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Two-dimensional quantum dots in high magnetic fields:
Rotating-electron-molecule versus composite-fermion approach
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Exact diagonalization results are reported for the lowest rotational baNd=d& electrons in strong mag-
netic fields in the range of high angular momentas<1G< 140 (covering the corresponding range of fractional
filling factors, 1/5=v=1/9). A detailed comparison of energetic, spectral, and transport propspmsfically,
magic angular momenta, radial electron densities, occupation number distributions, overlaps and total energies,
and exponents of current-voltage power Jashows that the recently discovered rotating-electron-molecule
wave functiongPhys. Rev. B66, 115315(2002] provide a superior description compared to the composite-
fermion—Jastrow-Laughlin ones.
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I. INTRODUCTION prediction of magic angular momenta, radial electron densi-
ties, occupation number distributions, overlaps and total en-
Two-dimensional(2D) N-electron system$with a small ~ ergies, and exponents of current-voltage power) lalwows
finite N) in strong magnetic fieldé8) have been the focus of that the REM wave functions yield a superior description to
extensive theoretical investigations in the last 20 yéals. that obtained through the composite-fermion—Jastrow-
The principal motivations for these research activities(gre ~Laughlin ones. _ _
the early realizatioh? that certain special states of few-  Ihe plan of this paper is as follows: Section Il presents an
electron systems are relev¥hthrough appropriate analogies °utline of the REM theory, while Sec. Il focuses on a brief
to the physics of the fractional quantum Hall efféEQHE), review of the composne—fer.mlon approach. Exact diagonal-
observed in the infinite 2D electron gd#;) the unavoidable ization results and comparisons with the CF-JL and REM

necessity, due to computer limitations, to test propose%vgvguf;ﬁgﬁgz dairr? g:zse\?ted in Sec. IV. Finally, our results
model wave functions for the FQHE through numerical cal- C

culations for finite-size systems; afidl ) the recent progress

in nanofabrication techniques at semiconductor interfaces Il. OUTLINE OF REM THEORY

that has allowed experiments on 2D quantum d@®’s), In the last eight years and, in particular, since 1p®Ben
with refined control of their size, shape, and number ofit was demonstratédthat Wigner crystallization is related to
electrons’* (down to a few electrons symmetry breaking at thanrestrictedHartree-Fock(UHF)

The physics of such systentge., QD’s in highB) is  mean-field level the number of publicatiofs'”?*~4°ad-
most often described with the use of compos-dressing the formation and properties of Wigtarelectron
ite-fermiorf—Jastrow-Laughlih (CF-JL) analytic trial wave molecules in 2D QD’s and guantum dot molecules has grown
functions in the complex plane. However, it is well known steadily. A consensus has been reached that rotating electron
that the thematic framework of the CF-JL approach is builtmolecules are formed both in z&éfG*~*°and highi—!" mag-
on the so-called Jastrow correlations associated with a panetic fields.
ticular short-range interparticle repulsiéh.In a recent At B=0, the formation of REM’s in QD’s is analogous to
paper® using as a thematic basis the picture of collectivelyWigner crystallization in infinite 2D media; i.e., when the
rotating electron(or Wignen molecules(REM’s), we have strength of the interelectron repulsion relative to the zero-
derived a different class of analytic and parameter-free triapoint kinetic energy Ry,) exceeds a certain critical value,
wave functions. The promising property of these REM waveelectrons spontaneously crystallize around particular sites,
functions is that, unlike the CF-JL ones, they capture thdorming geometric molecular structures. At high magnetic
all-important correlations arising from the long-range char-fields, the formation of Wigner molecules may be thought of
acter of the Coulomb force. as involving a two-step crystallization procegly:the local-

