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We discuss the formation of crystalline electron clusters in semicon-
ductor quantum dots and of crystalline patterns of neutral bosons in
harmonic traps. In a first example, we use calculations for two
electrons in an elliptic quantum dot to show that the electrons can
localize and form a molecular dimer. The calculated singlet–triplet
splitting (J) as a function of the magnetic field (B) agrees with
cotunneling measurements with its behavior reflecting the effective
dissociation of the dimer for large B. Knowledge of the dot shape and
of J(B) allows determination of the degree of entanglement. In a
second example, we study strongly repelling neutral bosons in two-
dimensional harmonic traps. Going beyond the Gross–Pitaevskii (GP)
mean-field approximation, we show that bosons can localize and
form polygonal-ring-like crystalline patterns. The total energy of the
crystalline phase saturates in contrast to the GP solution, and its
spatial extent becomes smaller than that of the GP condensate.

correlations � entanglement � Wigner molecule � trapped bosons

Explorations of the size-dependent evolution of the properties of
materials are at the frontier of modern condensed matter and

materials research. Indeed, investigations of clusters containing a
finite, well defined number of elementary building units (atoms,
molecules, electrons, or other elementary constituents) allow in-
vestigations of the transition from the atomic or molecular regime
to the finite nano-aggregate domain, and ultimately of the conver-
gence with increasing size to the condensed phase, extended
system category. Moreover, investigations of clusters provide
opportunities for discovery of novel properties and phenomena
that are intrinsic properties of finite systems, distinguishing them
from bulk materials (1).

Commonly, studies of materials clusters involve atoms or mole-
cules interacting through electrostatic or electromagnetic poten-
tials, with the heavier nuclei being the ‘‘structural skeleton’’ and the
much lighter electrons serving as the ‘‘glue’’ that binds the atoms
together. In this article we focus on novel, somewhat exotic, types
of clusters. In particular, we discuss clusters of electrons in man-
made (artificial) quantum dots (QDs) created through lithographic
and gate-voltage techniques at semiconductor interfaces, and clus-
ters of neutral atoms in traps under conditions that may relate to
formation of Bose–Einstein condensates (BECs). We illustrate that
these cluster systems reveal interesting emergent physical behavior
arising from spontaneous breaking of spatial symmetries; symmetry
breaking is defined as a circumstance where a lower energy solution
of the Schrödinger equation is found that is characterized by a lower
symmetry than that of the Hamiltonian of the system. Such
symmetry breaking is exhibited through the formation of clusters of
localized electrons (often called Wigner molecules, or WMs) in 2D
QDs [see Fig. 1 and in particular our discussion of two-electron
WMs below (2)]. Symmetry breaking is also manifested in the
transition (3), induced by increasing the interatomic repulsive
interaction strength, of the BEC state of neutral atoms confined by
a parabolic 2D trap to a crystalline cluster state.

Two-Electron WMs
Electron localization leading to formation of molecular-like struc-
tures (the aforementioned WMs) within a single circular 2D QD at
zero magnetic field (B) has been theoretically predicted to occur
(4–11), as the strength of the e–e repulsive interaction relative to the
zero-point energy increases, as expressed through an increasing
value of the Wigner parameter RW, defined as RW � Z2e2�(–h�0l0),
with l0 � �–h�(m�0) being the characteristic harmonic-oscillator
length of the confining potential. [The subscript W in the case of a
Coulomb force stands for ‘‘Wigner,’’ because the confined clusters
of localized electrons may be viewed as finite-size precursors of the
bulk Wigner crystal (12).] The formation of such ‘‘molecular
structures’’ is a manifestation of spontaneous symmetry breaking
associated with a quantum phase transition, occurring at zero
magnetic field for circular 2D QDs for RW � 1 and involving the
crossover from a liquid-like state to a crystalline one. This cross-
over, described by using symmetry breaking (4), was confirmed in
other studies (5, 7–9) using a variety of methods. The degree of
electron localization, which underlies the appearance of crystalline
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Fig. 1. UHF electron density in a parabolic QD for N � 19 electrons and Sz �
19�2, exhibiting breaking of the circular symmetry at RW � 5 and zero
magnetic field. Remaining parameters: parabolic confinement, –h�0 � 5 meV;
effective mass, m* � 0.067me. Distances are in nanometers, and the electron
density is in 10�4 nm�2.
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patterns, has been described (4) as a progression from ‘‘weak’’ to
‘‘strong’’ WMs as a function of increasing RW (or equivalently
decreasing density). In high magnetic fields, the rotating electron
molecules exhibit magic angular momenta (13–16) corresponding
to fractional quantum Hall effect fillings. This has led (14–16) to the
derivation of an analytic trial wave function that provides a better
description of the finite-size analogs of the fractional quantum Hall
effect in comparison with the Laughlin (17) and composite-fermion
(18) wave functions.

