization wave function for the singlet state for
B = 0 and B = 3.8 T. The CPD expresses the conditional probability for finding the second
electron at position r given that the first electron is located at r0 (denoted by a heavy solid dot).
For the parameters used in the calculation to model the anisotropic QD, see text. Lengths along
the horizontal x- and y-axes in nm and CPDs in arbitrary units.

with the �(i)’s being appropriate spin orbitals resulting from a unitary transformation of the
basis spin orbitals ψ(j)’s (see (5.5)); only terms with zk �= 0 contribute. The upper bound
M can be smaller (but not larger) than K (the dimension of the single-particle basis); M is
referred to as the Slater rank. One obtains the coefficients of the canonical expansion from the
fact that the |zk|2 are eigenvalues of the hermitian matrix A†A (A, see (5.5), is antisymmetric).
The von Neumann entropy is given by S = − ∑M

k=1 |zk|2 log2(|zk|2) with the normalization∑M
k=1 |zk|2 = 1.

The EXD singlet has obviously a Slater rank M > 2. The von Neumann entropy for
the EXD singlet (Ss

EXD) is displayed in figure 14. It is remarkable that Ss
EXD increases

with increasing B, but remains close to unity for large B, although the maximum allowed
mathematical value is log2(K) (for example, for K = 79, log2(79) = 6.3). The saturation of
the entropy for large B to a value close to unity reflects the dominant (and roughly equal at
large B) weight of two configurations in the canonical expansion (see (5.6)) of the exact-
diagonalization wave function, which are related [42] to the two terms in the canonical
expansion of the GHL singlet. This is illustrated by the histograms of the |zs

k|2 coefficients for
B = 3.8 T and B = 8.0 T in figure 14 (top). Note that the ratio |z2|2/|z1|2 reflects the extent of
the overlap between the two GHL orbitals [42], with the ratio increasing for smaller overlaps
(corresponding to a more complete dissociation of the Wigner molecule).

The above discussion illustrates that microscopic calculations that are shown to reproduce
experimental spectra [41] can be used to extract valuable information that allows assessment
of the suitability of a given device for quantum computations.

5.2. Two-electron circular dots at zero magnetic field

In section 2.2, we illustrated the formation of ‘rotating electron molecules’ in the case of a
two-electron circular QD, where one needs to consider restoration of the rotational symmetry
as well, in addition to the restoration of the total spin. There, we focused on properties of the
ground state (L = 0).

In this section, we further examine the excitation spectra of a two-electron QD by using
the rather simple exact solution of this problem provided through separation of the center-of-
mass and inter-electron relative-distance degrees of freedom [50]. The spectrum obtained for
RW = 200 (figure 15), exhibits features that are characteristic of a collective rovibrational
dynamics, akin to that of a natural ‘near-rigid’ triatomic linear molecule with an infinitely
heavy middle particle representing the center of mass of the dot. This spectrum transforms to
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of the magnetic field B. On the top, we show histograms for the |zk |2 coefficients (see (5.6))
of the singlet state at B = 3.8 T (left) and B = 8.0 T (right) illustrating the dominance of two
determinantal configurations (in agreement with the generalized Heitler–London picture). Note
the small third coefficient |z3|2 = 0.081 for B = 8.0 T. For the parameters used to model the
experimental device, see text.

that of a ‘floppy’ molecule for smaller value of RW (i.e. for stronger confinements characterized
by a larger value of ω0, and/or for weaker inter-electron repulsion), ultimately converging to
the independent-particle picture associated with the circular central mean-field of the QD.

Further evidence for the formation of the electron molecule and the emergence of a
rovibrational spectrum was found through examination [50] of the conditional probability
distributions for various states (N, M, n, m) (see the caption of figure 15 for the precise
meaning of these quantum numbers labeling the spectra). As an example, we display in
figure 16 the CPD for the bottom state (m = 0) of the rotational band (1, 0, 1, m) (not shown in
figure 15); it reveals that this state corresponds to a vibrational motion of the electron molecule
both along the interelectron axis (one excited stretching-mode phonon; see figure 15) and
perpendicularly to this axis (two excited bending-mode phonons; see figure 15).

It is instructive to note here certain similarities between the formation of a ‘two-electron
molecule’ in man-made quantum dots and the collective (rovibrational) features observed in
the electronic spectrum of doubly-excited helium atoms [202–204].

5.3. Historical significance of the two-electron problem

In spite of being the simplest many-body system, the significance of the problem of two
interacting electrons confined in an external potential cannot be overstated. Historically it
played a central role in the development of the quantum theory of matter through the failure
of the Bohr-type semiclassical models to account for the natural He atom. Most recently
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it has influenced the development of several fields like non-linear physics, atomic physics,
semiconductor quantum dots and quantum computing.

It is instructive to make here a historical detour. Indeed, the failure of Bohr-type
semiclassical models, based on the orbiting of spatially correlated (antipodal) electrons in
conjunction with the Bohr–Sommerfeld quantization rule, to yield a reasonable estimate of
the ground state of the He atom signaled a looming crisis in physics in the 1920s, which Bohr
himself, as well as others, had been keenly aware of, as summarized succintly by Sommerfeld:
‘All attempts made hitherto to solve the problem of the neutral helium atom have proved to be
unsuccessful’ [205]; see also the 10th chapter entitled ‘It was the Spring of hope, it was the
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Winter of despair’ in the book by Pais [206], the review by Van Vleck [207] and the book by
Born [208].

While, since, numerical solutions of the two-electron Schrödinger equation provided a
quantitative resolution to the problem, the first successful semiclassical treatment of the three-
body Coulomb system awaited till 1980 [209, 210].

Furthermore, based on rather general group-theoretical arguments arising from the
observation of hierarchies with lower symmetry in the excited spectra, and motivated by ideas
originating in nuclear-physics spectroscopy, it has been discovered in the late 1970s and early
1980s that electron correlations in doubly excited He lead to quantization of the spectrum much
like in a linear triatomic molecule, e − He2+ − e. This molecular picture, with near rigidity
and separability, results in ‘infinite sequences of vibrational levels, on each of which is built
an infinite sequence of rotational levels’ [202, 211, 212].

Sections 5.1 and 5.2 describing the formation and properties of a 2e Wigner molecule in
a single QD may be viewed as the culmination of this historical background. Interestingly, as
in the aforementioned semiclassical treatments, the collinear configuration plays a special role
in the molecule-like model, serving perhaps as ‘partial vindication’ of the geometry originally
considered by Niels Bohr.

6. Rotating electron molecules in two-dimensional quantum dots under a strong
magnetic field: the case of the lowest Landau level (ωc/2ω0 → ∞)

6.1. REM analytic trial wave functions

In the last ten years, and in particular since 1999 (when it was explicitly demonstrated [20] that
Wigner crystallization for small systems is related to symmetry breaking at the unrestricted
Hartree–Fock mean-field level), the number of publications addressing the formation and
properties of Wigner (or electron) molecules in 2D QDs and quantum dot molecules has
grown steadily [20, 21, 23, 24, 27, 50, 101, 102, 128, 132, 167, 171, 175, 188, 189, 195, 213–
221]. A consensus has been reached that rotating electron molecules are formed both in zero
[21, 23, 24, 46, 50, 101, 167, 175, 188, 189, 195, 213–219] and high [26, 27, 46, 102, 128, 131,
132, 171, 220, 221] magnetic fields.

At B = 0, in spite of considerable differences explored in this report (see next paragraph),
the formation of REMs in quantum dots is driven by the same physical factors as Wigner
crystallization in infinite 2D media, i.e. when the strength of the interelectron repulsion relative
to the zero-point kinetic energy (RW ) exceeds a certain critical value, electrons spontaneously
crystallize around sites forming geometric molecular structures. At high magnetic fields,
the formation of Wigner molecules may be thought of as involving a two-step crystallization
process: (I) the localization of electrons results from the shrinkage of the orbitals due to the
increasing strength of the magnetic field; (II) then, even a weak interelectron Coulomb repulsion
is able to arrange the localized electrons according to geometric molecular structures (thus this
process is independent of the value of RW ). It has been found [24,26,27,128] that the molecular
structures at high B coincide with the equilibrium configurations at B = 0 of N classical point
charges [112–114, 222].

Due to the small finite number, N , of electrons, however, there are two crucial differences
between the REM and the bulk Wigner crystal. Namely, (I) the crystalline structure is that
of the equilibrium 2D configuration of N classical point charges and thus consists of nested
polygonal rings, in contrast to the well known hexagonal bulk crystal; (II) in analogy with the
case of 3D natural molecules, the Wigner molecules rotate as a whole (collective rotations);
they behave, however, as highly floppy (non-rigid) rotors.
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A most striking observation concerning the REMs is that their formation and properties
have been established with the help of traditional ab initio many-body methods, i.e. exact
diagonalization, [50,128,131,167,171,213,221] quantum Monte Carlo [78,188,195,196,216],
and the systematic controlled hierarchy [20, 22–25, 27, 102, 217] of approximations involving
the UHF and subsequent post-Hartree–Fock methods. This contrasts with the case of the
Jastrow/Laughlin [55] and composite-fermion [56,57] wave functions, which were constructed
through ‘intuition-based guesswork.’

In spite of its appearance in the middle nineties and its firm foundation in many-body
theory, however, the REM picture had not, until recently, successfully competed with the
CF/JL picture; indeed many research papers [181, 223–228] and books [133] describe the
physics of quantum dots in high magnetic fields following exclusively notions based on CF/JL
functions, as expounded in 1983 (see [55]) and developed in detail in 1995 in [229,174]. One
of the main obstacles to more frequent use of the REM picture had been the lack of analytic
correlated wave functions associated with this picture. This situation, however, changed with
the recent explicit derivation of such REM wave functions [24].

The approach used in [24] for constructing the analytic REM functions in high B

consists of two-steps: first the breaking of the rotational symmetry at the level of the single-
determinantal unrestricted Hartree–Fock approximation yields states representing electron
molecules. Subsequently the rotation of the electron molecule is described through restoration
of the circular symmetry via post Hartree–Fock methods, and in particular projection
techniques [18]. The restoration of symmetry goes beyond the single determinantal mean-
field description and yields multi-determinantal wave functions.

In the zero and low-field cases, the broken symmetry UHF orbitals need to be determined
numerically, and, in addition, the restoration of the total-spin symmetry needs to be considered
for unpolarized and partially polarized cases. The formalism and mathematical details of this
procedure at B = 0 have been elaborated in previous sections.

In the case of high magnetic fields, the spins of the electrons are fully polarized.
Furthermore, one can specifically consider the limit when the confining potential can be
neglected compared with the confinement induced by the magnetic field, so that the Hilbert
space is restricted to the lowest Landau level. Then, assuming a symmetric gauge, the UHF
orbitals can be represented [24, 230] by displaced Gaussian analytic functions, centered at
different positions Zj ≡ Xj + iYj according to the equilibrium configuration of N classical
point charges [112–114,222] arranged at the vertices of nested regular polygons (each Gaussian
representing a localized electron). Such displaced Gaussians in the lowest Landau level are
written as

u(z, Zj ) = (1/
√

π) exp[−|z − Zj |2/2] exp[−i(xYj − yXj )], (6.1)

where the phase factor is due to the gauge invariance. z ≡ x + iy, and all lengths are in
dimensionless units of lB

√
2 with the magnetic length being lB = √

h̄c/eB. Note that
expression (6.1) is a special case of the more general expression (2.24) for a displaced Gaussian
which corresponds to situations with smaller magnetic fields when the restriction to the lowest
Landau level breaks down. The notation z ≡ x+iy is associated with positive angular momenta
for the single-particle states in the lowest Landau level. Reference [24] used z ≡ x − iy and
negative single-particle angular momenta in the lowest Landau level. The final expressions
for the trial wave functions do not depend on these choices.

Reference [24] used these analytic orbitals to first construct the broken symmetry UHF
determinant, �UHF

N , and then proceeded to derive analytic expressions for the many-body REM
wave functions by applying onto �UHF

N an appropriate projection operator PL (see section 2.2.1)
that restores the circular symmetry and generates correlated wave functions with good total
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angular momentum L. These REM wave functions can be easily written down [24] in second-
quantized form for any classical polygonal ring arrangement (n1, n2, . . . , nr) by following
certain simple rules for determining the coefficients of the determinants D(l1, l2, . . . , lN ) ≡
det[zl1

1 , z
l2
2 , · · ·, zlN

N ], where the lj ’s denote the angular momenta of the individual electrons.
The REM functions associated with the (0, N) and (1, N − 1) ring arrangements,

respectively (here (0, N) denotes a regular polygon with N vertices, such as an equilateral
triangle or a regular hexagon, and (1, N − 1) is a regular polygon with N − 1 vertices and one
occupied site in its center), are given by

�
(0,N)
L (z1, z2, . . . , zN) =

l1+···+lN =L∑
0�l1<l2<···<lN

(
N∏

i=1

li!

