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Finite electron crystallites in strong magnetic fields: Precursors of a supersolid?
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We show that a supersolid phase, exhibiting simultaneously solid and superfluid behavior, properly
describes the finite electron crystallites that form in two-dimensional quantum dots under high
magnetic fields. These crystallites rotate already in their ground state and exhibit a nonclassical
rotational inertia. They are precursors to a supersolid crystal in the lowest Landau level. We use
exact numerical diagonalization, calculations employing analytic many-body wave functions, and
a newly derived analytic expression for the total energies that permits calculations for arbitrary
number of electrons.

PACS numbers:

The existence of an exotic supersolid crystalline phase
with combined solid and superfluid characteristics has
been long conjectured [1, 2, 3]. This conjecture was made
in relation to solid 4He. The recent experimental discov-
ery [4] that solid 4He exhibits a nonclassical (nonrigid)
rotational inertia (NCRI [3]) has revived an intense in-
terest [5, 6, 7, 8, 9] in the existence and properties of the
supersolid phase.

The supersolid phase is not restricted to bosonic crys-
tals [9, 10]. In this paper, we demonstrate the existence
of such a phase in two-dimensional (2D) semiconductor
N -electron quantum dots (QDs) under strong perpen-
dicular magnetic fields (B). Central to the concept of a
supersolid is the appearance of a NCRI when the crystal
is made to rotate [3, 5].

Under a high magnetic field, the electrons confined
in a QD localize at the vertices of concentric polygo-
nal rings and form a rotating electron crystallite (REC)
[11, 12]. The ground-state many-electron wave function
has a nonzero good total angular momentum quantum
number. We show that the corresponding rotational in-
ertia strongly deviates from the rigid classical value, a
fact that endows the REC with supersolid characteris-
tics. The REC at high B can be viewed as the precursor
of a supersolid crystal that develops in the lowest Landau
level (LLL) in the thermodynamic limit. These conclu-
sions were enabled by the development of an analytic
expression for the energy of the REC that permits cal-
culations for an arbitrary number of electrons, given the
classical polygonal-ring structure in the QD [13].

For strong B we can approximate [14] the single-
electron wave function by (parameter free) displaced
Gaussian functions; namely, for an electron localized at
Rj (Zj), we use [14] the expression

u(z, Zj) =
1√
πλ

exp

(

−|z − Zj |2
2λ2

− iϕ(z, Zj; B)

)

, (1)

with λ =
√

h̄/m∗Ω; Ω =
√

ω2
0 + ω2

c/4, where ωc =
eB/(m∗c) is the cyclotron frequency and ω0 specifies
the external parabolic confinement defining the QD.
The position variables are given by the complex num-

ber z = x + iy and Zj = Xj + iYj . The phase guaran-
tees gauge invariance in the presence of a perpendicular
magnetic field and is given in the symmetric gauge by
ϕ(z, Zj; B) = (xYj − yXj)/2l2B, with lB =

√

h̄c/eB be-
ing the magnetic length.

For an extended 2D system, the Zj’s form a triangu-
lar lattice [15]. For finite N , however, the Zj ’s coin-
cide [11, 14, 16] with the equilibrium positions [forming
r concentric regular polygons denoted as (n1, n2, ..., nr)]
of N =

∑r
q=1 nq classical point charges inside an exter-

nal parabolic confinement [13]. The wave function of the
static electron crystallite (SEC) is a single Slater deter-
minant |ΨSEC[z]〉 made out of the single-electron wave
functions u(zi, Zi), i = 1, ..., N .
|ΨSEC[z]〉 represents a broken-symmetry state, since it

is not an eigenstate of the total angular momentum op-
erator with eigenvalue L. For a rotating electron crystal-
lite, L must be a good quantum number. To decsribe the
rotation of the electron crystallite, we project the Slater
determinant onto a state with good L [11, 14, 16, 17],
thus restoring the circular symmetry and obtaining

|ΦREC
L 〉 =

∫ 2π

0

...