Because of the finite size, WMs are expected to show new
behavior that differs from the classical Wigner crystal familiar from
solid state physics. The limit of a classical Wigner crystal is expected
to be reached for a higher number of electrons N and very large RW
(4). In the following we use the term ‘‘Wigner molecule’’ even in the
case of only two localized electrons. For this case the WM exhibits
close analogies to an H2 natural molecule, as described below.

Here, we focus on a two-electron (2e) WM, in light of the current
experimental effort (19, 20) aiming at implementation of a spin-
based (21) solid-state quantum logic gate that employs two coupled
one-electron QDs (double dot). We present an exact diagonaliza-
tion (EXD) and an approximate (generalized Heitler–London,
GHL) microscopic treatment for two electrons in a single elliptic
QD specified by the parameters of a recently investigated experi-
mental device (22). While formation of WMs in circular QDs
requires weak confinement (that is, small �0 in the expression for
RW given above), and thus large dots of lower densities (so that the
interelectron repulsion dominates), we show that formation of such
WMs is markedly enhanced in highly deformed (e.g., elliptic) dots
due to their lower symmetry. The calculations provide a good
description of the measured J(B) curve [the singlet–triplet (ST)
splitting] when screening (23, 24) due to the metal gates and leads
is included (in addition to the dielectric constant of the semicon-
ductor, GaAs). In particular, our results reproduce the salient
experimental findings pertaining to the vanishing of J(B) for a finite
value of B � 1.3 T [associated with a change in sign of J(B)
indicating a ST transition], as well as the flattening of the J(B) curve
after the ST crossing. These properties, and in particular the latter
one, are related directly to the formation of an electron molecular
dimer and its effective dissociation for large magnetic fields. The
effective dissociation of the electron dimer is most naturally de-
scribed through the GHL approximation, and it is fully supported
by the more accurate, but physically less transparent, EXD.

Of special interest for quantum computing (21) is the degree of
entanglement exhibited by the two-electron molecule in its singlet
state. Entanglement is a purely quantum mechanical phenomenon
in which the quantum state of two or more objects cannot be
described independently of each other, even when the individual
objects are spatially separated. The highest degree of entanglement
occurs at full separation, as discussed in the celebrated Einstein,
Podolsky, and Rosen paper (25). Electrons confined in a QD are
not necessarily spatially separated from each other, and conse-
quently their degree of entanglement may be lower than the
maximal one, as shown by us below.

Here, in relation to the microscopic calculations, we investigate
two different measures of entanglement. The first, known as the
concurrence (C) for two indistinguishable fermions (26, 27), has
been used in the analysis of the experiment in ref. 22 [this measure
is related to the operational cycle of a two-spin-qubit quantum logic
gate (26, 27)]. The second measure, referred to as the von Neumann
entropy (S) for indistinguishable particles, was developed in ref. 28
and used in ref. 29. We show that the present wave-function-based
methods, in conjunction with the knowledge of the dot shape and
the J(B) curve, enable theoretical determination of the degree of
entanglement, in particular for the elliptic QD of ref. 22. The
increase in the degree of entanglement (for both measures) with
stronger magnetic fields correlates with the dissociation of the 2e
molecule. This supports the experimental assertion (22) that co-
tunneling spectroscopy can probe properties of the electronic wave

function of the QD, and not merely its low-energy spectrum. Our
methodology can be straightforwardly applied to other cases of
strongly interacting devices, e.g., double dots with strong interdot
tunneling.