)−1

 ∏

1�i<j�N

sin
[ π

N
(li − lj )

]

× D(l1, l2, . . . , lN ) exp(−
N∑

i=1

ziz
∗
i /2), (6.2)

with

L = L0 + Nm, m = 0, 1, 2, 3, . . . , (6.3)

and

�
(1,N−1)
L (z1, z2, . . . , zN) =

l2+···+lN =L∑
1�l2<l3<···<lN

(
N∏

i=2

li!

)−1

 ∏

2�i<j�N

sin

[
π

N − 1
(li − lj )

]


× D(0, l2, . . . , lN ) exp(−
N∑

i=1

ziz
∗
i /2), (6.4)

with

L = L0 + (N − 1)m, m = 0, 1, 2, 3, . . . , (6.5)

where L0 = N(N − 1)/2 is the minimum allowed total angular momentum for N (fully spin
polarized) electrons in high magnetic fields.

Notice that the REM wave functions (equations (6.2) and (6.4)) vanish identically for
values of the total angular momenta outside the specific values given by the sequences (6.3)
and (6.5), respectively; these sequences are termed as magic angular momentum sequences.

We remark that, while the original REM analytic wave function was derived in the context
of a high magnetic field (that is in the fractional quantum Hall effect regime), it is valid for any
circumstance where the spectrum consists of a degenerate manifold of LLL-like states (even
with no magnetic field present). Indeed a wave function having the form of the REM wave
function discussed by us above has been employed recently for graphene quantum dots with a
zig–zag boundary condition and in the absence of a magnetic field [231].

In the rest of this section, we continue discussing the properties of analytic REM wave
functions associated with fully spin polarized electrons. However, we mention here that,
following the methodology of [24] for fully spin polarized REMs, Dai et al [232] and Shi
et al [233] have most recently presented analytic trial wave functions for rotating electron
molecules with partial spin polarizations.

6.2. Yrast rotational band in the lowest Landau level

As an accuracy test, we compare in table 1 REM and exact-diagonalization results for
the interaction energies of the yrast band associated with the magic angular momenta Lm
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Table 1. Comparison of yrast-band energies obtained from REM and EXD calculations for N = 6
electrons in the lowest Landau level, that is in the limit B → ∞. In this limit the external
confinement can be neglected and only the interaction energy contributes to the yrast-band energies.
Energies in units of e2/(κlB). For the REM results, the (1,5) polygonal-ring arrangement was
considered. The values of the fractional filling may be obtained for each L as ν = N(N −1)/(2L).

L REM EXD Error (%) L REM EXD Error (%)

70 2.3019 2.2824 0.85 140 1.6059 1.6006 0.33
75 2.2207 2.2018 0.85 145 1.5773 1.5724 0.31
80 2.1455 2.1304 0.71 150 1.5502 1.5455 0.30
85 2.0785 2.0651 0.65 155 1.5244 1.5200 0.29
90 2.0174 2.0054 0.60 160 1.4999 1.4957 0.28
95 1.9614 1.9506 0.55 165 1.4765 1.4726 0.27

100 1.9098 1.9001 0.51 170 1.4542 1.4505 0.26
105 1.8622 1.8533 0.48 175 1.4329 1.4293 0.25
110 1.8179 1.8098 0.45 180 1.4125 1.4091 0.24
115 1.7767 1.7692 0.42 185 1.3929 1.3897 0.23
120 1.7382 1.7312 0.40 190 1.3741 1.3710 0.23
125 1.7020 1.6956 0.38 195 1.3561 1.3531 0.22
130 1.6681 1.6621 0.36 200 1.3388 1.3359 0.21
135 1.6361 1.6305 0.34

(see (2.26)) of N = 6 electrons in the lowest Landau level. An yrast8 state is defined
as the lowest-energy state for a given angular momentum L. As a result, the yrast band
represents excitations with purely rotational motion; no other excitations, like center-of-mass
or vibrational modes, are present.

As seen from table 1, the REM wave functions offer an excellent approximation to the
EXD ones, since the relative error of the REM energies is smaller than 0.3%, and it decreases
steadily for larger L values. Of course, a small difference in the energies between approximate
and exact-diagonalization results is only one of several tests for deciding whether a given trial
wave function is a good approximation. As will be discussed below, comparison of conditional
probability distributions is an equally (if not more) important test.

6.3. Inconsistencies of the composite-fermion view for semiconductor quantum dots

Before the development of the REM approach, electrons in the lowest Landau level in two-
dimensional quantum dots were thought of as being well approximated by composite fermion
trial wave functions. However, results obtained with the REM and exact-diagonalization
calculations led researchers to examine inconsistencies and discrepancies of the CF approach
in the context of quantum dots. This section focuses on these issues.

For N = 6, figure 17 displays (in four frames) the total interaction energy from exact-
diagonalization as a function of the total angular momentum L in the range 19 � L � 140.
(The total kinetic energy in the Hamiltonian (4.1), being a constant, can be disregarded.) One
can immediately observe the appearance of downward cusps, implying states of enhanced
stability, at certain magic angular momenta.

For the CF theory, the magic angular momenta can be determined by

L = L∗ + mN(N − 1) = L∗ + 2mL0. (6.6)

Namely, for N = 6, if one knows the non-interacting L∗’s, the CF magic L’s in any filling-
factor interval 1/(2m−1) � ν � 1/(2m+1) (corresponding to the angular-momentum interval

8 The word yrast is the superlative of the Swedish yr, which means dizzy [11]. The term yrast is widely used in
nuclear spectroscopy.
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Figure 17. Total interaction energy from exact-diagonalization calculations as a function of the total
angular momentum (19 � L � 140) for N = 6 electrons in the lowest Landau level. The upward
pointing arrows indicate the magic angular momenta corresponding to the classically most stable
(1,5) polygonal ring arrangement of the Wigner molecule. The short downward pointing arrows
indicate successful predictions of the composite-fermion model. The medium-size downward
pointing arrows indicate predictions of the composite-fermion model that fail to materialize as
magic angular momenta. The long downward arrows indicate EXD magic angular momenta not
predicted by the composite-fermion model. Energies in units of e2/κlB , where κ is the dielectric
constant.

15(2m − 1) � L � 15(2m + 1)), m = 1, 2, 3, 4, . . ., can be found by adding 2mL0 = 30m

units of angular momentum to each of the L∗’s. To obtain the non-interacting L∗’s, one first
needs to construct [26, 131, 229] the compact Slater determinants. Let Nn denote the number
of electrons in the nth Landau level with

∑t
n=0 Nn = N ; t is the index of the highest occupied

Landau level and all the lower Landau levels with n � t are assumed to be occupied. The
compact determinants are defined as those in which the Nn electrons occupy contiguously
the single-particle orbitals (of each nth Landau level) having the lowest angular momenta
l = −n, −n + 1, . . . ,−n + Nn − 1. The compact Slater determinants are usually denoted as
[N0, N1, . . . , Nt ]; see [25, 229] for details.

The compact determinants and the corresponding non-interacting L∗’s for n = 6 are listed
in table 2.

There are nine different values of L∗’s, and thus the CF theory for N = 6 predicts that
there are always nine magic numbers in any interval 15(2m − 1) � L � 15(2m + 1) between
two consecutive angular momenta of Jastrow/Laughlin states, 15(2m − 1) and 15(2m + 1),
m = 1, 2, 3, . . . (henceforth we will denote this interval as Im). For example, using Table 2
and (6.6), the CF magic numbers in the interval 15 � L � 45 (m = 1) are found to be the
following nine:

15, 21, 25, 27, 30, 33, 35, 39, 45. (6.7)
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Table 2. Compact Slater determinants and associated angular momenta L∗ for N = 6 electrons
according to the CF prescription. Both L∗ = −3 and L∗ = 3 are associated with two compact
states each, the one with lowest energy being the preferred one.

Compact state L∗

[1,1,1,1,1,1] −15
[2,1,1,1,1] −9
[2,2,1,1] −5
[3,1,1,1] −3
[2,2,2] −3
[3,2,1] 0
[4,1,1] 3
[3,3] 3
[4,2] 5
[5,1] 9
[6] 15

On the other hand, in the interval 105 � L � 135 (m = 4), the CF theory predicts the
following set of nine magic numbers:

105, 111, 115, 117, 120, 123, 125, 129, 135. (6.8)

An inspection of the total energy versus L plots in figure 17 reveals that the CF prediction
misses the actual magic angular momenta specified by the exact-diagonalization calculations
as those associated with the downward cusps. It is apparent that the number of downward
cusps in any interval Im is always different from 9. Indeed, there are 10 cusps in I1 (including
that at L = 15, not shown in figure 17(a)), 10 in I2 (see figure 17(b)), 7 in I3 (see figure 17(c)),
and 7 in I4 (see figure 17(d)). In detail, the CF theory fails in the following two aspects: (I)
there are exact magic numbers that are consistently missing from the CF prediction in every
interval; with the exception of the lowest L = 20, these exact magic numbers (marked by a
long downward arrow in the figures) are given by L = 10(3m − 1) and L = 10(3m + 1),
m = 1, 2, 3, 4, . . . and (II) there are CF magic numbers that do not correspond to downward
cusps in the EXD calculations (marked by medium-size downward arrows in the figures). This
happens because cusps associated with L’s whose difference from L0 is divisible by 6 (but
not simultaneously by 5) progressively weaken and completely disappear in the intervals Im

with m � 3; only cusps with the difference L − L0 divisible by 5 survive. On the other hand,
the CF model predicts the appearance of four magic numbers with L − L0 divisible solely by
6 in every interval Im, at L = 30m ∓ 9 and 30m ∓ 3, m = 1, 2, 3, . . .. The overall extent
of the inadequacy of the CF model can be appreciated better by the fact that there are six
false predictions (long and medium-size downward arrows) in every interval Im with m � 3,
compared with only five correct ones (small downward arrows, see figures 17(c) and (d)).

In contrast to the CF model, the magic angular momenta in the REM theory are associated
with the polygonal ring configurations of N classical point charges. This is due to the fact that
the enhanced stability of the downward cusps results from the coherent collective rotation of the
regular-polygon REM structures. Due to symmetry requirements, such collective rotation can
take place only at magic-angular-momenta values. The in-between angular momenta require
the excitation of additional degrees of freedom (like the center of mass and/or vibrational
modes), which raises the total energy with respect to the values associated with the magic
angular momenta.

For N = 6, the ring configuration of lowest energy is the (1,5), while there exists a (0,6)
isomer [114, 222] with higher energy. As a result, our exact-diagonalization calculations [26]
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(as well as earlier ones [131, 132, 171] for lower angular momenta L � 70) have found that
there exist two sequences of magic angular momenta, a primary one (Sp) with L = 15+5m (see
equation (6.5)), associated with the most stable (1,5) classical molecular configuration, and a
secondary one (Ss) with L = 15+6m (see equation (6.3)), associated with the metastable (0, 6)

ring arrangement. Furthermore, our calculations (see also [132,171]) show that the secondary
sequence Ss contributes only in a narrow range of the lowest angular momenta; in the region
of higher angular momenta, the primary sequence Sp is the only one that survives and the
magic numbers exhibit a period of five units of angular momentum. It is interesting to note
that the initial competition between the primary and secondary sequences, and the subsequent
prevalence of the primary one, has been seen in other sizes as well [171] i.e. N = 5, 7, 8.
Furthermore, this competition is reflected in the field-induced molecular phase transitions
associated with broken symmetry UHF solutions in a parabolic QD. Indeed, [53] demonstrated
recently that, as a function of increasing B, the UHF solutions for N = 6 first depict the
transformation of the maximum density droplet [126] (see definition in section 2.2.1) into the
(0,6) molecular configuration; then (at higher B) the (1,5) configuration replaces the (0,6)
structure as the one having the lower HF energy.

The extensive comparisons in this section lead to the conclusion that the composite-fermion
model does not explain the systematic trends exhibited by the magic angular momenta in 2D
quantum dots in high magnetic fields. These trends, however, were shown to be a natural
consequence of the formation of REMs and their metastable isomers.

These results motivated a reexamination of the original composite-fermion approach
(the mean-field CF) and led to a reassessment of the significance of the residual interaction,
neglected in the mean-field CF theory. Initially, it has been reported that some CF functions
away from the main fractions (e.g. for N = 19 and L = 1845 and N = 19 and L = 3555)
may reproduce the aforementioned crystalline patterns [234].