∫ 2π

0

dγ1...dγr

×|ΨSEC(γ1, ..., γr)〉 exp

(

i

r
∑

q=1

γqLq

)

. (2)

Here L =
∑r

q=1 Lq and |ΨSEC[γ]〉 is the original Slater
determinant with all the single-electron wave functions

of the qth ring rotated (collectively, i.e., coherently) by
the same azimuthal angle γq. Note that Eq. (2) can
be written as a product of projection operators acting
on the original Slater determinant [i.e., on |ΨSEC(γ1 =
0, ..., γr = 0)〉]. Setting λ = lB

√
2 restricts the single-

electron wave function in Eq. (1) to be entirely in the
lowest Landau level [11]. The continuous-configuration-
interaction form of the projected wave functions [i.e.,
the linear superposition of determimants in Eq. (2)] im-
plies a highly entangled state. We require here that B
is sufficiently strong so that all the electrons are spin-
polarized and that the ground-state angular momentum
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FIG. 1: Ground-state energies calculated with the REC wave
function compared to EXD calculations. Energies for N = 4
fully polarized electrons (referenced to 4h̄Ω) as a function
of the magnetic field B. Dashed line (online red): Broken-
symmetry SEC. Solid line (online green): EXD (from Ref.
[18]). Dashed-dotted line (online blue): Symmetry-restored
REC. Numbers under the curve denote the value of magic
angular momenta Lm of the ground state. Corresponding
fractional filling factors are specified by ν = N(N−1)/(2Lm).
Parameters used: confinement h̄ω0 = 3.60 meV, dielectric
constant κ = 13.1, effective mass m∗ = 0.067me.

L ≥ L0 ≡ N(N − 1)/2 [the minimum value L0 specifies
the socalled maximum density droplet].

The energy of the REC state [Eq. (2)] is given by [14,
16]

EREC
L =

∫ 2π

0

h([γ])ei[γ]·[L]d[γ]

/
∫ 2π

0

n([γ])ei[γ]·[L]d[γ],

(3)
with h([γ]) = 〈ΨSEC([0])|H |ΨSEC([γ])〉, n([γ]) =
〈ΨSEC([0])|ΨSEC([γ])〉, and [γ] · [L] =

∑r
q=1 γqLq. The

SEC energies are simply given by ESEC = h([0])/n([0]).
The many-body Hamiltonian is

H =

N
∑

i=1

1

2m∗

(

pi −
e

c
Ai

)2

+

N
∑

i=1

m∗

2
ω2

0r
2
i +

N
∑

i=1

N
∑

j>i

e2

κrij
,

(4)
which describes N electrons (interacting via a Coulomb
repulsion) confined by a parabolic potential of frequency
ω0 and subjected to a perpendicular magnetic field B,
whose vector potential is given in the symmetric gauge
by A(r) = 1

2 (−By, Bx, 0). m∗ is the effective electron
mass, κ is the dielectric constant of the semiconductor
material, and rij = |ri − rj |. For sufficiently high mag-
netic fields, the electrons are fully spin-polarized and the
Zeeman term (not shown here) does not need to be con-
sidered.

Prior to demonstrating that the REC wave function
[Eq. (2)] exhibits supersolid characteristics, we address
the numerical accuracy of its energies [EREC

L in Eq. (3)]
compared to exact diagonalization (EXD) solutions of the
many-body problem defined by the Hamiltonian in Eq.
(4). In Fig. 1, the ground-state energies as a function of

B are compared to EXD calculations [18] for a QD with
N = 4 electrons. The thick dotted line (online red) repre-
sents the broken-symmetry SEC approximation, varying
smoothly with B and lying above the EXD curve [solid
(online green)]. The REC curve [dashed-dotted (online
blue)] agrees well with the EXD one in the entire range 2
T< B < 11 T. The REC and EXD ground-state energies
exhibit oscillations as a function of B. These oscillations
reflect the incompressibility of the many-body states as-
sociated with magic angular momenta Lm. The Lm’s are
specified by the number of electrons on each polygonal
ring; in general Lm = L0 +

∑r
q=1 kqnq, with kq being

nonnegative integers, i.e., Lm = 6 + 4k2 for the (0,4)
structure of N = 4, see Fig. 1.