Clusters of Neutral Bosons in Harmonic Traps
BECs in harmonic traps (30, 31) are normally associated with
weakly interacting neutral atoms, and their physics is described
adequately by the Gross–Pitaevskii (GP) mean-field theory (32).
Lately, however, experimental advances in controlling the interac-
tion strength (33–36) permit the production of novel bosonic states
in the regime of strong interparticle repulsions. Theoretical efforts
motivated by this capability include studies of the Bose–Hubbard
model (37, 38), and investigations about the ‘‘fermionization’’ limit
of a 1D gas of trapped impenetrable bosons (39–41), often referred
to as the Tonks–Girardeau (TG) regime (39, 42). Here, we address
the problem of strongly repelling (impenetrable) bosons in higher
dimensions. In particular, we discuss 2D interacting bosons in a
circular harmonic trap, with the extension to 3D systems being
straightforward. To this end, we use computational methods that go
beyond the GP method.

We explore the transition from a BEC (diffuse cloud) state to a
crystalline phase, in which the trapped localized bosons form
crystalline patterns. At the mean-field level, these crystallites are
static and are portrayed directly in the single-particle densities.
After restoration of rotational symmetry, the single-particle den-
sities are circularly symmetric, and thus the crystalline symmetry
becomes ‘‘hidden’’; however, it can be revealed in the conditional
probability distribution (CPD) (anisotropic pair correlation), P(r,
r0), which expresses the probability of finding a particle at r given,
that the ‘‘observer’’ (i.e., reference point) is riding on another
particle at r0 (10, 16).

Methods
Two-Electron QD: Microscopic Treatment. The Hamiltonian for two
2D interacting electrons is

H � H�r1� � H�r2� � e2���r12� , [1]

where the last term is the Coulomb repulsion, � is the dielectric
constant, and r12 � �r1 � r2�. H(r) is the single-particle Hamiltonian
for an electron in an external perpendicular magnetic field B and an
appropriate confinement potential. When position-dependent
screening is included, the last term in Eq. 1 is modified by a function
of r12 (see below). For an elliptic QD, the single-particle Hamilto-
nian is written as

H�r� � T �
1
2

m*��x
2x2 � �y

2y2� �
g*�B

–h
B � s, [2]

where T � (p � eA�c)2�2m*, with A � 0.5(�By, Bx, 0) being the
vector potential in the symmetric gauge. m* is the effective mass,
and p is the linear momentum of the electron. The second term
is the external confining potential; the last term is the Zeeman
interaction with g* being the effective g factor, �B is the Bohr
magneton, and s is the spin of an individual electron.

The GHL method for solving the Hamiltonian (1) consists of two
steps. In the first step, we solve selfconsistently the ensuing unre-
stricted Hartree–Fock (UHF) equations allowing for lifting of the
double-occupancy requirement (imposing this requirement gives
the restricted HF method, RHF). For the Sz � 0 solution, this step
produces two single-electron orbitals uL,R(r) that are localized left
(L) and right (R) of the center of the QD [unlike the RHF method
that gives a single doubly-occupied elliptic (and symmetric about
the origin) orbital]. At this step, the many-body wave function is a
single Slater determinant �UHF (11, 22) � � uL(11)uR(22)	
made out of the two occupied UHF spin-orbitals uL(11) � uL(r1)�
(1) and uR(22) � uR(r2)�(2), where �(�) denotes the up (down)

Yannouleas and Landman PNAS � July 11, 2006 � vol. 103 � no. 28 � 10601

PH
YS

IC
S

SP
EC

IA
L

FE
A

TU
RE



[1 (2)] spin. This UHF determinant is an eigenfunction of the
projection Sz of the total spin S � s1 
 s2 but not of S2 (or the parity
space-reflection operator).

In the second step, we restore the broken parity and total-spin
symmetries by applying to the UHF determinant the projection
operator (43, 44) Ps,t � 1 � 	12, where the operator 	12 inter-
changes the spins of the two electrons; the upper (minus) sign
corresponds to the singlet. The final result is a GHL two-electron
wave function �GHL

s,t (r1, r2) for the ground-state singlet (index s)
and first-excited triplet (index t), which uses the UHF localized
orbitals,

�GHL
s,t (r1, r2)�(uL(r1)uR(r2)uL(r2)uR(r1))
s,t, [3]

where 
s,t � (�(1)�(2) � �(2)�(1)) is the spin function for the
2e singlet and triplet states. The general formalism of the 2D
UHF equations and of the subsequent restoration of broken spin
symmetries can be found in refs. 11 and 43–45.

