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A method for the evaluation of the angular width of an electron beam generated by a nanoconstriction is
proposed and demonstrated. The approach is based on analysis of a narrow-width electron flow that quantizes
into modes inside a confining constriction, which is described in the adiabatic approximation, evolving into a
freely propagating electronic state after exiting the constriction. The method that we developed allows us to
find the parameters and the shape of the constriction that are optimal for generation of extremely narrow
electron beams. In the case of a constriction characterized by a linear widening shape, an asymptotically exact
solution for the injection problem is found. That solution verifies semiquantitative results related to the angular
characteristics of the beam, and it opens the way for determination of the distribution function of the electrons
in the beam. We have found the relationship between the angular distribution of the electron density in the
beam and the quantum states of the electrons inside the constriction. Such narrow electron beams may be
employed in investigations of electronic systems and in data manipulations in electronic and spintronic
devices.

DOI: 10.1103/PhysRevB.72.115332 PACS number�s�: 73.23.Ad, 72.10.Bg, 73.40.�c

I. INTRODUCTION

Microconstrictions �also referred to as point contacts�
connecting macroscopic reservoirs are of particular interest
in efforts aimed at the generation and investigation of ballis-
tic quasiparticle transport in solids.1 Recently, the develop-
ment of methods for imaging electron flows attracted signifi-
cant attention2–8 due to its potential to unveil the details of
electron motion in low-dimensional systems and to provide
insights into the behavior of devices in the quantum regime.
Moreover, with the use of a most recently developed erasable
electrostatic lithographic technique,9 creation of quantum
constrictions with desired shapes has been demonstrated. Ad-
ditionally, metallic nanowires with high carrier density10 may
also hold some promise as devices for injection of electron
flows. In light of above, the problem of determining the op-
erational parameters of an electron beam injected through a
constriction with a highly reduced size is both timely and
important.

An electron flow injected through a constriction is in gen-
eral anisotropic. One of the first demonstrations of the im-
portance of the velocity anisotropy in electron flows can be
found in experiments with electron beams injected by quan-
tum point contacts,11,12 where a collimation effect13 was
found �see also Ref. 14�. The relative angular narrowness of
an electron beam allows experimental determination of the
electron-electron relaxation time.15–18 In the scattering spec-
troscopy method proposed and demonstrated in Ref. 19, the
narrowness of the electron beam plays a key role: that is, the
ability to control the scattering angle by means of a narrow-
angle beam injector, as well as a detector, allows one to
determine experimentally the electronic angle-dependent dif-
ferential scattering cross sections associated with different
types of scatterers. Consequently, a narrow electron beam
may serve as a powerful tool for studying the properties of

electron scattering processes and for determination of the
characteristics of the electron gas.

Narrow electron beams may also serve as most effective
tools for the transmission of information in microdevices and
nanodevices �including transportation of spin-polarized
states20� and as instruments for handling the spin and the
charge states of quantum memory cells. In this context, we
remark that issues pertaining to the angular and spatial dis-
tribution of narrow electron beams are of great significance
for the development of high-resolution experimental tech-
niques that utilize such beams, as well as for the develop-
ment and application of accurate spatially targeted transfer of
information using narrow electron flows. We note here that,
to date, the smallest angular width of an electron beam in-
jected into a two-dimensional electron gas �2DEG� by a
quantum point contact is of the order of 10°; in Ref. 19 an
angular width ��12° was observed �while Refs. 2 and 3
reported a width ��6°, it corresponds only to the most
pronounced central part of the electron flow�.

The main goal of our work is to analyze issues pertaining
to the prospect of generating super-narrow electron beams.
To this end, we study also the distribution function of elec-
trons in the beam, since it raises considerations related to the
selection of conditions for the formation of narrow beams.
The interest in conductance quantization in quantum two-
dimensional and three-dimensional constrictions �such as
point contacts, nanowires, and atomic chains�21–26 led to in-
tensive investigations of the electronic states in these sys-
tems. One of the main characteristics of this phenomenon
relates to the fact that the quantized staircaselike variation of
the conductance �with gate voltage or constriction width� is
determined by the adiabatic properties of the constriction,
and it is rather insensitive to details of the geometrical con-
figuration; here, “adiabatic” means a slow dependence of the
constriction width 2r on the coordinate z along the longitu-
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dinal axis of the constriction �see Fig. 1�. The width changes
noticeably on a scale that exceeds essentially the minimal
width r�0� �see Ref. 21�. However, the problem of the states
of electrons that have passed through the constriction has not
been solved in the general case of the adiabatic approxima-
tion, since the transformation of the adiabatic quantum states
inside the constriction to the distribution of freely moving
electrons occurs in a region where the adiabatic approxima-
tion ceased to be valid. Nevertheless, in Ref. 13 the charac-
teristics of an electron beam injected by a constriction have
been studied in the adiabatic approximation using the classi-
cal adiabatic invariant I= px�z�r�z�, where px is the x compo-
nent of the electron momentum �see Fig. 1�. Due to the con-
servation of the adiabatic invariant I, the beam converges
�the flaring effect13� with increasing z, and near the exit of
the constriction we have