In this paper, we present an in-depth assessment of theation of electrons results from the shrinkage of the orbitals
CF-JL and REM trial wave functions regarding their ability due to the increasing strength of the magnetic field dhd
to approximate the exact wave functions in the case of QD’shen even a weak interelectron Coulomb repulsion is able to
(this case is often referred to as the “disk geometry” in thearrange the localized electrons according to geometric mo-
FQHE literaturg. First systematic exact diagonalization lecular structureqthus this process is independent of the
(EXD) results are reported here for the lowest rotationalvalue of Ry). It has been fourfti®? that the molecular
band ofN=6 electrons in strong magnetic fields in the rangestructures at higl3 coincide with the equilibrium configura-
of high angular momenta 20L <140 (covering the corre- tions atB=0 of N classical point charged:*?
sponding range of fractional filling factof$,1/5= v=1/9). Due to the finite numbeN of electrons, however, there
A detailed comparisortaddressing five properties: i.e., the are two crucial differences between the REM and bulk
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Wigner crystal. Namelyl) the crystalline structure is that of displaced Gaussians are written(asre and in the following

the equilibrium 2D configuration dfl classical point charges 1= \/—_1)

and, thus, consists of nested polygonal rffigand (I1) the

Wigner molecules rotate as a whdleollective rotationsin u(z,Z;) = (1m)exd — |z—Z;|?12]exd —1(xY;—yX{)],

analogy with the case of 3D natural molecules. (1
A most striking observation concerning the REM’s is that

their formation and properties have been established with th

help of traditional ab initio many-body methods:

where the phase factor is due to the gauge invarianse
+1y (see Ref. 5§ and all lengths are in dimensionless units
ie., exact diagonalizatiol 16252738 quantum Monte of 152 with the magnetic length beir_ig= \/_ﬁc/e B. _
Carld?®2333 (QMC), and the systematic controlled In Ref. 15, we used these analytic orbitals to first con-
: struct the broken-symmetry UHF determinadng™" and then
rp_roceeded to derive analytic expressions for the many-body
JREM wave functions by applying ontéy""" an appropriate
projection operatdP O, that restores the circular symmetry
In spite of its firm foundation in many-body theory, how- 210 generatesorrelated’ wave functions with good total

ever, the REM picture has not, until recently, successfulIyangular momenturt.. These REM wave functions can be

. . 5 . _ . _
competed with the CF-JL picture; indeed many researce.as'ly written dowfr in second-quantized form for any clas

451 . ) s sical polygonal ring arrangemem{,n,, . ..) byfollowing
paperé_ e_md books’ d_escnbe the_ physics Qf QD's in high certain simple rules for determining the coefficients of the
magnetic fields following exclusively notions based on

; — l1 Sla In
CF-JL functions, as expounded in 1982e Ref. 1and de- determinants, D(y.lz, ... In)=defz;.z), ... .zy],

hierarchy12:1517:24:343540¢ gnproximations involving the
UHF and subsequent post-Hartree-Fock methods. This co
trasts with the case of the CF-JL wave functions, which wer
inspired through “intuition-based guesswork.”

172
veloped in detail in 1995 in Ref. 6 and Ref. 7. We beIieveWhere thelj’s denote the angular momenta of the individual
) I h lectrons. Since we will focus here on the cas@&lef6 and

that one of the main obstacles for more frequent use of t ; .
=3 electrons, we list for completeness the REM functions

REM picture has been the lack of analytic correlated wav associated with the (8) and (1N—1) ring arrangements,

functions associated with this picture. This situation, how- . i
ever, has changed with the recent explicit derivation of sucrrlespecnvely[here (ON) dgnotes a regular polygon wit

' T vertices, such as an equilateral triangle or a regular hexagon,
REM wave functions:

The approach used in Ref. 15 for constructing the REMand (IN-1) is a regular polygon wittN—1 vertices and

. S . . .~ ‘one occupied site in its cenfer
functions in highB consists of two steps: First the breaking P k

of the rotational symmetry at the level of the single- I3+ +Iy=L N -1
determinantal unrestricted Hartree-Fock approximation ¢ (0N)= > (H |i!)
yields states representing electron molecut@sfinite crys- O<ly<lp<---<Iy \i=1
tallites, also referred to as Wigner molecules; see Ref. 24 and

Ref. 12. Subsequently the rotation of the electron molecule x| II sin (li_lj)D
is described through restoration of the circular symmetry via 1<i<j<N N

post Hartg—;e-Fock methods and, in particular, projection N

techniques: Naturally, the restoration of symmetry goes be- _ o

yond the single-determinantal mean-field description and XDtz - Iv)ex izl 4% /2)' @

yields multideterminantal wave functions. For QD’s, we

have shown that the method of symmetry restoration is apwith

plicable to both the zerd**® and high!® magnetic-field

cases. L=Ly+Nm, m=0,1,23..., 3)
In the zero- and low-field cases, the broken-symmetry