Subsequently, Jain and coworkers have found that inclusion of the residual interaction
is absolutely necessary to account for the full range of inconsistencies of the mean-field
CF theory [176]. However, this latter development was achieved with the trade off of
abandoning the fundamental nature of the composite fermion as an elementary, independent
and weakly interacting quasi-particle. Indeed, the revised [176] CF picture amounts to
an exact diagonalization method which uses a correlated basis set (made out of CF wave
functions).

Another attempt to update the CF theory in order to account for crystallization consists
of combining the REM analytic wave function �REM

L (z1, z2, . . . , zN) (see section 6.1) with
Jastrow prefactors [235], namely one uses a variational wave function of the form

�
2p,CFC
L =

∏
i<j

(zi − zj )
2p�REM

L∗ , (6.9)

with L = L∗ +pN(N −1) and p serves as an additional variational parameter. Obviously, the
crystalline patterns in such an approach originate from the REM wave function and the Jastrow
prefactors simply increase the variational freedom, leading to a numerical improvement.
Although this approach is a straightforward variational improvement of the analytic REM
method [24], it is being referred to [233, 235] as a composite-fermion crystal (CFC).

More direct variational improvements of the analytic REM wave functions can be devised
in the spirit of the variation-after-projection method. For example, one can use angular-
momentum conserving variational parameters in front of the sine coefficients in the REM
expansion [231].
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Figure 18. Conditional probability distributions at high B for N = 6 electrons and L = 75
(ν = 1/5, left column) and for N = 7 electrons and L = 105 (again ν = 1/5, right column). Top
row: REM case. Middle row: The case of exact diagonalization. Bottom row: The Jastrow/Laughlin
case. The exact diagonalization and REM wave functions have a pronounced crystalline character,
corresponding to the (1,5) polygonal configuration of the REM for N = 6, and to the (1,6) polygonal
configuration for N = 7. In contrast, the Jastrow/Laughlin wave functions exhibit a characteristic
liquid profile that depends smoothly on the number N of electrons. The observation point (identified
by a solid dot) is located at r0 = 5.431lB for N = 6 and L = 75 and r0 = 5.883lB for N = 7
and L = 105. The EXD Coulomb interaction energies (lowest Landau level) are 2.2018 and
2.9144 e2/κlB for N = 6, L = 75 and N = 7, L = 105, respectively. The errors relative to the
corresponding exact-diagonalization energies and the overlaps of the trial functions with the EXD
ones are: (I) For N = 6, L = 75, REM: 0.85%, 0.817; JL: 0.32%, 0.837. (II) For N = 7, L = 105,
REM: 0.59%, 0.842; JL: 0.55%, 0.754.

6.4. REM versus Laughlin wave functions: conditional probability distributions and
multiplicity of zeros

Recent extensive numerical calculations [24, 52] have revealed major disagreements between
the intrinsic structure of the Jastrow/Laughlin trial wave functions [55] for the main fractions
ν = 1/(2m + 1) and that of the exact-diagonalization and REM wave functions. Indeed, it
was found that both EXD and REM wave functions exhibit crystalline correlations, while the
Jastrow/Laughlin ones are liquid-like as originally described in [55].

To illustrate the differences between the intrinsic structure of the REM and EXD states
in the lowest Landau level versus the familiar Jastrow/Laughlin ones, we display in figure 18
the CPDs for cusp states corresponding to a low filling factor ν = 1/5 and for two different
sizes, i.e. for N = 6 electrons (L = 75, left column) and N = 7 electrons (L = 105, right
column). In figure 18, the top row depicts the REM case; the EXD case is given by the middle
row, while the CF case (which reduces to the JL wave functions for fractions 1/(2p + 1)) are
given by the bottom row.

There are three principal conclusions that can be drawn from an inspection of figure 18
(and the many other cases studied in [26]).

(I) The character of the exact-diagonalization states is unmistakably crystalline with the EXD
CPDs exhibiting a well developed molecular polygonal configuration ((1,5) for N = 6
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Figure 19. CPDs at high B for N = 7 and L = 63 (ν = 1/3). Top: REM case; Middle: EXD case;
Bottom: JL case. Unlike the JL CPD (which is liquid), the CPDs for the exact-diagonalization
and REM wave functions exhibit a well developed crystalline character (corresponding to the (1,6)
polygonal configuration of the REM for N = 7 electrons). The observation point (identified by a
solid dot) is located at r0 = 4.568lB .

and (1,6) for N = 7, with one electron at the center), in agreement with the explicitly
crystalline REM case.

(II) For all the examined instances covering the low fractional fillings 1/9, 1/7, and 1/5, the
Jastrow/Laughlin wave functions fail to capture the intrinsic crystallinity of the exact-
diagonalization states. In contrast, they represent ‘liquid’ states in agreement with an
analysis that goes back to the original papers [55, 236] by Laughlin. In particular, [236]
investigated the character of the JL states through the use of a pair correlation function
(usually denoted by g(R)) that determines the probability of finding another electron at
the absolute relative distance R = |r − r0| from the observation point r0. Our anisotropic
CPD of equation (1.1) is of course more general (and more difficult to calculate) than
the g(R) function of [236]. However, both our P(r, r0) (for N = 6 and N = 7
electrons) and the g(R) (for N = 1000 electrons, and for ν = 1/3 and ν = 1/5)
in [236] reveal a similar characteristic liquid-like and short-range-order behavior for the
JL states, eloquently described in [236] (see pp 249 and 251). Indeed, we remark that only
the first-neighbor electrons on the outer rings can be distinguished as separate localized
electrons in our CPD plots of the JL functions (see figure 18).

(III) For a finite number of electrons, pronounced crystallinity of the exact-diagonalization
states occurs already at the ν = 1/5 value (see figure 18). This finding is particularly
interesting in light of expectations [234,237] (based on comparisons [55,236,238] between
the JL states and the static bulk Wigner crystal) that a liquid-to-crystal phase transition
may take place only at lower fillings with ν � 1/7.
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Of interest also is the case of ν = 1/3. Indeed, for this fractional filling, the liquid JL
function is expected to provide the best approximation, due to very high overlaps (better than
0.99) with the exact wave function [58,59,161]. In figure 19, we display the CPDs for N = 7
and L = 63 (ν = 1/3), and for the three cases of REM, EXD and JL wave functions. Again,
even in this most favorable case, the CPD of the JL function disagrees with the EXD one,
which clearly exhibits a (1,6) crystalline configuration in agreement with the REM CPD.

Similar crystalline correlations at higher fractions were also found for quantum dots of
larger sizes, e.g. N = 8, and N = 9 electrons. As illustrative examples for these additional
sizes (see also the EXD CPD for N = 12 electrons in figure 24 below (in section 7.3)), we
displayed in figure 5 of Ref. [26] the CPDs for N = 8 and L = 91 (1/5 < ν = 4/13 < 1/3)
and for N = 9 and L = 101 ( 1/3 < ν = 36/101 < 1). Again, the CPDs (both for the REM
and the EXD wave functions) exhibit a well developed crystalline character in accordance with
the (1,7) and (2,7) polygonal configurations of the REM, appropriate for N = 8 and N = 9
electrons, respectively.

Another area of disagreement between REM and Laughlin wave functions concerns the
properties of the zero points. In this respect, we recall that the Jastrow/Laughlin trial functions
for N electrons have the form

�JL(z1, z2, . . . , zN) =

 ∏

1�i<j�N

(zi − zj )
2m+1


 exp

(
−

N∑
i=1

ziz
∗
i /2

)
. (6.10)

Due to the Jastrow factors (zi −zj )
2m+1, it is apparent that the Laughlin expressions (6.10)

(as a function of a given zi) have N −1 zero points, each of order 2m+1, which are bound to the
positions of the remaining N −1 electrons. In contrast, as discussed in [24], the analytic REM
wave functions do not have zeroes with order higher than unity. In particular, only N −1 of the
REM zeroes are bound to the positions of the remaining electrons, while the rest of them are
free. Recently, it has been shown through extensive numerical studies [239] that the properties
of REM zeroes are in agreement with the behavior of the zeroes in exact-diagonalization wave
functions; this is another indication of the superiority of the REM picture compared with the
Laughlin theory.

Before exiting this discussion, we remark on discrepancies of the Laughlin quasihole
theory in the context of quantum dots. In particular, we recall that the Laughlin quasihole,
with N additional units of angular momentum, has been conjectured to be the first excited
state. However, LLL exact-diagonalization calculations for N electrons in a quantum dot have
revealed that this is not the case. Instead, the first excited state corresponds to an increment in
the total angular momentum which varies with the number of electrons localized on one of the
rings of the rotating electron molecule, usually the outermost one; see figure 26 in section 7.4
below.

7. Rotating electron molecules in two-dimensional quantum dots under a strong, but
finite external magnetic field (ωc/2ω0 > 1)

7.1. Ground-state energies in medium and high magnetic field

The general form (2.24) for the displaced Gaussian orbitals (in conjunction with the projected
REM wave function (2.25)) enables us to calculate REM ground-state energies for moderately
high B, when corrections arising from higher Landau levels must be taken into consideration.
Unlike the lowest-Landau-level case, where the azimuthal integration can be carried out
analytically, the energies (2.28) (and corresponding CPDs) associated with the general REM
wave function (2.25) require numerical integration over the azimuthal angles γq .



Symmetry breaking and quantum correlations 2119

 2  6  10  14

E
  (

m
ev

)

B (T)

31

32

33

34

N=4

UHFR
E

ME
X

D 10
6 14

18

LLL

Figure 20. Two-step-method versus exact-diagonalization calculations: Ground-state energies for
N = 4 electrons (referenced to 4h̄ω̃) as a function of the magnetic field B. Thick dashed line
(red): broken-symmetry UHF (static electron molecule). Solid line (green): EXD (from [171]).
Thick dashed–dotted line (blue): REM. Thin dashed line (violet, marked LLL): the commonly
used approximate energies ẼEXD

LLL (B) (see text for details). Thin dotted line (black): ẼREM
LLL (B)

(see text). For B < 8 T, the ẼEXD
LLL (B) and ẼREM

LLL (B) curves coincide; we have checked that these
curves approach each other also at larger values of B, outside the plotted range. Numbers near the
bottom curves denote the value of magic angular momenta (Lm, see (2.26)) of the ground state.
Corresponding fractional filling factors are specified by ν = N(N − 1)/(2Lm). Parameters used:
confinement h̄ω0 = 3.60 meV, dielectric constant κ = 13.1, effective mass m∗ = 0.067me.

Before proceeding with the presentation of results for N > 10, we demonstrate the
accuracy of the two-step method embodied in equation (2.25) through comparisons with
existing exact-diagonalization results for smaller sizes. In figure 20, our REM calculations for
the ground-state energies as a function of B are compared with EXD calculations [171] for
N = 4 electrons in an external parabolic confinement. The thick dotted line (red) represents the
broken-symmetry UHF approximation (first step of our method), which naturally is a smooth
curve lying above the EXD one (solid line (green)). The results obtained after restoration of
symmetry (dashed–dotted line (blue); marked as REM) agree very well with the EXD one in
the whole range 2 T < B < 15 T. We recall here that, for the parameters of the quantum dot, the
electrons form in the intrinsic frame of reference a square about the origin of the dot, i.e. a (0,4)
configuration, with the zero indicating that no electron is located at the center. According to
(2.26), L0 = 6, and the magic angular momenta are given by Lm = 6+4k, k = 0, 1, 2, . . . Note
that the REM energies are slightly lower than the EXD ones in several subranges. According
to the Rayleigh–Ritz variational theorem, this indicates that the hyperspherical-harmonics
calculation (equivalent to an exact-diagonalization approach) of [171] did not converge fully
in these subranges.