sin��

2
� =

r�0�
rmax

, �1�

where rmax is the half width of the constriction at the exit,
and r�0� is the half width at z=0 �the origin of the z axis is
taken at the middle of the constriction�. This result13 is valid,
as will be shown in Sec. I, only for relatively “short” con-
strictions where the adiabatic approximation is effectively
valid for the entire constriction. A simulation of the classical
trajectories of the particles in such constrictions has been
presented in Ref. 12 and has been used to determine the
angular width of the beam.

In Sec. I, we propose an approach that allows us to de-
scribe qualitatively the motion of electrons exiting from the
adiabatic region and, thus, it permits analysis of the angular
characteristics of a beam injected by a constriction of an
arbitrary shape. In this case the parameters of the constriction
become particularly important at distances exceeding the
characteristic length scale that determines the conductance
quantization behavior.

In Sec. II, we find an asymptotically exact solution for
electron states in a constriction modeled by a linear widen-
ing. This solution describes the conversion of adiabatic states
inside the constriction into states described by semiclassical
wave functions outside it, and it supports the results of the
qualitative study. The “linear” constriction that we study here

is also of additional interest since we find that in such a
constriction the pattern of the distribution of the electronic
density inside the constriction is maintained when the elec-
trons move away from the exit. Such distributions were ob-
served in Refs. 4 and 8 using scanning probe microscopy
�see also Ref. 5 and references therein�.

In Sec. III, we consider the electronic distribution func-
tion of the injected beam and compare our results with those
of Refs. 4–8, 13, and 27. We analyze the conditions when the
distribution of electrons in the beam reproduces the probabil-
ity density function inside the constriction; a distribution of
this type has been observed in Refs. 4 and 6–8. We find also
the electron distribution in the opposite limiting case where
the constriction shape varies in a less smooth manner.

For the sake of simplicity, we limit ourselves here to two-
dimensional �2D� constrictions, noting that the extension of
our results to the three-dimensional case is rather straightfor-
ward. Additionally, we neglect electron-impurity scattering
and consider only the ballistic regime �which is readily
achievable in 2D heterostructure systems, e.g., see Ref. 12�.
Because of the scattering of electrons by the donor atom
density fluctuations �in 2D heterostructures� and by
impurities,5 the electron flow may form narrow branches
with apparently small changes in the total angular width of
the flow. An additional widening �spreading� of the electron
flow may be estimated �in a diffusive approach� as ��
��0

�z /z0 ,z�z0 �here z is the distance along the propaga-
tion axis from the point contact, z0 is the mean scale of the
spatial fluctuations of the scattering potential, and �0 is an
average angular deviation of the electrons due to the interac-
tions with the fluctuations of the underliyng potential�. We
remark that the distance dependence of the angular widening
of the beam caused by electron-electron interactions �see
Ref. 28� is quite different from the above expression.

II. INJECTION CONDITIONS FOR NARROW BEAMS

Let us consider a constriction with an adiabatic narrow
region; apparently, other types of constrictions have been
commonly found to be unsuitable as effective injectors of
narrow beams. Note that the approach of Ref. 13, which is
based on employment of an adiabatic invariant, may be gen-
eralized to take into account the quantization of the energy of
transverse motion �along the x direction� of electrons in the
constriction.21 It is known �see, for example, Refs. 29 and
30� that in the semiclassical approximation, the adiabatic in-
variant is quantized in units of �. Qualitatively, we may write
for all the electron states in the constriction

I = pxn�z�rn�z� � ��n + ��� , �2�

where n=1,2 , . . . is a discrete quantum number, pxn�z� and
rn�z� are the root-mean-square values of px and x, respec-
tively, in the nth quantum state, and � and � are numerical
constants �of the order of unity� which depend on the model
of the confinement potential.