UHF orbitals need to be determined numerically, and, in adand

dition, the restoration of the total-spin symmetry needs to be

considered for unpolarized and partially polarized cases. The 2% ZIn=t

formalism and mathematical details of this procedurddat e (IN-1)=

=0 have been elaborated in Ref. 8ke also Ref. 53 and

Ref. 59 for the restoration of the total spin in the case of

quantum dot moleculgs X
In the case of high magnetic fields, one can specifically

Isly<lg<---<ly

o
2gi1;]];gN Slr{m(h—'j)})

consider the limit when the confining potential can be ne- N

glected compared to the confinement induced by the mag- XD(0/),, ... ,IN)exp( —2 zizi*/2>,
netic field. Then, assuming a symmetric gauge, the UHF or- =1

bitals can be represent@d® by displaced Gaussian analytic (4)

functions, centered at different positio@g=X;+1Y; ac- _

cording to the equilibrium configuration &f classical point ~ With

charge$'“? arranged at the vertices of nested regular poly-

gons(each Gaussian representing a localized elegti®uch L=Lg+(N-1)m, m=0,1,23..., (5)
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whereLo=N(N—1)/2 is the minimum allowed total angular =~ Most important for our present study is the fact that the

momentum forN (polarized electrons in high magnetic Jastrow-Laughlin wave functions with angular momentum

fields. L=(2m+ 1)L, [corresponding to fractional filling factors
Notice that the REM wave functiori&q. (2) and Eq.(4)] v=Ly/L=1/(2m+1)],

vanish identically for values of the total angular momenta \

outside the specific values given b and Eq.(5),

respectively. P g y E® 4. quL(N):lsil;[jsN (zi—zj)zm“exp( —gl zkz§/2>,

)

lll. OUTLINE OF COMPOSITE-FERMION THEORY are a special case of the CF functions dr=L, i.e.,

According to the CF pictur€the many-body wave func- N oF
tions in high magnetic fields that describeelectrons in the O(N)=D " (N;L*=Lo), L=(2m+1)L,. (9

disk geometrycase of 2D QD’sare given by the expression Note that forL* =L, all the noninteracting electrons oc-

cupy contiguous states in the LLLnEgO) with |

o N =ry . Il (z-z)™w7", 6 =01,...N-1.
l=i<j=N The CF-JL wave function§Egs. (6) and (8)] are repre-
IPM sented by compact, one-line mathematical expressions,

Whgre z:x.+ ly and ¥," is the Slater determmant. dﬂ which, however, are not the most convenient for carrying out
noninteractingelectrons of total angular momentunt; itis  n\merjcal calculations. Numerical studies of the CF-JL func-
constructed according to the independent particle modegfyns ysually employ sophisticated Monte Carlo computa-
(IPM) from the Darwin-Fock® orbitals y,(2), wherepand  fiong| techniques. The REM wave functions, on the other
| are 'the number of nodes and the angular momentum, '81and, are by construction expressed in second-quantized
spectively[for the values op andl in thenth Landau level  herhosition of Slater determinantéorm, precisely like the
in high B, see the paragraph follolmng E(Y) below]. wave functions from exact diagonalization, a fact that greatly
The Jastrow factor in front o’ " is introduced to rep-  simplifies the numerical work. In the numerical calculations
resent the effect of the interelectron Coulombic interactioninvolving JL wave functions in this paper, we have circum-
In the CF literature, this assumption is often described byented the need to use Monte Carlo techniques, since we
saying that “the Jastrow factor bindsh2vortices to each were able to determine the Slater decompos?ﬂqmi the JL
electron of\If'LP*'VI to convert it into a composite fermion.” states with the help of the symbolic language
The single-particle electronic orbitals in the Slater deter-MATHEMATICA 0 _ _ _
minant " are not restricted to the lowest Landau level Ve stress again that, unlike the REM functions, the CF-JL
(LLL). As a result, it is necessary to apply a projection op-Vave functions have not been derived microscopically—i.e.,
eratorP,,, to guarantee that the CF wave function lies in theffom the many-body Schedinger equation with interelectron
LLL, as appropriate foB— . Coulombic repulslons. Att'empts have begn made to Jqstlfy
Since the CF wave function is an homogeneous polynothem a posteriori by pointing out that their overlaps with