To further evaluate the accuracy of the two-step method, we also display in figure 20
(thin dashed line (violet)) ground-state energies ẼEXD

LLL (B) calculated with the commonly used
approximate LLL Hamiltonian [128, 229, 237, 240]

H̃LLL = Nh̄ω̃ + h̄(ω̃ − ωc

2
)L +

N∑
j>i=1

e2

κrij

, (7.1)

where ω̃ =
√

ω2
0 + ω2

c/4. The LLL Hamiltonian H̃LLL reduces to the previously introduced
Hamiltonian HLLL (see equation (4.1) in the limit B → ∞. Both Hamiltonians restrict the
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Figure 21. Ground-state energies for N = 11 electrons (per particle, referenced to h̄ω̃) as a
function of the magnetic field B. Dashed line (red): UHF (static electron molecule). Solid line
(blue): REM. Dotted line (black): Approximate energies ẼREM

LLL (B) (see text). Parameters used:
confinement h̄ω0 = 3.60 meV, dielectric constant κ = 13.1, effective mass m∗ = 0.067me. The
inset shows a magnification of the REM curve in the range 5 T < B < 12 T.

many-body wave functions within the lowest Landau level, and they both accept the same set
of eigenstates as solutions. Indeed the term h̄(ω̃ − ωc/2)L is proportional to the total angular
momentum, and thus its presence influences only the eigenvalues, but not the composition
of the eigenstates. H̃LLL corresponds to a situation where the external harmonic confinement
is added to HLLL as a perturbation (see section II.B in [53]). As a result, (i) the degeneracy
of the single-particle levels in the lowest Landau level is lifted and (ii) there is an eigenstate
with minimum energy (the ground state) at each value of B (expressed through the cyclotron
frequency ωc). Naturally, the LLL levels used in the exact diagonalization of H̃LLL are given
by expression (4.2), but with � = l̃ = √

h̄/(m∗ω̃).
We find that the energies ẼEXD

LLL (B) tend to substantially overestimate the REM (and EXD)
energies for lower values of B (e.g. by as much as 5.5% at B ∼ 4 T). On the other hand, for
higher values of B (>12 T), the energies ẼEXD

LLL (B) tend to agree rather well with the REM
ones. We stress that the results labelled simply as EXD correspond to exact diagonalizations
without any restrictions on the Hilbert space, i.e. the full Darwin–Fock single-particle spectrum
is considered at a given B.

A behavior similar to ẼEXD
LLL (B) is also exhibited by the ẼREM

LLL (B) ground-state energies
(which are calculated using the Hamiltonian (7.1) and the LLL analytic REM wave functions
in section 6.1 with lengths in units of

√
h̄/(m∗ω̃) instead of lB

√
2; dotted line (black)). A

similar agreement between REM and EXD results, and a similar inaccurate behavior of the
LLL approximate Hamiltonian (7.1) was found by us also for N = 3 electrons in the range
2 T < B < 16 T shown in figure 2 of [53] (the exact-diagonalization calculation in this figure
was taken from [166]).

In all cases, the total energy of the REM is lower than that of the UHF Slater determinant
(see, e.g. figure 20). Indeed, a theorem discussed in section 3 of [241], pertaining to the
energies of projected wave functions, guarantees that this lowering of energy applies for all
values of N and B.

7.2. The case of N = 11 electrons.

Figure 21 presents the case for the ground-state energies of a quantum dot with N = 11
electrons, which have a non-trivial double-ring configuration (n1, n2). The most stable [114]
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Table 3. Ground-state magic angular momenta and their decomposition {k1, k2} for N = 11 in
the nagnetic-field range 5 T � B � 25 T. The results correspond to the REM (see lower curve in
figure 21). The parameters used are as in figure 21.

Lm k1 k2 Lm k1 k2

55 0 0 165 2 13
63 0 1 173 2 14
71 0 2 181 2 15
79 0 3 189 2 16
90 1 4 197 2 17
98 1 5 205 2 18

106 1 6 213 2 19
114 1 7 224 3 20
122 1 8 232 3 21
130 1 9 240 3 22
138 1 10 248 3 23
146 1 11 256 3 24
154 1 12

classical configuration is (3, 8), for which we have carried UHF (static electron molecule) and
REM (projected) calculations in the magnetic field range 5 T < B < 25 T. Figure 21 also
displays the LLL ground-state energies ẼREM

LLL (B) (dotted curve (black)), which, as in previous
cases, overestimate the ground-state energies for smaller B. The approximation ẼREM

LLL (B),
however, can be used to calculate ground-state energies for higher values of B. In keeping
with the findings for smaller sizes [51] (with (0, N) or (1, N − 1) configurations), we found
that both the UHF and the REM ground-state energies approach, as B → ∞, the classical
equilibrium energy of the (3,8) polygonal configuration (i.e. 19.94 meV; 4.865E0 in the units
of [114], E0 ≡ (m∗ω2

0e
4/2κ2)1/3).

In analogy with smaller sizes (see, e.g. figure 20 and [53]), the REM ground-state energies
in figure 21 exhibit oscillations as a function of B (see in particular the inset). These oscillations
are associated with magic angular momenta, specified by the number of electrons on each ring.
For N = 11 they are given by (2.26), i.e. Lm = 55+3k1 +8k2, with the kq’s being non-negative
integers. As was the case with N = 9 electrons [53], an analysis of the actual values taken by
the set of indices {k1, k2} reveals several additional trends that further limit the allowed values
of ground-state Lm’s. In particular, starting with the values {0, 0} at B = 5 T (L0 = 55),
the indices {k1, k2} reach the values {3, 24} at B = 25 T (Lm = 256). As seen from table 3,
the outer index k2 changes faster than the inner index k1. This behavior minimizes the total
kinetic energy of the independently rotating rings; indeed, the kinetic energy of the inner ring
(as a function of k1) rises faster than that of the outer ring (as a function of k2) due to smaller
moment of inertia (smaller radius) of the inner ring (see equation (7.2)).

In addition to the overestimation of the ground-state energy values for smaller magnetic
fields (see figure 21 and our discussion above), there are additional shortcomings of the lowest-
Landau-level approximation pertaining to the ground-state ring configurations. In particular,
for N = 11, we find that according to the LLL approximation the ground-state angular
momentum immediately after the maximum density droplet (L0 = 55) is Lm = 66, i.e. the
one associated with the (0, N) vortex-in-the-center configuration. This result, erroneously
stated in [242, 243] as the ground state, disagrees with the correct result that includes the full
effect of the confinement and is listed in table 3, where the ground-state angular momentum
immediately following the maximum density droplet is Lm = 63. This angular-momentum
value corresponds to the classicaly most stable (3,8) ring configuration, that is, a configuration
with no vortex at all (see also the case of N = 9 electrons in [53]).
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Figure 22. Conditional probability distributions for the REM ground state of N = 11 electrons at
B = 10 T (L = 106). The electrons are arranged in a (3,8) structure. The observation point (solid
dot) is placed on (left) the outer ring at r0 = 1.480R0, and (right) on the inner ring at r0 = 0.557R0.
Parameters used: confinement h̄ω0 = 3.60 meV, dielectric constant κ = 13.1, effective mass
m∗ = 0.067me. Lengths along the horizontal x- and y-axes are in units of R0 = (2e2/m∗κω2

0)
1/3.

CPDs (vertical axes) in arbitrary units.

Figure 22 displays the REM conditional probability distributions for the ground state of
N = 11 electrons at B = 10 T (Lm = 106). The (3,8) ring configuration is clearly visible. We
note that when the observation point is placed on the outer ring (left panel), the CPD reveals
the crystalline structure of this ring only; the inner ring appears to have a uniform density. To
reveal the crystalline structure of the inner ring, the observation point must be placed on this
ring; then the outer ring appears to be uniform in density. This behavior suggests that the two
rings rotate independently of each other, a property that is explored in the next section to derive
an approximate quasiclassical expression for the yrast rotational spectra associated with an
arbitrary number of electrons.

7.3. Approximate analytic expression for the yrast-band spectra

In figure 23, we display the CPD for the REM wave function of N = 17 electrons. This
case has a non-trivial three-ring structure (1,6,10) [114] which is sufficiently complex to allow
generalizations for larger numbers of particles. The remarkable floppy character (leading to a
non-classical, non-rigid rotational inertia, see section VI of [53]) of the REM is illustrated
in the CPDs of figure 23. Indeed, as the two CPDs (reflecting the choice of taking the
observation point (r0 in (1.1)) on the outer (left frame) or the inner ring (right frame)) reveal,
the polygonal electron rings rotate independently of each other. Thus, e.g. to an observer
located on the inner ring, the outer ring will appear as having a uniform density, and vice
versa. The wave functions obtained from exact diagonalization also exhibit the property of
independently rotating rings (see, e.g. the N = 12 and L = 132 (ν = 1/2) case in figure 24),
which is a testimony to the ability of the REM wave function to capture the essential physics
of a finite number of electrons in high B. In particular, the conditional probability distribution
displayed in figure 24 for exact-diagonalization wave functions exhibits the characteristics
expected from the CPD evaluated using REM wave functions for the (3,9) configuration and
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Figure 23. Ground-state conditional probability distributions obtained from REM wave functions
for the ground state of N = 17 electrons at B = 10 T (L = 228). The electrons are arranged in
a (1,6,10) structure. The observation point (solid dot) is placed on the outer ring at r0 = 1.858R0
(left frame), and on the inner ring at r0 = 0.969R0 (right frame). The rest of the parameters are:
confinement h̄ω0 = 3.6 meV, dielectric constant κ = 13.1, effective mass m∗ = 0.067me. Lengths
along the horizontal x- and y-axes are in units of R0 = (2e2/(κm∗ω2

0))
1/3. CPDs (vertical axes)

in arbitrary units.
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Figure 24. CPDs for N = 12 electrons and with angular momentum L = 132 (ν = 1/2)
calculated using exact diagonalization in the lowest Landau level. The electrons are arranged in a
(3,9) structure. The observation point (solid dot) is placed on the outer ring at r0 = 5.22lB (left
frame) and on the inner ring at r0 = 1.87lB (right frame). Lengths along the horizontal x- and
y-axes are in units of lB . CPDs (vertical axes) in arbitrary units.

with an angular-momentum decomposition into shell contributions (see equations 2.25 and
(2.27)) L1 = 3 + 3k1 and L2 = 63 + 9k2 (L1 +L2 = Lm; for Lm = 132 the angular-momentum
decomposition is L1 = 6 and L2 = 126).

In addition to the conditional probabilities, the floppy-rotor character of the REM is
revealed in its excited rotational spectrum for a given B. From our microscopic calculations
based on the wave function in (2.25), we have derived (see below) an approximate (denoted
as ‘app’), but analytic and parameter-free, expression (see (7.7) below) which directly reflects
the non-rigid character of the REM for arbitrary size. This expression allows calculation of
the energies of REMs for arbitrary N , given the corresponding equilibrium configuration of
confined classical point charges.

We focus on the description of the yrast band at a given B. Motivated by
the aforementioned non-rigid character of the rotating electron molecule, we consider
the following kinetic-energy term corresponding to a (n1, . . . , nq, . . . , nr) configuration
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(with
∑r

q=1 nq = N ):

Ekin
app(N) =

r∑
q=1

h̄2L2
q/(2Jq(aq)) − h̄ωcL/2, (7.2)

where Lq is the partial angular momentum associated with the qth ring about the center of the
dot and the total angular momentum is L = ∑r

q=1 Lq . Jq(aq)) ≡ nqm
∗a2

q is the rotational
moment of inertia of each individual ring, i.e. the moment of inertia of nq classical point
charges on the qth polygonal ring of radius aq . To obtain the total energy, EREM

L , we also
include the term Ehc

app(N) = ∑r
q=1 Jq(aq)ω̃

2/2 due to the effective harmonic confinement ω̃

(see appendix A.1), as well as the interaction energy EC
app,

EC
app(N) =

r∑
q=1

nqSq

4

e2

κaq

+
r−1∑
q=1

r∑
s>q

VC(aq, as). (7.3)

The first term is the intra-ring Coulomb-repulsion energy of nq point-like electrons on a given
ring, with a structure factor

Sq =
nq∑

j=2

(sin[(j − 1)π/nq])−1. (7.4)

The second term is the inter-ring Coulomb-repulsion energy between rings of uniform charge
distribution corresponding to the specified numbers of electrons on the polygonal rings. The
expression for VC is

VC(aq, as) = nqnse
2[κ(a2

q + a2
s )

1/2]−1
2F1[3/4, 1/4; 1; 4a2

qa
2
s (a

2
q + a2

s )
−2], (7.5)

where 2F1 is the hypergeometric function.
For large L (and/or B), the radii of the rings of the rotating molecule can be found

by neglecting the interaction term in the total approximate energy, thus minimizing only
Ekin

app(N) + Ehc
app(N). One finds

aq = λ
√

Lq/nq, (7.6)

with λ = l̃ = √
h̄/m∗ω̃; i.e. the ring radii depend on the partial angular momentum Lq ,

reflecting the lack of radial rigidity. Substitution into the above expressions for Ekin
app, Ehc

app and
EC

app yields for the total approximate energy the final expression:

EREM
app,L(N) = h̄(ω̃ − ωc/2)L +

r∑
q=1

CV,q

L
1/2
q

+
r−1∑
q=1

r∑
s>q

VC

(
λ

√
Lq

nq

, λ

√
Ls

ns

)
, (7.7)

where the constants

CV,q = 0.25n3/2
q Sqe

2/(κλ). (7.8)

For simpler (0, N) and (1, N −1) ring configurations, equation (7.7) reduces to the expressions
reported earlier [51, 128].