Let us show that the role of the breakdown of the adia-
batic approximation in the formation of a beam may be ana-
lyzed via the use of a simple picture of “detachment” of the
beam from the constriction walls �at least for constrictions

FIG. 1. Schematic of the constriction and an injected beam. The
length of the constriction L is taken such that the detachment point
ztn is located inside the constriction.
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where the sign of the wall curvature remains the same
throughout�. Detachment of the beam occurs when the open-
ing angle of the particles in the constrictions �of the order of
pxn�z� / pzn�z� that decreases with the distance from the center
due to the increase of rn�z�	 becomes smaller than the corner
angle of the constriction drn�z� /dz. Thus, the “detachment
point” ztn �see Fig. 1� for the nth mode of the beam may be
determined from the following equations

pzn�z�rn�z�
drn�z�

dz
= ��n + ��� , �3�

pzn�z� = �2m��F − �n�z�	 . �4�

Here, �n�z� and pzn�z� are, respectively, the energy of trans-
verse motion and the z component of the momentum, which
are well-defined values in the adiabatic approximation,21 m is
the effective mass, and �F is the Fermi energy of the elec-
trons in the wide region; we assume that the voltage drop
across the constriction is small enough, that is eV	�F. The
condition of the reality of pzn�0� determines the number nmax

associated with the last mode which can pass through the
constriction. The angular width �n of the nth component of
the beam is given by the following equation sin��n /2�
= pxn�ztn� / pF, since the transverse momentum of an electron
remains constant when the electron exits the constriction and

p
= pF=�2m�F far from the constriction. Taking into ac-
count Eq. �2� we obtain

sin��n

2
� �

��n + ���
pFrn�ztn�

. �5�

This equation takes into account a possible variation of pz
due to the variation of the confinement potential U�x ,z� at
z
ztn.

Let us show next that the “detachment point” ztn, deter-
mined by Eqs. �3� and �4�, coincides with the limit of validity
of the adiabatic approximation. The wave function of an
electron in the adiabatic approximation has the following
form �=�n�x ;z�n�z� �see Ref. 21�, where the function
�n�x ;z� satisfies the Schrödinger equation that is local with
respect to z

�−
�2

2m

�2

�x2 + U�x,z���n = �n�z��n. �6�

The function n�z� is the wave function associated with
longitudinal motion �along the axis of the constriction� in the
field of the “effective potential” �n�z�. From examination of
the terms in the complete Schrödinger equation that are
maintained in comparison with those that are omitted in the
adiabatic approximation �these include the terms �2� /�z2

and ��� /�z��� /�z�	, we obtain the following inequalities �in
Eq. �7� primes denote derivatives with respect to z	

nrn�
2,rnrn�,

rnpznrn�

�
	 n . �7�

These inequalities determine the region where the adia-
batic approximation is valid. It is easy to check that the last
inequality will break down first �or simultaneously with the

others� when z increases �z
0�. To prove this, it is enough
to consider the region where rn�z�−rn�0�
rn�0�, because in
this narrow region the validity of all these inequalities is
equivalent to the initial assumption about the adiabatic con-
striction. If we assume that rn increases monotonically with
the increase of the z coordinate and that U�x ,z� decreases
monotonically �and, therefore, �n� pxn

2 /2m+U�0,z� de-
creases too	, it follows from Eq. �4�, that pzn� pxn��n /rn
for modes which move through the constriction, thus proving
our conjecture. Therefore, the regions that are associated
with the adiabatic approximation and with free propagation
of the particles are adjacent to each other, and there is no
intermediate region between them. This conclusion justifies
our suggestion that the opening angle of the constriction �
=�nmax

could be evaluated from Eqs. �3�–�5�.
To end our discussion of Eq. �7�, we note that the validity

of the inequalities r��n /r�r�pz /� may be extended to the
case that the profile of the constriction has a “break,” i.e., a
small region with a large shape curvature. If r�	1 on both
sides of the break it leads to only small corrections to the
electron wave functions. Imperfections in the profile of the
constriction �such as breaks or steps� which are small com-
pared with the electron wave length have only a weak effect
on the characteristics of the beam.