mial in the electronic positionss, its angular momentura exact wave functions are close to unity or that their energies
is related to the noninteracting 'Eotal angular momenttim are close to the exact energies. However, we will show below

as follows: that this agreement is limited to rather narrow ranges of fill-
ing factors at =v=1/3 or to small electron numbeb$ as
L=L*+mN(N—1)=L* +2mL,. (7) ~ soon as one extends the comparisons to a broader range of
v's for N=6, as well as to other quantities like electron
There is no reason ta priori restrict the Slater determi- densitiess and occupation number distributions, this agree-

nants¥ | to a certain form, but according to Ref. 6, such aMent markedly deteriorates.
restriction is absolutely necessary in order to derive system-

atic results. Thus following Ref. 6, henceforth, we will re- IV. EXACT DIAGONALIZATION RESULTS
strict the noninteracting* to the range-Lo<L*<L,, and AND COMPARISONS
. . M
we will assume that the Slater determinafitg," are the In the case of high magnetic fields, the Hilbert space for

so-called compact ones. LB, denote the number of elec- exact diagonalization calculations can be restricted to the
trons in thenth Landau levelLL) with =} _¢N,=N; tisthe LLL and many such calculatons have been
index of the highest occupied LL and all the lower LL's with reported>>910:1844.46.61-6, the past 20 years. However, for
n<t are assumed to be occupied. The compact determinank$=5, such EXD studies have been restricted to angular mo-
are defined as those in which thg, electrons occupy con- menta corresponding to a rather narrow range of fillings fac-
tiguously the single-particle orbital®f eachnth LL) with  tors, 1=v=1/3.

the lowest angular momenté=—n,—n+1,...,—n+N, In this paper, we have performed systematic EXD calcu-
—1 [p+(|l|=1)/2=n]. The compact Slater determinants lations in the LLL for N=6 electrons covering the much
are usually denoted aBNg,Nq, ... ,N{], and the corre- broader range of fillings factors=1»=1/9; such a range
sponding total angular momenta are given Hy* corresponds to angular momenta<ll5< 140 (note that for
=(12)2L_oNg(Ng—2s—1). v=1/3 one had. =45). Of crucial importance for extending

035326-3



CONSTANTINE YANNOULEAS AND UZI LANDMAN PHYSICAL REVIEW B 68, 035326 (2003

4.6 r—

42

38

Energy
I
Energy

34

26 ——1

FIG. 2. Total interaction energy from exact diagonalization cal-
culations as a function of the total angular momentum<{#0

<50) for N=6 electrons in high magnetic field. The upwards sgo)_ for N=6 _elgctrons in high magnetic field. The upward;
pointing arrows indicate the magic angular momenta correspondin?o'ntlng arrows indicate the magic angular momenta corresponding
to the classically most stablg,5 polygonal ring arrangement of o the classically most stabld,5 polygonal ring arrangement of

the Wigner molecule. The short downwards pointing arrows indi-the Wigner molecule. The short downwards pointing arrows indi-

cate successful predictions of the composite-fermion model. Thé&ate successful predictions of the composite-fermion model. The

long downward arrow indicates a magic angular momentum no{rnedium-size downwgrds pointin_g arrow indicat_es a prediction of
predicted by the CF model. Energies in uriféxl 5 , wherex is the the CF model that fails to materle}llz_e as a magic angular momen-
dielectric constant tum. The long downward arrows indicate magic angular momenta

not predicted by the CF model. Energies in unitedfxlg, where
k is the dielectric constant.

FIG. 1. Total interaction energy from exact diagonalization cal-
culations as a function of the total angular momentum<{lLO

the calculations to such largk’s has been our use of
T_siper’s65 analytic formula for calculating the two-body ma- A. Predictions of magic angular momenta

trix elements of the Coulomb interelectron repulsion; this ] ] ] )

formula expresses the matrix elements as finite sums of posi- For N=6, Figs. 1-4 displayin four installments the
tive terms. Earlier analytic formuldssuffered from large total interaction energy from EXD as a function of the total
cancellation errors due to summations over alternating pos@ngular momentunt. in the range 18L<140. (The total
tive and negative terms. At the same time, Tsiper’s formula is
computationally faster compared to the slowly convergent

series of Ref. 61.