The floppy-rotor character of the REM under strong magnetic field is reflected in the
absence in (7.7) of a kinetic-energy term proportional to L2. This contrasts with the rigid-rotor
behavior of an electron molecule at zero magnetic field (see section 5.2 and [51]).
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7.4. Possible implications for the thermodynamic limit

While our focus in this section is on the behavior of trial and exact wave functions in (finite)
quantum dots in high magnetic fields, it is natural to inquire about possible implications of our
findings to fractional-quantum-Hall-effect systems in the thermodynamic limit.

We recall that appropriate trial wave functions for clean FQHE systems possess a good
angular momentum L � L0, a property shared by both the CF/JL and REM functions
[24, 55, 57, 236]. We also recall the previous finding [55, 236] that for large fractional
fillings ν > 1/7, the liquid-like (and circularly uniform) Jastrow/Laughlin function is in
the thermodynamic limit energetically favored compared with the broken-symmetry static
Wigner crystal (which has no good angular momentum); for ν < 1/7, the static Wigner crystal
becomes lower in energy. This finding was enabled by the simple form of the JL functions,
which facilitated computations of total energies as a function of size for sufficiently large N

(e.g. N = 1000).
A main finding of the recent literature on quantum dots is that the exact-numerical-

diagonalization wave functions of small systems (N � 12) are crystalline in character for
both low and high fractional fillings. This finding contradicts earlier suggestions [55,229,236]
that, for high ν’s, small systems are accurately described by the liquid-like JL wave functions
and their descendants, e.g. the composite-fermion ones. Of course, for the same high ν’s, our
small-size results cannot exclude the possibility that the CPDs of the exact solution may exhibit
with increasing N a transition from crystalline to liquid character, in agreement with the JL
function. However, as of now the existence of such a transition remains an open theoretical
subject.

For the low fractions, the rotating-electron-molecule theory raises still another line of
inquiry. Due to the specific form of the REM wave functions, computational limitations (in
the so-called disc geometry that is natural to quantum dots) prevent us at present from making
extrapolations of total energies at a given ν as N → ∞. Nevertheless, from the general
theory of projection operators, one can conclude that the REM energies exhibit a different
trend compared with the JL ones, whose energies were found [55, 236] to be higher than the
static Wigner crystal. Indeed the rotating-electron-molecule wave functions remain lower in
energy than the corresponding static crystalline state for all values of N and ν, even in the
thermodynamic limit. This is due to an ‘energy gain’ theorem (see section 3 in [241]) stating
that at least one of the projected states (i.e. the ground state) has an energy lower than that
of the original broken-symmetry trial function (e.g. the UHF determinant), and this theorem
applies for any number of electrons N and for all values of the magnetic field B. Naturally, the
REM wave functions will be physically relevant compared with those of the broken-symmetry
crystal at the thermodynamic limit if the energy gain does not vanish when N → ∞; otherwise,
one needs to consider the possibility that the static crystal is the relevant physical picture.

The discussion in the above paragraph may be recapitulated by the following question:
which state is the relevant one in the thermodynamic limit (N → ∞)—the broken-symmetry
one (i.e. the static crystal) or the symmetry restored (i.e. rotating crystal) state? This question,
in the context of bulk broken-symmetry systems, has been addressed in the early work of
Anderson [10] who concluded that the broken-symmetry state (here the UHF static crystalline
solution) can be safely taken as the effective ground state. In arriving at this conclusion
Anderson invoked the concept of (generalized) rigidity. As a concrete example, one would
expect a crystal to behave like a macroscopic body, whose Hamiltonian is that of a heavy
rigid rotor with a low-energy excitation spectrum L2/2J , the moment of inertia J being of
order N (macroscopically large when N → ∞). The low-energy excitation spectrum of this
heavy rigid rotor above the ground-state (L = 0) is essentially gapless (i.e. continuous). Thus
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Figure 25. Stabilization energies �E
gain
gs = E

gs
REM − EUHF for N = 6 (- - - -) and N = 7

(——) fully polarized electrons in a parabolic QD as a function of B. The troughs associated
with the major fractional fillings (1/3, 1/5, and 1/7) and the corresponding ground-state angular
momenta [L = N(N −1)/(2ν)] are indicated with arrows. We have extended the calculations up to
B = 120 T (not shown), and verified that �E

gain
gs remains negative while its absolute value vanishes

as B → ∞. The choice of parameters is: h̄ω0 = 3 meV (parabolic confinment), m∗ = 0.067me
(electron effective mass), and κ = 12.9 (dielectric constant).

although the formal ground state posseses continuous rotational symmetry (i.e. L = 0), ‘there
is a manifold of other states, degenerate in the N → ∞ limit, which can be recombined to
give a very stable wave packet with essentially the nature’ [10] of the broken-symmetry state
(i.e. the static Wigner crystal in our case). As a consequence of the ‘macroscopic heaviness’
as N → ∞, one has: (I) the energy gain due to symmetry restoration (i.e. the stabilization
energy �E

gain
gs = E

gs
REM − EUHF, see figure 25) vanishes as N → ∞, and (II) the relaxation

of the system from the wave packet state (i.e. the static Wigner crystal) to the symmetrized
one (i.e. the rotating crystal) becomes exceedingly long. This picture underlies Anderson’s
aforementioned conclusion that in the thermodynamic limit the broken-symmetry state may
be used as the effective ground state.

Consequently, in the rest of this section we will focus on issues pertaining to the ‘rigidity’
of the rotating electron molecule in high magnetic fields. In particular, using our projection
method and exact diagonalization, we have demonstrated explicitly [50,51] that the rigid-rotor
picture applies to an N -electron QD only when B = 0. In contrast, in the presence of a high
magnetic field, we found [51–53] that the electrons in the quantum dot do not exhibit global
rigidity and therefore cannot be modeled as a macroscopic rotating crystal. Instead, a more
appropriate model is that of a highly non-rigid rotor whose moment of inertia strongly depends
on the value of the angular momentum L. This behavior originates from the dominance of the
magnetic field over the Coulomb repulsion.

The non-rigid rotor at high B has several unique properties: (I) the ground state has angular
momentum Lgs > 0; (II) while the rotating electron molecule does not exhibit global rigidity,
it possesses azimuthal rigidity (i.e. all electrons on a given ring rotate coherently), with the
rings, however, rotating independently of each other. Furthermore, the radii of the rings vary
for different values of L, unlike the case of a rigid rotor; (III) the excitation spectra do not vary
as L2; instead they consist of terms that vary as aL +

∑r
q=1 bq/

√
Lq (with

∑r
q=1 Lq = L;

for the precise values of the constants a and b see section 7.3 and [51, 53]); (IV) the angular
momentum values are given by the magic values (see section 6.1) L = L0 +

∑r
q=1 kqnq , where
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Figure 26. Low-energy part of the spectrum of the parabolic QD whose parameters are the
same as those in figure 25, calculated as a function of the angular momentum L through exact
diagonalization for N = 7 electrons at a magnetic field B = 18.8 T. We show here the spectrum
in the interval 95 � L � 115 (in the neighborhood of ν = 1/5). The magic angular momentum
values corresponding to cusp states are marked (99, 105 and 111), and they are seen to be separated
from the rest of the spectrum. For the given value of B, the global energy minimum (ground state)
occurs for Lgs = 105, and the gap � to the first excited state (L = 99) is indicated. The lowest
energies for the different L’s (the yrast band) in the plotted range are connected by a dashed line,
as a guide to the eye. The zero of energy corresponds to 7h̄ω̃, where ω̃ = (ω2

0 + ω2
c/4)1/2 and

ωc = eB/(m∗c). The horizontal arrow denotes the energy of the Laughlin quasihole at L=112. It
is seen that the Laughlin quasihole is not the lowest excited state, as presumed in [55].

(n1, n2, . . . , nr) is the polygonal ring arrangement of the static Wigner molecule (with nq the
number of electrons on the qth ring) and k1 < k2 < . . . < kq are non-negative integers. These
magic L’s are associated with the cusp states which exhibit a relative energy gain with respect
to neighboring excitations. Thus the low-energy excitation spectrum of the non-rigid rotor is
not dense and exhibits gaps due to the occurrence of the magic (cusp) states (see figure 26).
Furthermore, these gaps are reflected in the oscillatory behavior of �E

gain
gs (see, e.g. figure 25)

as a function of B (or ν).
As N increases, more polygonal rings are successively added, and since the polygonal

rings rotate independently of each other (see, e.g. the case of N = 12 in figure 24), we expect
that the non-rigid-rotor picture remains valid even as N → ∞. As a result, it is plausible to
conjecture the following properties at high B in the thermodynamic limit: (I) the oscillatory
character of�E

gain
gs will maintain, yielding non-vanishing stabilization energies at the fractional

fillings ν, and (II) the low-energy excitation spectra of the system will still exhibit gaps in the
neighborhood of the magic angular momenta (see figure 26). Of course, these conjectures need
to be further supported through numerical calculations for large N . Nevertheless, the above
discussion indicates that the question of which state is physically relevant for low fractions in
the thermodynamic limit at high B, i.e. the broken-symmetry static crystal or the symmetrized
rotating crystal, remains open, and cannot be answered solely following the path of Anderson
as described in [10].
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The rotating Wigner crystal has properties characteristic of FQHE states, i.e. it is
incompressible (connected to the presence of an excitation gap) and carries a current (while
the broken-symmetry static crystal is insulating). Thus, we may conjecture that a transition at
lower fractional fillings from a conducting state with good circular symmetry to an insulating
Wigner crystal cannot occur spontaneously for clean systems. Therefore, it should be possible
to observe FQHE-type behavior at low fractional fillings in a clean system—a prediction
that could explain the observations of [244], where FQHE behavior has been observed for
low fractional fillings typically associated with the formation of a static Wigner crystal. In
practice, however, impurities and defects may influence the properties of the rotating crystal
(and its excitations), depending on the magnitude of the excitation gap (see, e.g. figure 26).
Thus one of the main challenges for observation of the fractional quantum Hall effect at such
low fillings relates to fabrication of high mobility (nearly impurity-free) samples [245]. We
remark, however, that the stabilization energy and the gap � (see, e.g. figure 26) diminish as
the magnetic field increases, and as a result the impurities become more efficient in influencing
the rotating Wigner crystal for the lower fractional fillings (i.e. higher angular momenta).

8. Bosonic molecules in rotating traps: original results and applications

8.1. Variational description of rotating boson molecules

Recent experimental advances in the field of trapped ultracold neutral bosonic gases have
enabled control of the strength of interatomic interactions over wide ranges [85–87,246], from
the very weak to the very strong. This control is essential for experimental realizations of novel
states of matter beyond the well known Bose–Einstein condensate [85–87]. In this context, the
linear 1D Tonks–Girardeau regime of impenetrable trapped bosons has generated intensive
theoretical activity [247, 248] and several experimental realizations of it have been reported
most recently [85, 86].

In this section, we address the properties of strongly repelling impenetrable bosons in
rotating ring-shaped or 2D harmonic traps. It has been found that impenetrable bosons
are ‘localized’ relative to each other [60, 63, 85] and exhibit non-trivial intrinsic crystalline
correlations [60, 63]. For a small number of bosons, N , these crystalline arrangements are
reminiscent of the structures exhibited by the well-studied rotating electron molecules in
quantum dots under high magnetic fields [26,52,53]. Consequently, we use in the following the
term rotating boson molecules. A central result of our study is that the point-group symmetries
of the intrinsic crystalline structures give rise to characteristic regular patterns (see below) in
the ground-state spectra and associated angular momenta of the RBMs as a function of the
rotational frequency for neutral bosons (or the magnetic field for charged bosons).

An unexpected result of our studies is that the rotation of repelling bosons (even those
interacting weakly) does not necessarily lead to formation of vortices, as is familiar from the
case of rotating Bose–Einstein condensates. In particular, for small N , we will show that
the Gross–Pitaevskii energies (including those corresponding to formation of vortices) remain
always higher compared to the ground-state energies of the RBMs. Of course, we expect that
the rotating BEC will become the preferred ground state for sufficiently large N in the case
of weakly repelling neutral bosons. We anticipate, however, that it will be feasible to test our
unexpected results for small N by using rotating optical lattices, where it is established that a
small finite number of atoms can be trapped per given site [87].