The use of optimized UHF orbitals in the GHL is suitable for
treating single elongated QDs. The GHL is equally applicable to
double QDs with arbitrary interdot-tunneling coupling (43, 44). In
contrast, the Heitler–London treatment (46) (known also as va-
lence bond), where nonoptimized ‘‘atomic’’ orbitals of two isolated
QDs are used, is appropriate only for the case of a double dot with
small interdot-tunneling coupling (21).

The orbitals uL,R(r) are expanded in a real Cartesian harmonic-
oscillator basis, i.e.,

uL,R�r� � �
j�1

K

Cj
L,R� j�r� , [4]

where the index j � (m, n) and �j(r) � Xm(x)Yn(y), with Xm(Yn)
being the eigenfunctions of the 1D oscillator in the x(y) direction
with frequency �x(�y). The parity operator P yields PXm(x) �
(�1)mXm(x), and similarly for Yn(y). The expansion coefficients
Cj

L,R are real for B � 0 and complex for finite B. In the
calculations, we use K � 79, yielding convergent results.

In the exact-diagonalization method, the many-body wave func-
tion is written as a linear superposition over the basis of noninter-
acting two-electron determinants, i.e.,

�EXD
s,t �r1, r2� � �

i�j

2K

� ij
s,t���1; i���2; j�	 , [5]

where �(1; i) � �i(1 1) if 1  i  K and �(1; i) � �i�K(1 2)
if K 
 1  i  2K [and similarly for �(2; j)]. The total energies
Ej

L,R and the coefficients �ij
s,t are obtained through a ‘‘brute

force’’ diagonalization of the matrix eigenvalue equation corre-
sponding to the Hamiltonian in Eq. 1. The EXD wave function
does not immediately reveal any particular form, although our
calculations below show that it can be approximated by a GHL
wave function in the case of the elliptic dot under consideration.

Two-Electron QD: Measures of Entanglement. To calculate the con-
currence C (26, 27), one needs a decomposition of the GHL wave
function into a linear superposition of orthogonal Slater determi-
nants. Thus, one needs to expand the nonorthogonal uL,R(r) orbitals
as a superposition of two other orthogonal ones. To this effect, we
write uL,R(r) � �
(r)  ���(r), where �
(r) and ��(r) are the
parity symmetric and antisymmetric (along the x axis) components
in their expansion given by Eq. 4. Subsequently, with the use of Eq.
3, the GHL singlet can be rearranged as follows:

�GHL
s � ��
�11��
�22�	 � � ����11����22�	 , [6]

where the so-called interaction parameter (27), � � �2, is the
coefficient in front of the second determinant. Knowing � allows
a direct evaluation of the concurrence of the singlet state, since
C s � 2��(1 
 �2) (27). Note that �
(r) and ��(r) are properly
normalized. It is straightforward to show that � � (1 � �SLR�)�
(1 
 �SLR�), where SLR (with �SLR�  1) is the overlap of the
original uL,R(r) orbitals.

For the GHL triplet, one obtains an expression independent of
the interaction parameter �, i.e.,

�GHL
t � ��
�11����22�	 � ��
�12����21�	 , [7]

which is a maximally (C t � 1) entangled state. Note that
underlying the analysis of the experiments in ref. 22 is a
conjecture that wave functions of the form given in Eqs. 6 and 7
describe the two electrons in the elliptic QD.

To compute the von Neumann entropy, one needs to bring both
the EXD and the GHL wave functions into a diagonal form [the
so-called ‘‘canonical form’’ (28, 47)], i.e.,

�EXD
s,t �r1, r2� � �

k�1

M

zk
s,t���1; 2k � 1���2; 2k�	 , [8]

with the �(i)s being appropriate spin orbitals resulting from a
unitary transformation of the basis spin orbitals �(j)s (see Eq. 5);
only terms with zk � 0 contribute. The upper bound M can be
smaller (but not larger) than K (the dimension of the single-
particle basis); M is referred to as the Slater rank. One obtains
the coefficients of the canonical expansion from the fact that the
�zk�2 are eigenvalues of the hermitian matrix �†� [� (see Eq. 5)
is antisymmetric]. The von Neumann entropy is given by

S � ��
k�1

M

�zk�2log2� �zk�2� , [9]

with the normalization �k�1
M �zk�2 � 1. Note that the GHL wave

functions in Eqs. 6 and 7 are already in canonical form, which
shows that they always have a Slater rank of M � 2. One finds
SGHL

s � log2(1 
 �2) � �2 log2(�2)�(1 
 �2), and SGHL
t � 1 for

all B. For large B, the overlap between the two electrons of the
dissociated dimer vanishes, and thus � 3 1 and SGHL

s 3 1.