In the hard-wall model that we mainly use below, rn�z�
does not depend on n and it is equal to the half width of the
constriction r�z�. Also, �n�z�= ���n /2r�z�	2 /2m+U�z�,
where U�z� is the part of the potential that depends on the z
coordinate, �=0, and �=� /2. We analyze first the possibil-
ity of generating a narrow beam in a constriction with no
potential barrier in the center, i.e., U�z�=0. In this case,
nmax�2pFr�0� /�� and we obtain from Eq. �5�

sin��

2
� =

r�0�
r�ztnmax

�
. �8�

Note that Eq. �8� is similar to Eq. �1� of Ref. 13, with the
only distinction regarding the occurence of r�ztnmax

�, instead
of rmax. Since we consider here a narrow beam, �	1, in
order to find the detachment point we may analyze Eq. �3�
far away from the center of the constriction, where r�z�
�r�0� and where, following Eq. �4�, pzn� pF. Let the shape
of the constriction in this region be given by the following
power dependence: r�z�=a
z
� �from the evident condition
r�ztnmax

��r�0� we readily conclude that a	 �r�0��1−�	. In this
case, from Eqs. �3� and �8� and the aforementioned estimate
for nmax and pzn, we obtain expressions for the detachment
point ztn and angular width �. In particular, from these for-
mulas follows the following relation: ztnmax

�4�r�0� /�2.
This relation determines the minimal length L of the con-
striction �see Fig. 1� which produces the electron beam with
the given angular width �

L � ztnmax
, ztnmax

� 4�
r�0�
�2 . �9�

According to Eq. �1�, the reduction of the constriction
length L down to the length scale less than ztnmax

�when the
constriction ends abruptly in the adiabatic region� leads to
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increasing of the angular width of the beam. On the other
hand, an increase of L beyond the length scale determined by
Eq. �9� does not change �, because the beam had been al-
ready detached from the constriction walls earlier on the
length scale ztn. In other words, to generate a flow with an
angular width � one may need to use a constriction with an
effective length that is not smaller than ztnmax

, as determined
in Eq. �9�. Therefore, we conclude that the “flaring effect”13

produces narrow beams only for relatively long constric-
tions.

Decreasing the relative length of the constriction is related
to a decrease of the exponent �. It is evident that the detach-
ment of a beam is possible only if �
1. Nevertheless, if 1

2
���1, the condition z	ztnmax

��r�0� /a2	1/�2a−1� determines
the adiabatic region. At z�ztnmax

the propagation of the elec-
trons can be described in terms of classical mechanics. It is
possible to verify that Eq. �9� remains valid in this case and
that the optimal length of the constriction �required in order
to generate a narrow beam� can be estimated to be of the
order of ztnmax

.
The case when �= 1

2 is of special interest. When a2=2r
and pz� pF, Eq. �3� can be used for all values of z, and the
adiabatic condition is fulfilled everywhere in the constric-
tion. Thus, for �= 1

2 , Eq. �9� is valid for any length of con-
striction �if �	1�. This differs from the case of �


1
2 ,

where, as aforementioned, an increase of L beyond the de-
tachment point zt does not reduce the angular width of the
beam. When �	1, see Eq. �9�, L�2r�0� /�2 �at a2�r�0�	
will be valid for arbitrary length of the constriction. In the
case where ��

1
2 the relation between the relative length and

the angle � is less favorable in the adiabatic region z
�ztnmax

. Therefore, a constriction of parabolic shape, r2

�r�0�z �see Fig. 2�, is the optimal choice. The case when
�=1 will be discussed in detail in the next section.

For a model of a “square” constriction21 r=r�0�+2z2 /R,
with r�0�	R, and from Eqs. �8� and �9� we obtain for �
	1

� � 4�r�0�/R	1/3, L � 1
2 �r�0�R2	1/3. �10�

From this expression, we conclude that the distance scale for
formation of an electron beam is larger than the distance �of
the order of �r�0�R�1/2	 that determines the conductance
quantization.

The potential barrier in the center of constriction may also
lead to the narrowing of the electron flow.13 The cause is that
in addition to the flaring effect with increasing z, the pz com-

ponent of the momentum increases also due to the influence
of the potential U�z�.

In the hard-wall approximation, we may write Eqs.
�3�–�5� for n=nmax in the following form

pF�zt�r�zt�
dr

dz
= pF�0�r�0� ,

pF�z� = �2m��F − U�z�	 ,

� � 2
pF�0�r�0�

pFr�zt�
. �11�

Here we assume also that �	1 and pz�zt�� pF�zt�. As
may be seen from Eq. �11�, the flaring effect and the effect of
the potential are independent from each other only when
U�z�=const at z�zt; otherwise the potential barrier leads to a
reduction of r�zt�, i.e., it results in an attenuation of the flar-
ing effect. Thus, in the case of a linear constriction, i.e., r
�z, the two effects will compensate each other �if U�z�=0 at
z
zt	; the opening angle does not vary when the potential is
switched on, but the optimal relative length, L�zt, is re-
duced.