As a second accuracy test, we compare in TABLE I
REC and EXD results for the interaction energies of the
yrast band for N = 6 electrons in the lowest Landau
level (an yrast state is the lowest energy state for a given
Lm). The relative error is smaller than %0.3, and it
decreases steadily for larger L values. The total energy
of the REC is lower than that of the SEC, Fig. 1. A
theorem discussed in Sec. III of Ref. [19], pertaining to
the energies of projected wave functions, guarantees that
this lowering of energy applies for all values of N and B.

The crystalline polygonal-ring arrangement
(n1, n2, ..., nr) of classical point charges is portrayed
directly in the electron density of the broken-symmetry
SEC, since the latter consists of humps centered at the
localization sites Zj ’s (one hump for each electron).
In contrast, the REC has good angular momentum
and thus its electron density is circularly uniform. To
probe the crystalline character of the REC, we use the

TABLE I: Comparison of yrast-band energies obtained from
REC and EXD calculations for N = 6 electrons in the lowest
Landau level, that is in the limit B → ∞. In this limit the
external confinement can be neglected and only the interac-
tion energy contributes to the yrast-band energies. Energies
in units of e2/(κlB). For the REC results, the (1,5) polygonal-
ring arrangement was considered. For L < 140, see TABLE
IV in Ref. [11(b)] and Table III in Ref. [23].

L REC EXD Error (%)
140 1.6059 1.6006 0.33
145 1.5773 1.5724 0.31
150 1.5502 1.5455 0.30
155 1.5244 1.5200 0.29
160 1.4999 1.4957 0.28
165 1.4765 1.4726 0.27
170 1.4542 1.4505 0.26
175 1.4329 1.4293 0.25
180 1.4125 1.4091 0.24
185 1.3929 1.3897 0.23
190 1.3741 1.3710 0.23
195 1.3561 1.3531 0.22
200 1.3388 1.3359 0.21
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FIG. 2: CPDs for the ground state of N = 17 electrons at
B = 10 T (L = 228). The observation point (solid dot) is
placed (i) on the outer ring at r0 = 1.858R0, left frame, and
(ii) on the inner ring at r0 = 0.969R0 , right frame. The rest
of the parameters are the same as in Fig. 1. Lengths in units
of R0 = (2e2/(κm∗ω2

0))
1/3. CPDs (vertical axes) in arbitrary

units.

conditional probability distribution (CPD) defined as

P (r, r0) = 〈Φ|
∑

i6=j

δ(ri − r)δ(rj − r0)|Φ〉/〈Φ|Φ〉, (5)

where Φ(r1, r2, ..., rN ) denotes the many-body wave func-
tion under consideration. P (r, r0) is proportional to the
conditional probability of finding an electron at r, given
that another electron is assumed at r0. This procedure
subtracts the collective rotation in the laboratory frame
of referenece, and, as a result, the CPDs reveal the struc-
ture of the many body state in the intrinsic (rotating)
reference frame.

In Fig. 2, we display the CPD for the REC wave func-
tion of N = 17 electrons. This case has a nontrivial three-
ring structure (1,6,10) [13], which is sufficiently complex
to allow generalizations for larger numbers of particles.
The remarkable combined character (partly crystalline
and partly fluid leading to a NCRI) of the REC is illus-
trated in the CPDs of Fig. 2. Indeed, as the two CPDs
(reflecting the choice of taking the observation point [r0

in Eq. (5)] on the outer, left frame, or the inner ring,
right frame) reveal, the polygonal electron rings rotate
independently of each other. Thus, e.g., to an observer
located on the inner ring, the outer ring will appear as
uniform, and vice versa. The wave functions obtained
from exact diagonalization exhibit also the property of
independently rotating rings (see e.g., the N = 9 case in
Ref. [16]), which is a testimony to the ability of the REC
wave function to capture the essential physics of a finite
number of electrons in high B.