Neutral Repelling Bosons in Harmonic Traps: GP Equation. Mean-field
symmetry breaking for bosonic systems has been discussed
earlier in the context of two-component condensates, where
each species is associated with a different space orbital (48, 49).
We consider here one species of bosons but allow each particle
to occupy a different space orbital �i(ri). The permanent ��N	 �
Perm[�1(r1), . . . , �N(rN)] serves as the many-body wave function
of the unrestricted Bose–Hartree–Fock (UBHF) approximation.
This wave function reduces to the GP form with the restriction that
all bosons occupy the same orbital �0(r), i.e., ��N

GP	 � �i�1
N �0(ri),

and �0(r) is determined self-consistently at the restricted Bose–
Hartree–Fock (RBHF) level via the equation (50)

�H0�r1� � �N � 1�� dr2�0
��r2�V�r1, r2��0�r2���0�r1�

� �0�0�r1). [10]

Here, V(r1, r2) is the two-body repulsive interaction, which is taken
to be a contact potential, V� � g�(r1 � r2), for neutral bosons. The
single-particle Hamiltonian is given by H0(r) � �–h2ƒ2�(2m) 

m�0

2r2�2, where �0 characterizes the harmonic confinement.
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Neutral Repelling Bosons in Harmonic Traps: Symmetry Breaking. We
simplify the solution of the UBHF problem by considering
explicit analytic expressions for the space orbitals �i(ri). In
particular, since the bosons must avoid occupying the same
position in space to minimize their mutual repulsion, we take all of
the orbitals to be of the form of displaced Gaussians, namely,
�i(ri) � ��1/2��1 exp[�(ri � ai)2�(2�2)]. The positions ai
describe the vertices of concentric regular polygons, with both
the width � and the radius a � �ai� of the regular polygons
determined variationally through minimization of the total
energy EUBHF � ��N�H��N	���N��N	, where H � �i�1

N H0(ri) 

�i�j

N V(ri, rj) is the many-body Hamiltonian.
With the above choice of localized orbitals, the unrestricted

permanent ��N	 breaks the continuous rotational symmetry. How-
ever, the resulting energy gain becomes substantial for stronger
repulsion. Controlling this energy gain (the strength of correlations)
is the ratio R� between the strength of the repulsive potential and
the zero-point kinetic energy. Specifically, for a 2D trap, one has
R� � gm�(2�–h2) for a contact potential.

Neutral Repelling Bosons in Harmonic Traps: Restoration of Broken
Symmetry. Although the optimized UBHF permanent ��N	 per-
forms exceptionally well regarding the total energies of the trapped
bosons, in particular in comparison with the restricted wave func-
tions (e.g., the GP anzatz), it is still incomplete. Indeed, due to its
localized orbitals, ��N	 does not preserve the circular (rotational)
symmetry of the 2D many-body Hamiltonian H. Instead, it exhibits
a lower point-group symmetry, i.e., a C2 symmetry for N � 2 and
a C5 one for the (1, 5) structure of N � 6 (see below). As a result,
��N	 does not have a good total angular momentum. This paradox
is resolved through a post-Hartree–Fock step of restoration of
broken symmetries via projection techniques (45, 51), yielding a
new wave function ��N,L

PRJ	 with a definite angular momentum L,
that is

2���N,L
PRJ	��

0

2�

d� ��N���	ei�L, [11]

where ��N(�)	 is the original UBHF permanent having each
localized orbital rotated by an azimuthal angle �, with L being
the total angular momentum. The projection yields wave func-
tions for a whole rotational band. Note that the projected wave
function ��N,L

PRJ	 in Eq. 11 may be regarded as a superposition of
the rotated permanents ��N(�)	, thus corresponding to a ‘‘con-
tinuous-configuration-interaction’’ solution.