For the solution of the large scale, but sparse, Coulomb 2.2
eigenvalue problem, we have used tRRPACK computer
code®® For a givenL, the Hilbert space is built out of Slater
determinants,

Energy

N
D(|l,|2,...,|N)exp(—2 zizi*/2>, (10)
=1

with 18

N 70 80 90 100 110
1<lp<---<ly, 2 =L, (11) L
k=1
FIG. 3. Total interaction energy from exact diagonalization cal-

and its dimensions are controlled by the maximum allowecfulations as a function of the total angular momentum<(ZO

single-particle angular momentuhy,.,, such thatl <!, s:l_.l(_)) for N:6_ el_ectrons in high magnetic field. The upward;
1<k<N. We have Use“max:unLaer 5=10(m+1) (see Ref. pointing arrows indicate the magic angular momenta corresponding

__ I to the classically most stablg@,5 polygonal ring arrangement of
59 for the definition ofly,) for each group of angular mo- the Wigner molecule. The short downwards pointing arrows indi-

mental corresponding to the range 12 1)<v<1/(2m  care successful predictions of the composite-fermion model. The
—1), m=1,2,3,4. For example, fok =105, [,5=40 and  medium-size downwards pointing arrows indicate predictions of the
the dimension of the Hilbert space is 56 115; fo=135,  CF model that fail to materialize as magic angular momenta. The
| max=50 and the size of the Hilbert space is 187 597. Bylong downward arrows indicate magic angular momenta not pre-
varyingl ,ox, we have checked that this choice produces welldicted by the CF model. Energies in unitsedf «l g, wherex is the
converged numerical results. dielectric constant.
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L L N B B B B B TABLE |. Compact noninteracting Slater determinants and as-
sociated angular momenta for N=6 electrons according to the
CF presciption. BothL* = —3 andL* =3 are associated with two
compact states each, the one with lowest energy being the preferred
one.
B
§ Compact state L*
- [1,1,1,1,1,1 —-15
[2,1,1,1,1 -9
[2,2,1,] -5
f [3,1,1,1 -3
1.6 W 1 1 ] ] 1 ] T ] [2’2,2] -3
100 110 120 130 140 [3,2,1] 0
L [4,1,1] 3
. . . N [3,3] 3
FIG. 4. Total interaction energy from exact diagonalization cal-
culations as a function of the total angular momentum &DO [4.2] >
<140) for N=6 electrons in high magnetic field. The upwards [5.1] 9
pointing arrows indicate the magic angular momenta corresponding [6] 15

to the classically most stablg,5 polygonal ring arrangement of

the Wigner molecule. The short downwards pointing arrows indi‘ately apparent that the number of downward cusps in any

cate successful predictions of the composite-fermion model. Th?ntervaIZ is always different from 9. Indeed, there are 10
m E ’

medium-size dow_nwards po_lnt_lng arrows |_nd|cate predictions of theCusps inZ, (including that aL = 15, not shown in Fig. 1 10
CF model that fail to materialize as magic angular momenta. The 7, ( Fig. 2,7 in Zs ( Fig. 3 and 7 inZ, ( Ei
long downward arrows indicate magic angular momenta not pre!n 2 (S€e Fg. In L3 (S€e Fig. 5 an InL, (See F1g.

dicted by the CF model. Energies in unitsedf x5z, wherex is the 4). In detail, the CF theqry fails in the following tvyo aspects_:
dielectric constant. (I) There are exact magic numbers that are consistently miss-