In addition to the conditional probabilities, the
solid/fluid character of the REC is revealed in its ex-
cited rotational spectrum for a given B. From our micro-
scopic calculations based on the wave function in Eq. (2),
we have derived (see below) an approximate (denoted as
“app”), but analytic and parameter-free, expression [see
Eq. (8)] which reflects directly the nonrigid (nonclassical)
character of the REC for arbitrary size. This expression

allows calculation of the energies of RECs for arbitrary
N , given the corresponding equilibrium configuration of
confined classical point charges.

We focus on the description of the yrast band at a
given B. Motivated by the aforementioned nonrigid
character of the rotating electron crystallite, we con-
sider the following kinetic-energy term appropriate for
a (n1, ..., nq, ..., nr) configuration (with

∑r
q=1 nq = N):

Ekin
app(N) =

r
∑

q=1

h̄2L2
q/(2Jq(aq)) − h̄ωcL/2, (6)

where Lq is the partial angular momentum associated
with the qth ring and the total L =

∑r
q=1 Lq. Jq(aq)) ≡

nqm
∗a2

q is the rotational inertia of each individual ring,
i.e., the moment of inertia of nq classical point charges
on the qth polygonal ring of radius aq. To obtain the
total energy, EREC

L , we include also the term Ehc
app(N) =

∑r
q=1 Jq(aq)Ω

2/2 due to the effective harmonic confine-
ment Ω [see discussion of Eq. (1)], as well as the interac-
tion energy EC

app,

EC
app(N) =

r
∑

q=1

nqSq

4

e2

κaq
+

r−1
∑

q=1

r
∑

s>q

VC(aq, as). (7)

The first term is the Coulomb repulsion of nq point-
like electrons on a given ring, with Sq =

∑nq

j=2(sin[(j −
1)π/nq])

−1, and the second term is the Coulomb re-
pulsion between (uniform) rings with VC(aq, as) =
nqns2F1[3/4, 1/4; 1; 4a2

qa
2
s(a

2
q + a2

s)
−2]e2(a2

q + a2
s)

−1/2/κ,
where 2F1 is the hypergeometric function.

For large L (and/or B), the radii of the rings of the ro-
tating crystallite can be found by neglecting the interac-
tion term in the total approximate energy, thus minimiz-
ing only Ekin

app(N) + Ehc
app(N). One finds aq = λ

√

Lq/nq;
the ring radii depend on Lq, reflecting the lack of ra-

dial rigidity. Substitution into the above expressions for
Ekin

app, Ehc
app, and EC

app yields for the total approximate
energy the final expression:

EREC
app,L (N) = h̄(Ω − ωc/2)L +

r
∑

q=1

CV,q

L
1/2
q

+

r−1
∑

q=1

r
∑

s>q

VC(λ

√

Lq

nq
, λ

√

Ls

ns
), (8)

where the constants CV,q = 0.25n
3/2
q Sqe

2/(κλ). In the
case of the simplest (0, N) and (1, N − 1) ring configura-
tions, Eq. (8) reduces to the partial expressions reported
earlier [14, 20].