An alternative way to obtain a narrow beam, without hav-
ing to resort to the use of a long constriction, consists of the
application of an added repulsive potential. For a sufficiently
wide constriction �r�0���F�2�� / pF and a length that ex-
ceeds slightly the width	 it is sufficient to apply a potential
that is transparent for one mode �n=1� only, i.e., �F−U�0�
= ��� /r�0�	2 /8m. From Eq. �1�, we obtain an opening angle
���F /r�0� �for short constriction r�zt��r�0�	.

Note that Eqs. �8�–�11� do not include the Planck
constant—indeed, they use only a classical adiabatic invari-
ant and classical considerations pertaining to the breakdown
of adiabaticity �the detachment of the beam�. But, if we
would like to minimize both the angular and spatial width
�that is the transverse size� of the beam near the exit from the
constriction we have to take into account the minimal prod-
uct of these values, r�ztnmax

����F, allowed by the uncer-
tainty principle. This underlies the finding that in order to
obtain an “integrally” narrow beam, one has to use a metallic
constriction with a small electron wavelength at the Fermi
level. Here an “integrally” narrow beam means an electron
flow with both the transverse width of the flow and the an-
gular spreading restricted to small values.

III. BEAM INJECTION BY A LINEAR SHAPE
CONSTRICTION

Let us consider here the electron states in a constriction
characterized by a linear-widening shape �see Fig. 2�b�	, i.e.,
r=bz at r�r�0�. We show below that when b	1 this prob-
lem has a simple, and an asymptotically exact, solution. Note
that a constriction with a linear widening shape is a special
case of a hyperbolic constriction. In this case the variables in
the Schrödinger equation can be separated, thus allowing one
to obtain a solution for the conductance in this type of
contact.23

FIG. 2. Constrictions of different shapes: �a� a parabolic con-
striction, with r2�r�0�z at r�r�0�, and �b� a linear widening
constriction.
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We use the aforementioned fact that px decreases in an
adiabatic widening when the electron propagates from r�0�
to r�r�0�. This underlies the validity of the inequalities px

	 p��2m� and �p− pz�	 p. The electron wave function
may be written in the form

��x,z� = ��x,z� exp�i
pz

�
� . �12�

Using the hard-wall model in the linear section of the
constriction and taking into account that the value of the

component pz is close to the total momentum p, we may
neglect in the Schrödinger equation the second derivative of
� with respect to z, that is

� �2

2m
� �2�

�x2 + i
�p

m

��

�z
= 0. �13�

It is readily observed that the solutions of Eq. �13� with a
vanishing boundary condition, ��
x
=r�z� ,z	=0, have the
following form

�n = � 1
�bz

sin�n

2
� x

bz
+ 1��exp� ip

2�z
x2 + ��n�

2bp
�2�� , x � bz ,

0, x 
 bz .
� �14�

Using these functions for estimations of the omitted term
in the Schrödinger equation, we observe that our initial as-
sumption is valid if b	1 and z�n�F /b �the omitted term is
less than the second one on the left-hand side of Eq. �13�	.
Taking into account that nmax�r�0� /�F for electron modes
passing through the constriction, we find that the last in-
equality is equivalent to the condition r�r�0�.

When z	n�F /b2, we can neglect the x2 dependence of
the exponent in Eq. �14� compared with the x dependence of
the trigonometric function and, consequently, the wave func-
tion �n has an adiabatic form.21 If z�n�F /b2 �p� pF
=2�� /�F� the wave function in Eq. �14� describes �in the
semiclassical approximation� a beam of quasiparticles
�whose distribution function we discuss in the next section�,
which propagates freely inside a solid angle �=2 arctan�b�.
In some sense, the detachment of the beam from the side
walls occurs also in the linear constriction—here, when z
�n�F /b2 particles “glide” along the walls and thus one can
neglect their interaction with the walls. Therefore, the solu-
tion given in Eq. �14� allows us to trace the transformation of
the adiabatic modes inside the constriction to the beam states
described by the classical distribution function.

We remark that the asymptotically valid result �14� sup-
ports the approximate approach developed in the previous
section. In the case of the linear constriction, taking into
account estimates of nmax and pz from Sec. II, we obtain from
Eq. �3� the following result, ztn=r�0�n /b2nmax. This result
coincides approximately with the limit of the adiabatic re-
gion for each of the modes, n�F /b2. Equations �8� and �9�,
which follow from the approximate approach, are also valid.
It is important that when b	1, the limit of the adiabatic
region is placed in the domain of applicability of the solution
given by Eq. �14�, r�r�0�. Thus, the solution in Eq. �14� can
be matched with an adiabatic wave function21 that corre-
sponds to small z, where the shape of the constriction devi-
ates from the linear form. Consequently, the single inequality
b	1, permits us to describe analytically the electron state
for all values of the coordinate z.