Here, we are interested in the projected ground-state (L � 0)
energy, which is given by

E0
PRJ � ��N,0

PRJ�H ��N,0
PRJ	���N,0

PRJ��N,0
PRJ	 . [12]

Results and Discussion
Two-Electron QD. To model the experimental elliptic QD device, we
take, following ref. 22, –h�x � 1.2 meV and –h�y � 3.3 meV. The
effective mass of the electron is taken as m* � 0.067 me (GaAs).
Since the experiment did not resolve the lifting of the triplet
degeneracy caused by the Zeeman term, we take g* � 0. Using the
two-step method, we calculate the GHL ST splitting JGHL(B) �
EGHL

s (B) � EGHL
t (B) as a function of the magnetic field in the range

0  B  2.5 T. Screening of the e–e interaction due to the metal
gates and leads must be considered to reproduce the experimental
J(B) curve. This screening can be modeled, to first approximation,
by a position-independent adjustment of the dielectric constant �
(52). Indeed, with � � 22.0 (instead of the GaAs dielectric constant;
i.e., � � 12.9), good agreement with the experimental data is
obtained (see Fig. 2). In particular, we note the ST crossing for B �
1.3 T and the flattening of the J(B) curve beyond this crossing.

We have also explored, particularly in the context of the EXD

treatment, a position-dependent screening using the functional
form, (e2��r12)[1 � (1 
 4d2�r12

2 )�1/2], proposed in ref. 24, with d as
a fitting parameter. The JEXD(B) result for d � 18.0 nm is depicted
in Fig. 2 (dotted line) and is in very good agreement with the
experimental measurement.

The singlet-state electron densities from the GHL and the EXD
treatments at B � 0 and B � 2.5 T are displayed in Fig. 3. These
densities illustrate the dissociation of the electron dimer with
increasing magnetic field. The asymptotic convergence (beyond
the ST point) of the energies of the singlet and triplet states, i.e.,
[J(B) 3 0 as B 3 �], is a reflection of the dissociation of the
2e molecule, since the ground-state energy of two fully spa-
tially separated electrons (zero overlap) does not depend on the
total spin.

In contrast, the singlet-state RHF electron densities fail to exhibit
formation of an electron dimer for all values of B. This underlies the
failure of the RHF method to describe the behavior of the
experimental J(B) curve. In particular, JRHF(B � 0) has the wrong
sign, while JRHF(B) diverges for high B as is the case for the RHF
treatment of double dots (see ref. 43).

Fig. 2. The ST splitting J � Es � Et as a function of the magnetic field B for
an elliptic QD with –h�x � 1.2 meV and –h�y � 3.3 meV (these values correspond
to the device of ref. 22). Solid line, GHL (broken-symmetry UHF plus restoration
of symmetries) results with a coordinate-independent screening (� � 22);
dashed line, EXD results with � � 12.9 (GaAs) but including screening with a
coordinate dependence according to ref. 24 and d � 18.0 nm (see text).
Remaining material parameters: m*(GaAs) � 0.067me, and g* � 0 (see text).
The experimental measurements (22) are denoted by open squares. Our sign
convention for J is opposite of that in ref. 22.

Fig. 3. Total electron densities (EDs) associated with the singlet state of the
elliptic dot at B � 0 and B � 2.5 T. (a) The GHL densities. (b) The EXD densities.
The rest of the parameters and the screening of the Coulomb interaction are
as in Fig. 2. Lengths are in nanometers, and densities are in 10�4 nm�2.
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For the GHL singlet, using the overlaps of the left and right
orbitals, we find that starting with � � 0.46 (C s � 0.76) at B � 0,
the interaction parameter (singlet-state concurrence) increases
monotonically to � � 0.65 (C s � 0.92) at B � 2.5 T. At the
intermediate value corresponding to the ST transition (B � 1.3 T),
we find � � 0.54 (C s � 0.83).

Our B � 0 theoretical results for � and C s are in remarkable
agreement with the experimental estimates (22) of � � 0.5  0.1
and C s � 0.8, which were based solely on conductance measure-
ments below the ST transition (i.e., near B � 0). We note that, for
the RHF, CRHF

s � 0, since a single determinant is unentangled for
both the two measures considered here.