In Fig. 3 (left frame), and for a sufficiently high mag-
netic field (e.g., B = 100 T such that the Hilbert space
of the system reduces to the lowest Landau level), we
compare the approximate analytic energies EREC

app,L with

the microscopic energies EREC
L calculated from Eq. (3)

using the same parameters as in Fig. 1. The agreement
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FIG. 3: Left: Approximate analytic expression [Eq. (8),
dashed line (online violet)] compared with microscopic REC
calculations [Eq. (3), solid line (online green)] for N = 17
electrons at high magnetic field. Right: The corresponding
classical (rigid rotor) energy Erig

L for N = 17 electrons (see
text). The microscopic REC energies are referenced relative
to the zero-point energy, 17h̄Ω. Energies were calculated for
magic angular momenta L = L1 + L2 + L3 with L1 = 0,
L2 = 21 + 6k2 and k2 = 30, and L3 = 115 + 10k3. The pa-
rameters are the same as in Fig. 1 and B = 100 T. Note the
much larger energy scale for the classical case (right frame),
leading to a superfluidity index for the REC of αs ∼ 0.99 (see
text).

is very good (typically less than 0.5%). More important
is the strong discrepancy between these results and the
total energies Erig

L of the classical (rigid rotor) crystal-
lite, plotted in the right frame of Fig. 3; the latter are
given by Erig

L = h̄2L2/(2Jrig) + 0.5
∑N

i=1 m∗ω2
0 |Zi|2 +

∑N
i=1

∑N
j>i e2/(κ|Zi −Zj |), with the rigid moment of in-

ertia being Jrig =
∑N

i=1 m∗|Zi|2 [21].

The disagreement between the REC and classical ener-
gies is twofold: (i) The L dependence is different, and (ii)
The REC energies are three orders of magnitude smaller
than the classical ones. That is, the energy cost for the
rotation of the REC is drastically smaller than for the
classical rotation, thus exhibiting “superfluid” behavior.
In analogy with Ref. [3], we define a supefluidity index

αs = (Erig
L − EREC

L )/Erig
L . For the case displayed in Fig.

3, we find that this index varies (for 1116 ≤ L ≤ 3716)
from αs = 0.978 to αs = 0.998, indicating that the REC
is highly superfluidic.

Formation of a supersolid is often expected in conjunc-
tion with the presence of (i) real defects and (ii) real
vacancies [1, 2]. Our supersolid wave function [Eq. 2] be-
longs to a third possibility, namely to virtual defects and
vacancies when the number of particles equals the num-
ber of lattice sites (the possibility of a supersolid with
equal number of particles and lattice sites is mentioned
in Ref. [5]). Indeed, the azimuthal shift of the electrons
by (γ1, γ2, ..., γr) [see Eq. (2)] may be viewed as gener-
ating virtual defects and vacancies with respect to the
original electron positions at (γ1 = 0, γ2 = 0, ..., γr = 0).

A recent publication [22] has explored the quantal na-
ture of the 2D electron crystallites in the lowest Lan-

dau level (B → ∞) using a modification of the second-
quantized LLL form of the REC wave functions [11]. In
particular, the modification consisted of a multiplication
of the parameter free REC wave function by variation-
ally adjustable Jastrow-factor vortices. Without consid-
eration of the rotational properties of the modified wave
function, the inherently quantal nature of the crystallite
was attributed exclusively to the Jastrow factor. How-
ever, as shown above, the original REC wave function
[Eq. (2)] already exhibits the characteristic NCRI behav-
ior of a supersolid. Consequently, the additional varia-

tional freedom introduced by the Jastrow prefactor may
well lead energetically to a slight numerical improvement,
but it does not underlie the physics related to the super-
solid behavior. Indeed, the essential step is the projection
of the static electron crystallite onto a state with good
total angular momentum [see Eqs. (1) and (2)].

In summary, we have shown that rotating electron
crystallites, formed in 2D quantum dots under high mag-
netic fields, exhibit nonclassical rotational inertia which
is the signature of a supersolid [3, 5]. We have utilized
an analytic many-body wave function [Eq. (2)] which al-
lowed us to carry out computations for a sufficiently large
number of electrons (N = 17 electrons having a nontriv-
ial three-ring polygonal structure), leading to the deriva-
tion and validation of an analytic expression for the total
energy of rotating electron crystallites of arbitrary N .
These crystallites may be regarded as the precursors of
an extended 2D fermionic supersolid in the lowest Lan-
dau level.
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