Note also that a solution of the type given in Eq. �14� may
be obtained in the “soft-wall” model for certain types of
potentials forming the constriction. Let us use in the follow-
ing a potential given by U�x ,z�=z−2u�x /z�, and let �n denote
the solutions of the “local” Schrödinger equation with eigen-
values �̃n

�2

2m
�n� + u�n = �̃n�n. �15�

Here the derivatives are taken with respect to x /z. An
equation similar to Eq. �13� is obtained by

�2

2m

�2�

�x2 − U�x,z�� +
i�p

m

��

�z
= 0. �16�

The solutions of Eq. �16� are

�n =
1
�z

�n� x

z
�exp� i

�z
 px2

2
+

�̃nm

p
�� . �17�

For Eq. �16� to serve as a good approximation to the
complete Schrödinger equation, the conditions z���̃nm / p2

and bn	1 have to be fulfilled. An example where these con-
ditions are fulfilled is provided by the potential U�x ,z�
=c�x2 /z4�+d /z2, where c and d are constants, and c
� ��n�2 /m. In the above, bn may be termed as the “localiza-
tion radius” of the function �n. For the soft-wall potential
discussed here, bn plays �for the nth mode� the same role as
the parameter b introduced earlier in the context of the hard-
wall model �see the beginning of this section, Eq. �14�	;
physically, bn is the turning point in Eq. �15�, corresponding
to the location where u�x /z�= �̃n and consequently the kinetic
energy vanishes there. We thus conclude that while for x /z
�bn the function �n takes finite values, it decreases �typi-
cally exponentially� for x /z
bn.

The solution given in Eq. �17� also supports our results
that have been obtained in the frame of the approximate ap-
proach of Sec. II. Let us discuss the aforementioned model
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of the harmonic transverse potential �at d=0�. In contrast to
the hard-wall model, the parameters bn and, consequently, rn
depend on the index n :rn�bn� �n+��1/2 �for the harmonic
potential �=− 1

2 , n=1,2 , . . .�. In this model, we obtain from
Eq. �3� the length of the adiabatic region which does not
depend on the index n :ztn=r�0� /bnmax

2 ��F /b1, the same es-
timate we obtain when compare the result in �17� with the
electron wave function in the adiabatic approximation.21

Equations �8� and �9� are also valid for this model.

IV. THE DISTRIBUTION FUNCTION OF ELECTRONS IN
A BEAM

The wavelength of the electron in the x direction, h / px,
becomes less than the transverse size of the beam at a dis-
tance �along the constriction axis� z�ztnmax

from the center
of the constriction. This means that the electron wave func-
tion at this distance corresponds to the quasiclassical ap-
proximation �e.g., see Ref. 29� and wave functions �14� and
�17� have the quasiclassical form �=g exp�iS /��, where g is
a smooth function of the x coordinate. The transverse mo-
mentum px and the action S are related by px=�S /�x. For
such circumstances, the electron beam may be considered as
a classical object, and the distribution function of such a
classical beam, radiated from a small region, may be written
as

f�px,x,z� = ��x,z���px − xp/z� ,

��x,z� = z−1��x/z� , �18�

where ��x ,z� is the distribution of the electrons with coordi-
nates x and z. This form of the distribution function follows
from a very simple fact. Namely, regardless of the type of
distribution in the small region of injection, after a lapse of
time �when the electrons move off from the beam axis to a
distance which exceeds the initial width of the beam� the x
component of the velocity of an electron, vx, and its x coor-
dinate will be related by vx=x / t. Taking into account that in
the case of narrow beam t=z /v with a good accuracy, we
obtain Eq. �18�. We suppose also that all the electrons in the
beam have a definite energy, p2 /2m. The function ���� is the
angular distribution of particles, expressing the deviation
from the beam axis. The distribution in Eq. �18� satisfies the
condition of conservation of the particle flow, i.e.,
���x ,z�dx=const.