In a non-rotating trap, it is natural to describe a localized boson (at a position Rj ) by
a simple displaced Gaussian [60]. When the rotation of the trap is considered, the Gaussian
needs to be modified by a phase factor, determined through the analogy between the one-boson
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Hamiltonian in the rotating frame of reference and the planar motion of a charged particle under
the influence of a perpendicular magnetic field B (described in the symmetric gauge). That is,
the single-particle wave function of a localized boson is

ϕj (r) ≡ ϕ(r, Rj ) = 1√
πλ

exp

[
(r − Rj )

2

2λ2
− ir·(Q × Rj )

]
, (8.1)

with Q ≡ ẑ/�2 and the width of the Gaussian λ is a variational parameter; � ≡ lB
√

2 =√
2h̄c/(eB) = √

2h̄/(mωc) for the case of a perpendicular magnetic field B, and � ≡ l�
√

2 =√
h̄/(m�) in the case of a rotating trap with rotational frequency � (we recall that ωc → 2�,

see appendix). Note that we consider a 2D trap, so that r ≡ (x, y) and R ≡ (X, Y ).
The Hamiltonian corresponding to the single-particle kinetic energy is given by

HK(r) = (p − h̄Q × r)2/(2m), (8.2)

for the case of a magnetic field, and by

HK(r) = (p − h̄Q × r)2/(2m) − m�2r2/2, (8.3)

for the case of a rotating frame of reference9.
A toroidal trap with radius r0 can be specified by the confining potential

V (r) = h̄ω0

2
(r − r0)

n/ ln0 , (8.4)

with l0 = √
h̄/(mω0) being the characteristic length of the 2D trap. For n � 2 and l0/r0 → 0

this potential approaches the limit of a toroidal trap with zero width, which has often been
considered in previous theoretical studies (see, e.g. [249]). In the following, we consider the
case with n = 2, which is more realistic from the experimental point of view. In this case, in
the limit r0 = 0, one recovers a harmonic trapping potential.

To construct an RBM variational many-body wave function describing N impenetrable
bosons in the toroidal trap, we use N displaced orbitals ϕ(r, Ri ), i = 1, 2, . . . , N (see (8.1))
centered at the vertices of a regular polygon. Then, we first construct an unrestricted Bose
Hartree–Fock permanent [60, 63] |�UBHF

N 〉 ∝ ∑
P(im) ϕ1(ri1)ϕ2(ri2) . . . ϕN(riN ). The UBHF

permanent breaks the circular symmetry of the many-body Hamiltonian. As discussed in
section 3.2, the ‘symmetry dilemma’ is resolved through a subsequent ‘symmetry-restoration’
step accomplished via projection techniques [23, 24, 30, 31, 52, 53], i.e. we construct a many-
body wave function with good total angular momentum by applying the projection operator
P̂L = (1/2π)

∫ 2π

0 dθ exp[iθ(L − L̂)], so that the final RBM wave function is given by

|�PRJ
N,L〉 = 1

2π

∫ 2π

0
dθ |�UBHF

N (θ)〉eiθL. (8.5)

|�UBHF
N (θ)〉 is the original UBHF permanent rotated by an azimuthal angle θ . We note that,

in addition to having good angular momenta, the projected wave function |�PRJ
N,L〉 also has a

lower energy than that of |�UBHF
N 〉 (see, e.g. EPRJ

L − EUBHF in figure 27(b)). The projected
ground-state energy is given by

EPRJ
L =

∫ 2π

0
h(θ)eiθLdθ

/∫ 2π

0
n(θ)eiθL dθ, (8.6)

where h(θ) = 〈�UBHF
N (θ = 0)|H|�UBHF

N (θ)〉 and n(θ) = 〈�UBHF
N (θ = 0)|�UBHF

N (θ)〉; the
latter term ensures proper normalization.

9 The single-particle wave function in (8.1) and the many-body projected wave function in (8.5) contain contributions
from higher Landau levels. These wave functions belong exclusively to the lowest Landau level only in the limit when
λ = √

2lB in the case of a magnetic field, or λ = √
2l� and �/ω0 = 1 in the case of a rotating trap.
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Figure 27. Properties of N = 8 neutral repelling bosons in a rotating toroidal trap as a function
of the reduced rotational frequency �/ω0. The confining potential is given by (8.4) with n = 2
and radius r0 = 3l0, and the interaction-strength parameter was chosen as Rδ = 50. (a) RBM
ground-state energies, EPRJ. The inset shows the range 0 � �/ω0 � 0.3. The numbers denote
ground-state magic angular momenta. (b) Energy difference EPRJ − EUBHF. (c) Total angular
momenta associated with (i) the RBM ground states (thick solid line (showing steps and marked
as PRJ); online black) and (ii) the UBHF solutions (thin solid line; online red). In the figures, we
may use the symbol Lz, instead of simply L, to denote the 2D total angular momentum.

The many-body Hamiltonian in the rotating trap is given by

H =
N∑

i=1

[HK(ri ) + V (ri )] +
N∑

i<j

v(ri , rj ), (8.7)

with the interparticle interaction being given by a contact potential vδ(ri , rj ) = gδ(ri − rj )

for neutral bosons and a Coulomb potential vC(ri , rj ) = Z2e2/|ri − rj | for charged bosons.
The parameter that controls the strength of the interparticle repulsion relative to the zero-
point kinetic energy is given by Rδ = gm/(2πh̄2) [60, 63] for a contact potential and
RW = Z2e2/(h̄ω0l0) [20, 60] for a Coulomb repulsion.

For a given value of the dimensionless rotational frequency, �/ω0, the projection yields
wave functions and energies for a whole rotational band comprising many angular momenta.
In the following, we focus on the ground-state wave function (and corresponding angular
momentum and energy) associated with the lowest energy in the band.

Figure 27(a) displays the ground-state energy EPRJ of N = 8 bosons in a toroidal trap as
a function of the dimensionless rotational frequency �/ω0, with ω0 being the trap frequency.
The prominent features in figure 27(a) are: (i) the energy diminishes as �/ω0 increases; this is
an effect of the centrifugal force, and (ii) the EPRJ curve consists of linear segments, each one
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Figure 28. Single-particle densities and CPDs for N = 8 bosons in a rotating toroidal trap with
�/ω0 = 0.2 and Rδ = 50. The remaining trap parameters are as in figure 27. (a) Gross–
Pitaevskii single-particle density. (b) UBHF single-particle density exhibiting breaking of the
circular symmetry. (c) RBM single-particle density exhibiting circular symmetry. (d) CPD for the
RBM wave function (PRJ wave function, see (8.5)) revealing the hidden point-group symmetry
in the intrinsic frame of reference. The observation point is denoted by a white dot. The RBM
ground-state angular momentum is Lz = 16. Lengths along the horizontal x- and y-axes are in
units of l0. The vertical scale is the same for (b)–(d), but different for (a).

associated with a given angular momentum L. Most remarkable is the regular variation of the
values of L with a constant step of N units (here N = 8) (see inset of figures 27(a) and (c)).
These preferred angular momenta L = kN with integer k, are reminiscent of the so-called
‘magic angular momenta’ familiar from studies of electrons under high-magnetic fields in 2D
semiconductor quantum dots [26, 52, 53].

The preferred angular momenta reflect the intrinsic molecular structure of the localized
impenetrable bosons. We note that the (0,8) polygonal-ring arrangement is obvious in the
single-particle density associated with the UBHF permanent (see figure 28(b)); (0,8) denotes
no particles in the inner ring and 8 particles in the outer one. After restoration of symmetry,
however, the single-particle density is circularly symmetric (see the PRJ single-particle density
in figure 28(c)) and the intrinsic crystallinity becomes ‘hidden’; it can, however, be revealed
via the conditional probability distribution [20, 52, 53, 60] (CPD, see figure 28(d)). We note
the Gross–Pitaevskii single-particle density in figure 28(a), which is clearly different from the
PRJ density in figure 28(c).

The internal structure for charged bosons in a toroidal trap (not shown) is similar to that of
neutral bosons (figure 28), i.e. a (0,8) ring arrangement, also portrayed in the stepwise variation
(in steps of 8 units) of the total angular momenta. The internal structure is also reflected in
the variation of the ground-state total energy as a function of the magnetic field. In contrast to
the case of neutral bosons, however, the ground-state energy curve for charged bosons is not
composed of linear segments, but of intersecting inverted-parabola-type pieces; this is due to
the positive contribution of the Lorentz force compared with the negative contribution of the
centrifugal force in a rotating trap.

For RBMs in rotating harmonic traps, the polygonal-ring pattern of localized bosons
becomes more complex than the simple (0, N) arrangement that appears naturally in a toroidal
trap. Indeed, in harmonic traps, one anticipates the emergence of concentric ring structures. For
N = 6 neutral bosons in a harmonic trap, we observe that, as in the case of a toroidal trap, the
ground-state energy as a function of the reduced rotational frequency, �/ω0, (figure 29(a)) is
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Figure 29. Properties of N = 6 neutral bosons in a rotating harmonic trap as a function of the
reduced rotational frequency �/ω0. The confining potential is given by (8.4) with n = 2 and
r0 = 0, and the interaction-strength parameter was chosen as Rδ = 50. The intrinsic molecular
structure is (1, 5). (a) RBM ground-state energies, EPRJ. The inset shows a smaller range. The
numbers denote ground-state angular momenta. (b) Total angular momenta associated with (i) the
RBM ground states (thick solid line showing steps; online black) and (ii) the UBHF solutions (thin
solid line; online red).

composed of linear segments, but now the corresponding magic angular momenta (figure 29(b))
vary in steps of N − 1 = 5 units. This indicates a rotating boson molecule consisting of two
polygonal rings; denoted as a (1, 5) structure, with the inner ring having a single boson and
the outer ring five.

In figure 30(a), we display the rotating-boson-molecule and mean-field Gross–Pitaevskii
ground-state energies of N = 6 strongly repelling (i.e. Rδ = 50) neutral bosons in a harmonic
trap as a function of the reduced angular frequency of the trap. The GP curve (thin solid line;
online red) remains well above the RBM curve (thick solid line; online green) in the whole
range 0 � �/ω0 � 1. The RBM ground-state angular momenta exhibit again the periodicity
in steps of five units (figure 30(b)). As expected, the GP total angular momenta are quantized
(Lz = 0 (no-vortex) or Lz = 6 (one central vortex)) only for an initial range 0 � �/ω0 � 0.42.
For �/ω0 � 0.42, the GP total angular momentum takes non-integer values and ceases to be
a good quantum number, reflecting the broken-symmetry character of the associated mean
field, with each kink signaling the appearance of a different vortex pattern of p-fold symmetry
(p = 1, 2, 3, 4, . . .) [250]; see an example in figure 30(c). The energetic superiority of the
RBM wave function over the GP solution demonstrated in figure 30(a) was to be expected,
since we considered the case of strongly repelling bosons. Unexpectedly, however, for a small
number of neutral bosons the energetic advantage of the rotating boson molecule persists even
for weakly repelling bosons, as illustrated in figure 31(a). Indeed, figure 31(a) displays the
RBM (thick solid line; online green) and GP (thin solid line; online red) ground-state energies
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Figure 30. Properties of GP solutions (thin solid line; online red) versus those of RBM wave
functions (thick solid line; online green) for N = 6 neutral bosons as a function of the reduced
rotational frequency �/ω0. A harmonic trap is considered, and the interaction strength equals
Rδ = 50. (a) Ground-state energies. (b) Associated ground-state angular momenta. (c) GP (BEC)
single-particle density at �/ω0 = 0.65 having 7 vortices with a 6-fold symmetry (thus exhibiting
breaking of the circular symmetry). (d) RBM single-particle density at �/ω0 = 0.65 which does
not break the circular symmetry. (e) CPD of the RBM at �/ω0 = 0.65 revealing the intrinsic (1,5)
crystalline pattern. The white dot denotes the observation point r0. Note the dramatic difference
in spatial extent between the GP and RBM wave functions (compare (c) with (d) and (e)). Lengths
along the horizontal x- and y-axes are in units of l0. The vertical scale is the same for (d) and (e),
but different for (c).

for N = 6 neutral bosons in a trap rotating with �/ω0 = 0.85 as a function of the interaction
parameter Rδ . The surprising result in figure 31(a) is that the GP energy remains above the
RBM curve even for Rδ → 0. Of course the RBM wave function is very close to that of a
BEC without vortices when Rδ → 0 (BECs without vortices are approximately feasible for
small N ). However, for small N , our results show that BECs with vortices (i.e. for Lz � N )
are not the preferred many-body ground states; instead, formation of RBMs is favored. Note
that the energy difference EGP − EPRJ increases rapidly with increasing Rδ , reflecting the fact
that the RBM energies saturate (as is to be expected from general arguments), while the GP
energies (even with vortices fully accounted for) exhibit an unphysical divergence as Rδ → ∞
(figure 31(a)); we have checked this trend up to values of Rδ = 100 (not shown). Of interest
again is the different behavior of the RBM and GP ground state angular momenta (figure 31(b))
(see also discussion of figure 30(b)).