Since the EXD singlet has obviously a Slater rank M � 2, the
definition of concurrence is not applicable to it. The von Neumann
entropy for the EXD singlet (SEXD

s ) is displayed in Fig. 4, along with
that (SGHL

s ) of the GHL singlet. SEXD
s and SGHL

s are rather close to
each other for the entire B range, and it is remarkable that both
remain close to unity for large B, although the maximum allowed
mathematical value is log2(K) [as aforementioned, we use K � 79;
i.e., log2(79) � 6.3]; this maximal value applies for both the EXD
and GHL approaches. The saturation of the entropy for large B to
a value close to unity reflects the dominant (and roughly equal at
large B) weight of two configurations in the canonical expansion
(see Eq. 8) of the EXD wave function, which are related to the two
terms (M � 2) in the canonical expansion of the GHL singlet (Eq.
6). This is illustrated by the histograms of the �zk

s �2 coefficients for
B � 1.3 T at the top of Fig. 4. These observations support the GHL
approximation, which is computationally less demanding than the
exact diagonalization, and can be used easily for larger N.

Neutral Repelling Bosons in Harmonic Traps. In Fig. 5, we display as
a function of the parameters R� the total energies for N � 6 bosons
calculated at several levels of approximation. In both cases the
lowest UBHF energies correspond to a (1,5) crystalline configura-
tion, namely one boson is at the center and the rest form a regular
pentagon of radius a. Observe that the GP total energies are slightly
lower than the ERBHF

G ones; however, both exhibit an unphysical
behavior since they diverge as R� 3 �. This behavior contrasts
sharply with that of the UHF energies, EUBHF and PRJ (see below),

which saturate as R� 3 �; in fact, a value close to saturation is
achieved already for R� � 10. We have checked that for all cases
with N � 2 � 7, the total energies exhibit a similar behavior. For
a repulsive contact potential, the saturation of the UBHF energies
is associated with the ability of the trapped bosons (independent of
N) to minimize their mutual repulsion by occupying different
positions in space, and this is one of our central results. For N � 2,
the two bosons localize at a distance 2a apart to form an antipodal
dimer. For N  5, the preferred UBHF crystalline arrangement is
a single ring with no boson at the center [usually denoted as (0, N)].
N � 6 is the first case having one boson at the center [designated
as (1, N � 1)], and the (0, 6) arrangement is a higher energy isomer.
The structural parameters (e.g., the width of the Gaussian orbitals
and the radii of the polygonal ring, calculated via the UBHF
method) show a saturation behavior similar to that illustrated above
for the energy of the system (3). In contrast, the width of the
condensate cloud (i.e., the GP solution) diverges with increasing
repulsion strength (R�).

The saturation found here for 2D trapped bosons interacting
through strong repelling contact potentials is an illustration of the
‘‘fermionization’’ analogies that appear in strongly correlated sys-
tems in all three dimensionalities. Indeed such energy saturation
has been shown for the TG 1D gas (42, 39) and has also been
discussed for certain 3D systems [i.e., three trapped bosons (53) and

Fig. 6. Single-particle densities (a–c) and conditional probability distribution
(d) for N � 6 2D harmonically trapped neutral bosons with a contact interac-
tion and R� � 25. (a) The single-orbital self-consistent GP case. (b) The sym-
metry-broken UBHF case (static crystallite). (c) The projected case (symmetry-
restored wave function; see Eq. 11). The crystalline structure of the outer ring
in this last case is ‘‘hidden’’ but is revealed in the conditional probability
distribution (10, 16) displayed in d, where the observation point is denoted by
a black dot (on the right). Lengths are in units of l0.

Fig. 4. Von Neumann entropy for the singlet state of the elliptic dot as a
function of the magnetic field B. Solid line, GHL; dashed line, EXD. The rest of
the parameters and the screening of the Coulomb interaction are as in Fig. 2.
At the top, we show histograms for the �zk�2 coefficients (see Eq. 8) of the
singlet state at B � 1.3 T, illustrating the dominance of two configurations.
Note the small third coefficient �z3�2 � 0.023 in the EXD case.

Fig. 5. Total energies as a function of R� for various approximation levels,
calculated for N � 6 harmonically confined 2D bosons in the (1,5) lowest-
energy configuration. RBHF�G, restricted Bose–Hartree–Fock (RBHF) energy,
ERBHF

G
, with the common orbital �0(r) approximated by a Gaussian centered at

the trap origin; GP, the Gross–Pitaevskii energy; PRJ, the energy of the sym-
metry-restored state obtained via projection of the (unrestricted) UBHF state.
Energies are in units of –h�0.
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an infinite boson gas (54)]. Saturation of the energy and the length
of the trapped atom cloud (and thus of the interparticle distance)
has been measured recently for the 1D TG gas (see in particular
figures 3 and 4 in ref. 36, and compare with the similar trends
predicted here for the 2D case in Fig. 5).