When z�ztnmax
the exact solution given by Eq. �14� is the

semiclassical wave function �the rapid x dependence is due
to the x2 term in the exponent, px=xp /z and it leads to the
distribution function described by Eq. �18�. The contribution
of the nth mode to the distribution function ���� �normalized
to unity, i.e., ��n���d�=1� has the form

�n��� = z
�n�x,z�
2, � = x/z , �19�


�n�x,z�
2 = ��bz�−1 sin2�n

2
��

b
+ 1�� , 
�
 � b ,

0, 
�
 
 b .
�

�20�

Thus, in the linear constriction model, the density of par-
ticles in the beam reproduces exactly the contribution of the
corresponding adiabatic mode to the density of particles.
This is true also in the case of a constriction modeled by
‘soft’ walls ���n= 
�n
2, see Eq. �17��	.

The above demonstrates that the linear constriction model
yields an optimally smooth matching between the adiabatic
states and the classical ones when the pattern of the distribu-
tion of the electronic density inside the constriction, 
�n�x�
2,
is maintained as the electrons move away from the exit.

Let us consider now a constriction model that describes
the opposite limit to the linear constriction discussed
above—that is, when the constriction ends abruptly in the
adiabatic region �this problem has been considered numeri-
cally in Ref. 27�. Note first, that Eq. �13� is equivalent to the
one-dimensional time-dependent Schrödinger equation; the
time of motion along the z axis is t=zm / p. Consequently,
when �	1, the problem concerning the behavior of par-
ticles leaving the adiabatic constriction can be mapped onto
the one concerning determination of the response of particles
initially localized in a potential well to the sudden removal
of the well. The latter problem has an evident solution—i.e.,
in the �momentum� px representation, the density 
�n�px�
2
�instead of 
�n�x /z�
2, as was the case for the linear constric-
tion� is conserved in time. Taking into account Eq. �18� we
obtain

�n�q� = 2�p�
�n�px = p��
2. �21�

In the hard-wall potential model


�n�p��
2 =

n2rt sin2�krt +
�n

2
�

4�krt�2 − ��n

2
�2�2

�2

, k =
�p

�
, �22�

where 2rt is the width of the constriction at the place where
the constriction terminates. The main difference between the
distributions given in Eqs. �19� and �20� and Eqs. �21� and
�22� is that in the first case, the distributions have the same
angular size � for all n, while in the second case, the distri-
butions are localized near the angles �= ±���n−1� /2rtp �the
width of the main peaks is of the order of � /rtp�.

The function described in Eq. �22� is valid for an arbitrary
shape of the constriction, if we interpret �n�px� as the wave
function of the electron at the exit of the constriction ��z
=zt, px	 pz�. While in general this wave function differs
from the one at the center of the constriction, the two are
similar when the electron does not undergo any collisions
with the walls after it leaves the adiabatic region. The latter
takes place when the radius of curvature of the constriction
in the “detachment” region satisfies the condition
R	rt /�2—this inequality is the applicability condition of
Eq. �21�. In the opposite limiting case, i.e., for R�rt /�2, Eq.
�19� is valid. Here the radius of the constriction at the de-
tachment point rt �where the adiabatic approximation is vio-
lated� can be determined as the maximum value of r in the
region where dr /dz��; R is the radius of curvature of the
constriction in this region.

GURZHI et al. PHYSICAL REVIEW B 72, 115332 �2005�

115332-6



The � dependencies of �n for the first three quantum
modes in the hard-wall constriction model are displayed in
Fig. 3. The electron modes radiated by a constriction with a
shape close to the linear widening one �a radius of curvature
R�rt /�2� are displayed in Fig. 3�a�. These modes reproduce
the x dependence of the 
�
2 function inside the constriction.
In Fig. 3�b�, we display the radiation from a constriction
which ends abruptly in the adiabatic region, R	rt /�2. The
difference between the characteristics of the electron flows
generated by the two types of constrictions is evident �com-
pare, in particular, the angular distributions for the third
mode�. Note that in the model of a harmonic transverse po-
tential �soft-wall constriction model� the distributions are the
same for both types of constrictions. In this case, the wave
functions are the same in the coordinate and momentum rep-
resentations. We may define the angular width of the electron
beam by introducing the number of modes passing through
the constriction, nmax, and the maximal value of the x com-
ponent of the electron momentum at the detachment point,
�� pxt / pF�2�0.5+nmax�. These values correspond to a defi-

nite value of the coefficient in the transverse potential at the
detachment point: c�zt�= pxt

4 /8m�2�0.5+nmax�2. The corre-
sponding half width of the electron state in the detachment
point is rt=2��0.5+nmax� / pxt. The � dependencies of cn for
the first six quantum modes in the soft-wall model are dis-
played in Fig. 4, where we have taken the same angular
width pxt /2pF�2�0.5+nmax� as in Fig. 3. Similar � dependen-
cies for the first three quantum modes in the harmonic con-
finement potential model have been discussed and observed
experimentally in Refs. 3 and 4. The half width of the con-
striction at the detachment point satisfies the equation
c�zt�rt

2= pxt
2 /2m �this differs from the equation c�0�r2=�F

used widely for the definition of the width of the constriction
in the narrowest region in soft-potential models�.