To summarize this section: we have studied the ground-state properties of a variational
many-body wave function for repelling bosons in rotating traps that incorporates correlations
beyond the Gross–Pitaevskii mean-field approximations. This variational wave function
describes rotating boson molecules, i.e. localized bosons arranged in polygonal-ring-type
patterns in their intrinsic frame of reference. For small numbers of neutral bosons, and in
particular in the case of GP vortex formation, the RBM ground-state energies are lower than
those associated with the corresponding Gross–Pitaevskii BEC solutions. Given the large
differences between the properties of the RBM and BEC wave functions (which become
more pronounced for larger interaction parameter Rδ), and the recently demonstrated ability
to experimentally control Rδ [85–87, 246], we anticipate that our results could be tested in
experiments involving rotating optical lattices. Detection of rotating boson molecules could
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Figure 31. Properties of GP solutions (thin solid line; online red) versus those of RBM wave
functions (thick solid line; online green) for N = 6 bosons as a function of the interaction strength
Rδ . A harmonic trap is considered, and the reduced rotational frequency equals �/ω0 = 0.85. (a)
Ground-state energies. (b) Associated ground-state angular momenta.

be based on a variety of approaches, such as the measurement of the spatial extent (contrast the
RBM and BEC spatial extents in figures 30(c)–(e)), or the use of Hanbury Brown–Twiss-type
experiments [251] to directly detect the intrinsic crystalline structure of the RBM.

8.2. Exact diagonalization for bosons in the lowest Landau level

Rotating ultracold trapped Bose condensed systems are most commonly discussed in the
context of formation of vortex lattices, which are solutions to the Gross–Pitaevskii mean-
field equation [4, 5, 252–257]. Such vortex lattices have indeed been found experimentally
for systems containing a large number of bosons [258–260]. Nevertheless, several theoretical
investigations [67–71] of rapidly rotating trapped bosonic systems suggested formation of
strongly correlated exotic states which differ drastically from the aforementioned vortex-
lattice states. While experimental realizations of such strongly correlated states have not
been reported yet, there is already a significant effort associated with two-dimensional exact-
diagonalization studies of a small number of particles (N ) in the lowest Landau level; the
LLL restriction corresponds to the regime of rapid rotation, where the rotational frequency
of the trap � equals the frequency of the confining potential. The large majority [67, 69–71]
of such exact-diagonalization studies have attempted to establish a close connection between
rapidly rotating bosonic gases and the physics of electrons under fractional-quantum-Hall-
effect conditions employing the bosonic version of ‘quantum-liquid’ analytic wave functions,
such as the Laughlin wave functions, composite-fermion, Moore–Read and Pfaffian functions.

As described in section 6, the ‘quantum-liquid’ picture for a small number of trapped
electrons in the FQHE regime has been challenged in a series of extensive studies [24, 26,
42, 51–53] of electrons in 2D quantum dots under high magnetic fields. Such studies (both



Symmetry breaking and quantum correlations 2135

exact-diagonalization and variational) revealed that, at least for finite systems, the underlying
physical picture governing the behavior of strongly correlated electrons is not that of a ‘quantum
liquid.’ Instead, the appropriate description is in terms of a ‘quantum crystal,’ with the
localized electrons arranged in polygonal concentric rings [24,26,51–53,127,128,131]. These
‘crystalline’ states lack [52, 53] the familiar rigidity of a classical extended crystal, and are
better described [24, 26, 42, 51–53] as rotating electron (or Wigner) molecules.

Motivated by the discovery in the case of electrons of REMs at high B (and from the
fact that Wigner molecules also form at zero magnetic field [20, 25, 41, 50, 167, 188]) some
theoretical studies have most recently shown that analogous molecular patterns of localized
bosons do form in the case of a small number of particles inside a static or rotating harmonic
trap [43, 60, 63, 177, 178]. In analogy with the electron case, the bosonic molecular structures
can be referred to [63] as rotating boson molecules; a description of RBMs via a variational
wave function built from symmetry-breaking displaced Gaussian orbitals with subsequent
restoration of the rotational symmetry was presented in [43,60,63] and reviewed in section 8.1.

In a recent paper, Baksmaty et al [72] used exact diagonalization in the lowest Landau level
to investigate the formation and properties of RBMs focusing on a larger number of particles
than previously studied, in particular for sizes where multiple-ring formation can be expected
based on our knowledge of the case of 2D electrons in high B. A finite number of particles
(N � 11) at both low (ν < 1/2) and high (ν � 1/2) filling fractions ν ≡ N(N − 1)/2L

(where L ≡ L/h̄ is the quantum number associated with the total angular momentum L) was
studied and both the cases of a long-range (Coulomb) and a short-range (δ-function) repulsive
interaction were investigated. In this section, we report some main results from [72].

As in the case of electrons in 2D quantum dots, we probe the crystalline nature of the
bosonic ground states by calculating the full anisotropic two-point correlation function P(r, r0)

(see equation (1.1)) associated with the exact wavefunction �(r1, r2, . . . , rN). The quantity
P(r, r0) is proportional to the probability of finding a boson at r given that there is another
boson at the observation point r0, and it is often referred to as the conditional probability
distribution (section 1.5). A main finding of our studies is that consideration solely of the
CPDs is not sufficient for the boson case at high fractional fillings ν � 1/2; in this case, one
needs to calculate even higher-order correlation functions, e.g. the full N -point correlation
function defined as the modulus square of the full many-body EXD wave function, i.e.

P(r; r1, r2, . . . , rN−1) = |�(r; r1, r2, . . . , rN−1)|2, (8.8)

where one fixes the positions of N−1 particles and inquiries about the (conditional) probability
of finding the N th particle at any position r.

The investigations in this section are also motivated by recent experimental developments,
e.g. the realization of trapped ultracold gas assemblies featuring bosons interacting via a long-
range dipole–dipole interaction [261, 262]. We expect the results presented in this section to
be directly relevant to systems with a two-body repulsion intermediate between the Coulomb
and the delta potentials. Additionally, we note the appearance of promising experimental
techniques for measuring higher-order correlations in ultra-cold gases employing an atomic
Hanbury Brown–Twiss scheme [251] or shot-noise interferometry [263, 264]. Experimental
realization of few-boson rotating systems can be anticipated in the near future as a result of
increasing sophistication of experiments involving periodic optical lattices co-rotating with the
gas, which are capable of holding a few atoms in each site. A natural first step in the study of
such systems is the analysis of the physical properties of a few particles confined in a rotating
trap with open boundary conditions (i.e. conservation of the total angular momentum L).

The main results of [72] can be summarized as follows: similarly to the well-established
(see sections 6 and 7) emergence of rotating electron molecules in quantum dots, rotating boson
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molecules form in rotating harmonic traps as well. The RBMs are also organized in concentric
polygonal rings that rotate independently of each other, and the polygonal rings correspond to
classical equilibrium configurations and/or their low-energy isomers. Furthermore, the degree
of crystallinity increases gradually with larger angular momenta L’s (smaller filling fractions
ν’s), as was the trend [26, 52, 53] for the REMs and as was also observed for ν < 1/2 in
another study [178] for rotating bosons in the lowest Landau level with smaller N and single-
ring structures. We finally note that the crystalline character of the RBMs appears to depend
only weakly on the range of the repelling interaction, for both the low (see also [178]) and
high (unlike [177]) fractional fillings.

In studies of 2D quantum dots, CPDs were used some time ago in [50, 128, 131]. For
probing the intrinsic molecular structure in the case of ultracold bosons in 2D traps, however,
they were introduced only recently by Romanovsky et al [60]. The importance of using CPDs
as a probe can hardly be underestimated. Indeed, while exact-diagonalization calculations for
bosons in the lowest Landau level have been reported earlier [67–71], the analysis in these
studies did not include calculations of the CPDs, and consequently formation of rotating boson
molecules was not recognized.

8.2.1. The case of N = 6 bosons in the lowest Landau level. As a specific example of the
points discussed above in section 8.2, we present here results for N = 6 bosons in the lowest
Landau level. For additional cases (e.g. N = 9 and N = 11), see [72].

In analogy with the magnetic-field Hamiltonian of equation (7.1), the many-body
Hamiltonian for N bosons in a rotating trap is reduced in the lowest Landau level to the
expression

H̃�
LLL = Nh̄ω0 + h̄(ω0 − �)L +

N∑
i<j

v(ri , rj ), (8.9)

where ω0 specifies the 2D-harmonic trap and � denotes the rotational frequency. The
interparticle interaction is given by a contact potential vδ(ri , rj ) = gδ(ri − rj ) for neutral
bosons and a Coulomb potential vC(ri , rj ) = c/|ri − rj | for charged bosons.

Since H̃�
LLL is rotationally invariant, i.e. [H̃�

LLL, L] = 0, its eigenstates �L must also be
eigenstates of the total angular momentum with eigenvalue h̄L. For a given rotational frequency
�, the eigenstate with lowest energy is the ground state; we denote the corresponding angular
momentum as Lgs.

We proceed to describe the EXD results for N = 6 particles interacting via a Coulomb
repulsion by referring to figure 32, where we plot Lgs against the angular frequency � of the
rotating trap. A main result from all our calculations is that Lgs increases in characteristic
(larger than unity) steps that take only a few integer values, i.e. for N = 6 the variations of Lgs

are in steps of 5 or 6. In keeping with previous work on electrons [24, 26, 42, 51–53] at high
B, and very recently on bosons in rotating traps [43,60,63,177,178], we explain these magic-
angular-momenta patterns (i.e. for N = 6, Lgs = L0 + 5k or Lgs = L0 + 6k, with L0 = 0)
as a manifestation of an intrinsic point-group symmetry associated with the many-body wave
function. This point-group symmetry emerges from the formation of RBMs, i.e. from the
localization of the bosons at the vertices of concentric regular polygonal rings; it dictates that
the angular momentum of a purely rotational state can only take values Lgs = L0 +

∑
i kini ,

where ni is the number of localized particles on the ith polygonal ring. (We remind the
reader that for spin-polarized electrons in the lowest Landau level, the corresponding value is
L0 = N(N − 1)/2.) Thus for N = 6 bosons, the series Lgs = 5k is associated with a (1, 5)

polygonal ring structure, while the series Lgs = 6k relates to a (0, 6) arrangement of particles.



Symmetry breaking and quantum correlations 2137

Coulomb interaction N=6 Delta interaction N=6

Figure 32. Ground-state angular momenta, Lgs, for N = 6 bosons in a rapidly rotating trap
(described by the LLL Hamiltonian in (8.9)), as a function of the rotational frequency � expressed
in units of ω0. The bosons interact via a Coulombic repulsion (left) and a delta repulsion (right),
and the many-body Hilbert space is restricted to the lowest Landau level. The angular momentum
associated with the first bosonic Laughlin state occurs at L = 30, i.e. at N(N − 1). The value
of c = 0.2h̄ω0� for the Coulomb case (left) and the value of g = 2πh̄ω0�

2/N for the case of
a delta repulsion (right); the many-body wave functions do not depend on these choices. In the
delta-interaction case, the values of the angular momenta terminate with the value L = 30 (the
Laughlin value) at �/ω0 = 1. In contrast, in the Coulomb-interaction case (left), the values of
the ground-state angular momenta do not terminate, but diverge as �/ω0 → 1. Note the stepwise
variation of the values of the ground-state angular momenta in both cases, indicating the presence
of an intrinsic point-group symmetry associated with the (0,6) and (1,5) polygonal-ring structure
of a rotating Boson molecule.

It is interesting to note that in classical calculations [114] for N = 6 particles in a harmonic
2D trap, the (1, 5) arrangement is found to be the global energy minimum, while the (0, 6)

structure is the lowest metastable isomer. This fact is apparently reflected in the smaller weight
of the Lgs = 6k series compared with the Lgs = 5k series, and the gradual disappearance of
the former with increasing L.

Magic values also dominate the ground state angular momenta of neutral bosons (delta
repulsion) in rotating traps, as shown for N = 6 bosons in the right panel of figure 32.
Although the corresponding �-ranges along the horizontal axis may be different compared
with the Coulomb case, the appearance of only the two series 5k and 6k is remarkable—
pointing to the formation of RBMs with similar (1, 5) and (0, 6) structures in the case of a
delta interaction as well (see also [177, 178]). An important difference, however, is that for
the delta interaction both series end at �/ω0 = 1 with the value L = N(N − 1) = 30 (for
N = 6 the bosonic Laughlin value at ν = 1/2), while for the Coulomb interaction this L value
is reached for �/ω0 < 1 — allowing for an infinite set of magic angular momenta (larger than
N(N − 1)) to develop as �/ω0 → 1.