For N � 6 2D bosons, Fig. 5 shows that the E0
PRJ energies share

with the UBHF ones the saturation property for the case of a
contact-potential repulsion. However, the projection brings further
lowering of the total energies compared with the UBHF ones. [The
projected ground state is always lower in energy than the original
broken-symmetry one (55).] Thus, for strong interactions (large
values of R�) the restoration-of-broken-symmetry step yields an
excellent approximation of both the exact many-body wave function
and the exact total energy.

The transformations of the single-particle densities (displayed in
Fig. 6 for N � 6 neutral bosons interacting via a contact potential
and R� � 25) obtained from application of the successive approx-
imations provide an illustration of the two-step method of symme-
try breaking with subsequent symmetry restoration. Indeed, the GP
single-particle density (Fig. 6a) is circularly symmetric, but the
UBHF one (Fig. 6b) explicitly exhibits a (1,5) crystalline configu-
ration. After symmetry restoration (Fig. 6c) the circular symmetry
is reestablished, but the single-particle density is radially modulated
unlike the GP density. In addition, the crystalline structure in the
projected wave function is now hidden; however, it can be revealed
through the use of the conditional probability distribution (10, 16)
(see Fig. 6d), which resembles the (crystalline) UBHF single-
particle density, but with one of the humps on the outer ring missing
(where the observer is located). In particular, P(r0, r0) � 0 and the
boson associated with the observer is surrounded by a ‘‘hole’’
similar to the exchange-correlation hole in electronic systems. This
is another manifestation of the ‘‘fermionization’’ of the strongly
repelling 2D bosons. However, here as in the 1D TG case (42, 39),
the vanishing of P(r0, r0) results from the impenetrability of the
bosons. For the GP condensate, the conditional probability distri-
bution is independent of r0, i.e., PGP(r, r0) � ��0(r)�2, reflecting the
absence of any space correlations.

It is of importance to observe that the radius of the BEC (GP
case; Fig. 6a) is significantly larger than the actual radius of the
strongly-interacting crystalline phase (projected wave function; Fig.
6c). This is because the extent of the crystalline phase saturates,
whereas that of the GP condensate grows with no bounds as
R�3 �. Such dissimilarity in size (between the condensate and the

strongly interacting phase) has been also predicted (40) for the
trapped 1D Tonks–Girardeau gas and indeed observed experimen-
tally (36). In addition, the 2D single-particle momentum distribu-
tions for neutral bosons have a one-hump shape with a maximum
at the origin (a behavior exhibited also by the trapped 1D TG gas).
The width of these momentum distributions versus R� increases and
saturates to a finite value, whereas that of the GP solution vanishes
as R� 3 �.

Summary
In this article we explored symmetry-breaking transitions predicted
to occur in confined fermionic and bosonic systems when the
strength of the interparticle repulsive interactions exceeds an
energy scale that characterizes the degree of confinement. For two
electrons in an elliptic QD, we predicted formation and effective
dissociation (with increasing magnetic field) of an electron dimer,
which is reflected in the behavior of the computed ST splitting, J(B),
that agrees well (Fig. 2) with measurements (22).

Furthermore, we showed that, from a knowledge of the dot shape
and of J(B), theoretical analysis along the lines introduced here
allows probing of the correlated ground-state wave function and
determination of its degree of entanglement. This presents an
alternative to the experimental study where determination of the
concurrence used conductance data (22). Such information is of
interest to the implementation of spin-based solid-state quantum
logic gates.

For the case of 2D trapped bosonic clusters, we found with
increasing repulsive two-body interaction localization of the bosons
in the trap, resulting in formation of crystalline patterns made of
polygonal rings; although we have focused here on repulsive contact
interactions, similar results were obtained also for a Coulomb
repulsion (3).

These results provide the impetus for experimental efforts to
access the regime of strongly repelling neutral bosons in two
dimensions. To this end we anticipate that extensions of method-
ologies developed for the recent realization of the Tonks–
Girardeau regime in one dimension [using a finite small number of
trapped 87Rb and optical lattices, with a demonstrated wide vari-
ation of R� from 5 to 200 (35) and from 1 to 5 (36)] will prove most
promising. Control of the interaction strength via the use of the
Feshbach resonance may also be considered (33).

This work was supported by U.S. Department of Energy Grant FG05-
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