Let us finally discuss the total electron flow injected by
the constriction. This flow is a sum over all the modes that
pass through the constriction

FIG. 3. The angular �� in radians� distribution �n of the nth
mode for n=1, 2, and 3, plotted for �a� a constriction with a shape
close to that with a linear widening, and �b� a constriction that ends
abruptly �rt /�F=10�.

FIG. 4. The angular �� in radians� distribution �n of the nth
mode for n=1, 2, 3, 4, 5, and 6, generated by a soft-wall
constriction.
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� =
VmG0

epF
�
n=1

nmax

�n, �23�

where V is the potential difference between the two reser-
voirs which are connected by the constriction, and G0
=2e2 /h is the conductance quantum. The coefficient in front
of the summation is chosen in order to maintain a well-
known quantization rule for the regime that is linear in V �see
Ref. 26�. For a sufficiently wide constriction, r�0���F and
nmax�1, the size quantization is insignificant and this case
corresponds to the classical mechanics approach. From Eqs.
�19�–�23� we obtain

� = �2mer�0�V
�2�2�

, 
�
 � �/2,

0, 
�
 
 �/2.
� �24�

We observe that if nmax is not too large, the electron beam
distribution � oscillates with a period � /nmax and the ampli-
tude of the oscillation grows at the edges of the flow at �
= ±� /2 �see Fig. 5�a�, nmax=2,4 ,6	. The summation of the
contributions of different modes radiated by the constriction
which ends abruptly �Eqs. �21� and �22�	 gives a result simi-
lar to Eq. �24� with additional numerically small oscillations
�see Fig. 5�b�	. A � dependence of the beam distribution that
is similar to Eq. �24� has been predicted in Ref. 13. Note that
the “steplike” dependence, with sharp edges at �=� /2, is
not universal. It takes place only in the classical limit for
both types of constrictions discussed above. In Fig. 6, we
present also the � dependence of the beam distribution for
the soft-wall model corresponding to different values of nmax.
Apparently, in the classical limit, the angular distribution of
the radiated electron beam that is generated by a constriction
with a shape described by the expression r�z� for �
1 �at
least up to the detachment point� has no sharp edges at �
= ±� /2.

V. CONCLUSION

The analysis that we performed demonstrates that ex-
tremely narrow electron beams may be generated by a volt-

age applied to sufficiently long and narrow constrictions. The
minimal length L of such a constriction is related to the
minimal half width r�0� and the angular size of the beam �

through Eq. �9�.
An alternative scheme for the generation of a super-

narrow electron beam may be achieved by a specially tuned
electrostatic potential applied to a sufficiently wide constric-
tion in juxtaposition with blocking of all the electronic size
quantization modes in the constriction, except for the lowest
one �here, the minimal width of constriction has to be much
larger than the electron wavelength�. To minimize the “inte-
gral” width of the beam, which combines its angular and
spatial widths, one should use constrictions made of conduct-
ing materials with high electron densities.

We have also illustrated here that the angular distribution
of the electron density in the beam provides information
about the quantum adiabatic electronic states inside the con-
striction. When the adiabatic region ends smoothly, the elec-
tron density in the beam reproduces the probability density in
the coordinate representation. This result elucidates the fea-
sibility condition for the electron flow distributions observed
in Refs. 3–6 and 8—accordingly, the radius of curvature of
the constriction in the detachment point should be larger than
rt /�2. If the adiabatic region ends abruptly, the electron den-
sity in the beam reproduces the probability density in the
momentum representation.
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FIG. 5. The angular �� in radians� dependence of the electron
flow �sum over all conducting modes� from a constriction, corre-
sponding to nmax=2,4 ,6. Results are shown for �a� a constriction
with a shape close to a linear widening one, and �b� a constriction
that ends abruptly. The parameters of the constrictions are as in Fig.
3.

FIG. 6. The angular �� in radians� dependence of the electron
flow �sum over all conducting modes� from a constriction. Results
are shown for �a� nmax=2,4 ,6 and �b� nmax=100 �normalized�, for a
soft-wall model. The parameters of the constriction are as in Fig. 3.
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