Beyond the analysis of the ground-state spectra as a function of �, the intrinsic crystalline
point-group structure can be revealed by an inspection of the CPDs (and to a much lesser extent
by an inspection of single-particle densities). Because the EXD many-body wave function
is an eigenstate of the total angular momentum, the single-particle densities are circularly
symmetric and can only reveal the presence of concentric rings through oscillations in the
radial direction. The localization of bosons within the same ring can only be revealed via the
azimuthal variations of the anisotropic CPD (equation (1.1)). One of our findings is that for a
given N the crystalline features in the CPDs develop slowly as L increases (or ν decreases).
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Figure 33. (a) Single-particle densities (n(r); left column), (b) CPDs [P(r, r0)] in 3D plots
(middle column) and (c) CPDs in contour plots (right column), portraying the strengthening of the
crystalline RBM structure for N = 6 bosons interacting via a repulsive Coulomb interaction as the
filling fraction ν is reduced. The white dots in the CPD plots indicate the reference point r0. We
note in particular the gradual enhancement of the peak at the center of the plots, and the growth of
the radius of the outer ring; the latter reflects the non-rigid-rotor nature of the RBMs (in analogy
with the findings of [52] regarding the properties of rotating electron molecules). The cases of
ν = 1/4 and ν = 1/8 exhibit a clear (1, 5) crystalline arrangement, while the case of ν = 1/2 (first
Laughlin state) is intermediate between a (1, 5) and a (0, 6) pattern (see text for details). Lengths
in units of �. The vertical scales are in arbitrary units, which however do not change for the panels
within the same column (a), (b) or (c).

For ν < 1/2, we find that the crystalline features are well developed for all sizes studied
by us. In figure 33, we present some concrete examples of CPDs from exact-diagonalization
calculations associated with the ground-states of N = 6 bosons in a rotating trap interacting
via a repulsive Coulomb potential. In particular, we present the CPDs for Lgs = 30 (bosonic
Laughlin for ν = 1/2), 60, and 120; these angular momenta are associated with ground states
at specific �-ranges (see figure 32). All three of these angular momenta are divisible by both 5
and 6. However, only the Lgs = 30 CPD (figure 33 top row) has a structure that is intermediate
between the (1, 5) and the (0, 6) polygonal-ring arrangements. The other two CPDs, associated
with the higher Lgs = 60 and Lgs = 120, clearly exhibit only the (1, 5) structure, illustrating
our statement above that the quantum-mechanical CPDs conform to the structure of the most
stable arrangement (i.e. the (1, 5) for N = 6) of classical point-like charges as the fractional
filling decreases.

However, for ν > 1/2, the azimuthal variations may not be visible in the CPDs, in spite of
the characteristic step-like ground-state spectra (see figure 32 for N = 6 bosons). This paradox
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Figure 34. Contour plots of the CPD (a) and N -point correlation function (b) and (c) for N = 6
bosons with Lgs = 15 interacting via a Coulomb repulsion. The white squares indicate the
positions of the fixed particles. The black square in (b) and (c) indicates the position of the 6th
particle according to the classical (1, 5) molecular configuration. Note the different arrangements
of the five fixed particles, i.e. (b) one fixed particle at the center and (c) no fixed particle at the
center. Note also that the CPD in (a) fails to reveal the (1, 5) pattern, which, however, is clearly
seen in the N -point correlation functions in both (b) and (c). Lengths in units of �. The vertical
scales are arbitrary, but the same in (b) and (c).
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Figure 35. Contour plots of the CPD (a) and N -point correlation function (b) and (c) for N = 6
bosons with Lgs = 15 interacting via a δ-repulsion. The white squares indicate the positions of the
fixed particles. The black square in (b) and (c) indicates the position of the 6th particle according
to the classical (1, 5) molecular configuration. Note the different arrangements of the five fixed
particles, i.e. (b) one fixed particle at the center and (c) no fixed particle at the center. Note also
that the CPD in (a) fails to reveal the (1, 5) pattern, which, however, is clearly seen in the N -point
correlation functions in both (b) and (c). Lengths in units of �. The vertical scales are arbitrary,
but the same in (b) and (c).

is resolved when one considers higher-order correlations, and in particular N -point correlations
(see equation (8.8)). In figures 34 and 35, we plot the N -point correlation functions for N = 6
bosons and Lgs = 15 for both the Coulomb interaction and δ-repulsion, respectively, and we
compare them against the corresponding CPDs. The value of 15 is divisible by 5, and one
expects this state to be associated with a (1, 5) molecular configuration. It is apparent that
the CPDs fail to portray such fivefold azimuthal pattern. The (1, 5) pattern, however, is clear
in the N -point correlations (middle and right panels). One has two choices for choosing the
positions of the first five particles (white dots), i.e. one choice places one white dot at the center
and the other choice places all five white dots on the vertices of a regular pentagon. For both
choices, as shown by the contour lines in the figures, the position of maximum probability for
the sixth boson coincides with the point that completes the (1, 5) configuration (see the black
dots in the middle and right panels).
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Note that the differences in the CPDs and N -point correlation functions between the
Coulomb and the δ-repulsion are rather minimal.

9. Summary

This report reviewed the physics of strong correlations in two-dimensional small finite-size
condensed-matter systems, such as electrons in quantum dots and repelling bosons in harmonic
traps. It was shown that strong correlations in such systems relate to the appearance of
symmetry breaking at the mean-field level of description. Particular attention was given
to the similarities of symmetry breaking in these systems despite the different interparticle
interactions (Coulombic repulsion in quantum dots versus a contact potential for neutral bosons
in harmonic traps).

The universal aspects of symmetry breaking in small systems (including nuclei and
molecules in quantum chemistry) have been exploited to develop a two-step method of
symmetry breaking at the unrestricted Hartree–Fock level and subsequent symmetry restoration
via post Hartree–Fock projection techniques. In conjunction with exact-diagonalization
calculations, the two-step method was used to describe a vast range of strongly-correlated
phenomena associated with particle localization and formation of crystalline (molecular)
structures of electrons in quantum dots and bosons in harmonic traps. Due to their finite size,
these crystalline structures are different from the familiar rigid crystals of extended systems;
they rather resemble and exhibit similarities with the natural 3D molecules (e.g. ro-vibrational
spectra).

It was shown that strongly-correlated phenomena emerging from symmetry breaking
include the following:

(I) Chemical bonding, dissociation, and entanglement in quantum dot molecules and in
electron molecular dimers formed within a single anisotropic quantum dot, with potential
technological applications to solid-state quantum-computing devices.

(II) Electron crystallization, with localization on the vertices of concentric polygonal rings
and formation of rotating electron molecules in circular quantum dots. At zero magnetic
field, the REMs can approach the limit of a rigid rotor; at high magnetic field, the REMs
are highly floppy, with the rings rotating independently of each other.

(III) In the lowest Landau level, the rotating electron molecules are described by parameter-free
analytic many-body wave functions, which are an alternative to the composite-fermion
and Jastrow/Laughlin approaches, offering a new point of view of the fractional quantum
Hall regime in quantum dots (with possible implications for the thermodynamic limit).

(IV) Crystalline phases of strongly repelling bosons. In the case of rotating traps and in
analogy with the REMs, such repelling bosons form rotating boson molecules, which
are energetically favored compared with the Gross–Pitaevkii solutions, in particular in the
regime of vortex formation.
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Appendix A.

In this appendix, we briefly review the single-particle wave functions and associated energy
spectra of a two-dimensional circular harmonic oscillator under the influence of a perpendicular
magnetic field B (relevant to the case of quantum dots) or under rotation with angular frequency
� (relevant to the case of trapped atomic gases in rotating harmonic traps). These single-particle
wave functions and associated spectra are known as the Darwin–Fock states and energy levels,
after the names of the authors of two original papers [162, 163] on this subject.

Appendix A.1. Two-dimensional isotropic oscillator in a perpendicular magnetic field

In this case, the Hamiltonian (for an electron of mass m∗) is given by:

H = 1

2m∗
(

p − e

c
A

)2
+

1

2
m∗ω2

0r2, (A.1)

where r = (x, y) and ω0 is the frequency of the oscillator. In the symmetric gauge, the vector
potential is given by A = (B × r)/2, and the Hamiltonian (A.1) can be rewritten in the form

H = p2

2m∗ − 1

2
ωc l̂ +

1

2
m∗ω̃2r2, (A.2)

where l̂ = −ih̄(x∂/∂y − y∂/∂x) is the angular momentum operator of the electron (in the z

direction), ωc = eB/(m∗c) is the cyclotron frequency, and ω̃ =
√

ω2
0 + ω2

c/4 is the effective-
confinement frequency.

The eigenfunctions of the Hamiltonian (A.2) have the same functional form as those of a
2D-harmonic oscillator at B=0, but with an effective frequency ω̃, i.e. in polar coordinates

φn,l(ρ, θ) = Nn,lρ
|l|e−ρ2/2eilθL|l|

n (ρ2), (A.3)

with ρ = r/l̃; the characteristic length l̃ is given by l̃ = √
h̄/(m∗ω̃). In (A.3), the index n

denotes the number of nodes in the radial direction, and l (without any subscript or tilde) denotes
the angular-momentum quantum numbers; the L

|l|
n ’s are associated Laguerre polynomials.

The single-particle energy spectrum corresponding to the Hamiltonian (A.2) is plotted in
figure A1; the associated eigenenergies are given by

En,l

h̄ω0
= (2n + |l| + 1)

√
1 +

η2

4
− l

2
η, (A.4)

with η = ωc/ω0.
In the limit of ωc/(2ω0) → ∞, one can neglect the external confinement, and the energy

spectrum in equation (A.4) reduces to that of the celebrated Landau levels, i.e.

EM = h̄ωc

(
M +

1

2

)
, (A.5)

where M = n + (|l| − l)/2 is the Landau-level index.
We remark that the Landau levels are infinitely degenerate. The lowest Landau level

M = 0 contains all nodeless levels (n = 0) with arbitrary positive angular momentum l � 0.

Appendix A.2. Two-dimensional rotating harmonic oscillator

In the case of a rotating isotropic oscillator, instead of the expression (A.2), one has the
following single-particle Hamiltonian:

H = p2

2m
− �l̂ +

1

2
mω2

0r2, (A.6)
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Figure A1. The Darwin–Fock single-particle energy levels of a 2D-harmonic oscillator under the
effect of a perpendicular magnetic field B as a function of η = ωc/ω0, where ωc is the cyclotron
frequency and ω0 is the frequency specifying the 2D-harmonic confinement. A specific color
(online) indicates orbitals with the same number of radial nodes.
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Figure A2. The Darwin–Fock single-particle energy levels of a 2D-harmonic oscillator rotating
with angular frequency � as a function of η = �/ω0, where ω0 is the frequency specifying the
2D-harmonic confinement. A specific color (online) indicates orbitals with the same number of
radial nodes.

where the mass of the particle (e.g. a bosonic or fermionic atom) is denoted by m; � denotes
the rotational frequency.

From a comparison of the second terms in (A.2) and (A.6), one derives the correspondence
� → ωc/2.

We note that, unlike the application of a perpendicular magnetic field, the rotation does
not generate an effective confinement different from the original external one (compare the
third terms between (A.2) and (A.6)). As a result, the eigenfunctions of the Hamiltonian
(A.6) are given by the expressions (A.3), but with ρ = r/ l0 where the characteristic length
l0 = √

h̄/(mω0).
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The single-particle energy spectrum corresponding to the Hamiltonian (A.6) is plotted in
figure A2 and the associated eigenenergies are given by

En,l

h̄ω0
= (2n + |l| + 1) − lη, (A.7)

with η = �/ω0.
For �/ω0 = 1, the energy spectrum in (A.7) reduces to that of the corresponding Landau

levels, i.e.

EM = 2h̄ω0(M +
1

2
), (A.8)

where M = n + (|l| − l)/2 is the Landau-level index.
As was the case with the perpendicular magnetic field, the Landau levels are infinitely

degenerate, and the lowest Landau level M = 0 contains all nodeless levels (n = 0) with
arbitrary positive angular momentum l � 0. However, unlike the magnetic-field case where
h̄ωc depends on B, the energy gap between the Landau levels in the case of rotation is
independent of � and equals 2h̄ω0.
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Egger R, Häusler W, Mak C H and Grabert H 1999 Phys. Rev. Lett. 83 462 (Erratum)

[189] Filinov A V, Lozovik Yu E and Bonitz M 2000 Phys. Status Solidi B 221 231
[190] Harting J, Mülken and Borrmann P 2000 Phys. Rev. B 62 10207
[191] Reusch B and Egger R 2003 Europhys. Lett. 64 84
[192] Weiss S and Egger R 2005 Phys. Rev. B 72 245301
[193] Tanatar B and Ceperley D M 1989 Phys. Rev. B 39 5005
[194] Pederiva F, Umrigar C J and Lipparini E 2000 Phys. Rev. B 62 8120
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