ing from the CF prediction in every interval; with the excep-

kinetic energy, being a constant, can be disregajdede  ton of the lowestL=20, theseexact magic numbers
can immediately observe the appearance of downward cuspénarked by a long downward arrow in the figurese given
implying states of enhanced stability, at certain “magic an-?Y L=10(3m—1) and L=10(3m+1), m=1,2,34...;
gular momenta.” (Il) there are CF magic numbers that do_ not correspond to
For the CF theory, the magic angular momenta can b&downward cusps in the EXD calculationgnarked by
determined by Eq(7), if one knows the noninteractirig's; medium-size downward arrows in the figureBhis happens
the CF magicL’s in any interval 1/(2n—1)=»=1/(2m  because cusps associated wita whose difference fronio
+1) [15(2m—1)<L=15(2m+1)], m=1,2,3,4..., can is divisible by 6(but not simultaneously by)5rogressively
be found by adding &1L,=30m units of angular momentum weaken and completely disappear in the intervajswith
to each of theL*’s. To obtain the noninteracting*’s, one ~ M=3; only cusps with the difference—L, divisible by 5
needs first to constrdt? the compact Slater determinants. SUrvive. On the other hand, the CF model predicts the ap-
The compact determinants and the corresponding noninteP&arance of four magic numbers with-L, divisible solely
actingL*’s are listed in Table . by 6 in every intervalZ,,, at L=30m¥9 and 36n+3, m
There are nine different values bf’s, and thus the CF = 14:2.3 ... . Theover_all extent of the inadequacy of the CF _
theory forN=6 predicts that there are always nine magicmOdeI can be appreciated better by the fact that there are six
numbers in any interval 15¢8—1)<L<15(2m+1) be- false predictionglong and medium-size downward arrows

tween two consecutive JL angular momenta ¥6(21) and in every intervalZ,, with m=3, compared' to only fivg cor-
15(2m+1), m=1,2,3 ... (henceforth we will denote this €Ct onegsmall downward arrows; see Fig. 3 and Fig. 4

interval asZ,). For example, using Table | and E@), the In contrast to the CF model_, the mfagic angular momenta
CF magic numbers in the interval €8 <45 (m=1) are in the REM theory are associated with the polygonal ring
found to be the following nin&? configurations of classical point charges. This is due to the

fact that the enhanced stability of the downward cusps results
15, 21, 25, 27, 30, 33, 35, 39, 45. (12 from the coherent collective rotation of the regular-polygon
REM structures. Due to symmetry requirements, such collec-
On the other hand, in the interval 185 <135 (m=4), the tive rotation can take place only at magic-angular-momenta
CF theory predicts the following set of nine magic numbersyalues. The in-between angular momenta require the excita-
tion of additional degrees of freedaftike the center of mass
105, 111, 115, 117, 120, 123, 125, 129, 135(13)  and/or vibrational mod@swhich raises the total energy with
An inspection of the total-energy—vk-plots in Figs. 1-4  respect to the values associated with the magic angular
reveals that the CF prediction badly misses the actual magimomenta.
angular momenta specified by the EXD calculations as those For N=6, the lowest in energy ring configuration is the
associated with the downward cusps. Indeed it is immedi¢1,5), while there exists 40,6) isomef'*? with higher en-
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ergy. As a result, our EXD calculatior(gs well as earlier N ' ' ' ' '
one$13 for lower angular momenta <70) have found og |\ L=75 -
that there exist two sequences of magic angular momenta: a
primary one (S,) with L=15+5m [see Eq(5)], associated
with the most stablél1,5 classical molecular configuration,
and asecondaryone (S;) with L=15+6m [see Eq.(3)],
associated with the metastable (0,6) ring arrangement. Fur-
thermore, our calculationsee also Refs. 11 and J18how

that the secondary sequensgcontributes only in a narrow

range of the lowest angular momenta; in the region of higher —_ )l
angular momenta, the primary sequergeis the only one N
that survives and the magic numbers exhibit a period of five = 1

units of angular momentum. It is interesting to note that the
initial competition between the primary and secondary se-
guences, and the subsequent prevalence of the primary one,
has been seen in other sizes as Welle., N=5,7,8. Fur-
thermore, this competition is reflected in the field-induced
molecular phase transitions associated with broken-
symmetry UHF solutions in a parabolic QD. Indeed, Ref. 17
demonstrated recently that, as a function of increaBinte
UHF solutions foiN=6 first depict the transformation of the
maximum-density dropl& into the (0,6) molecular configu-
ration; then(at higherB) the (1,5 configuration replaces the
(0,6) structure as the one having the lower HF enérgy.

The extensive comparisons in this subsection lead inevi-
tably to the conclusion that the CF model cannot explain the
systematic trends exhibited by the magic angular momenta in
2D QD’s in high magnetic fields. These trends, however,
were shown to be a natural consequence of the formation of FIG. 5. Radial electron densities fdd=6 electrons in high
REM'’s and their metastable isomers. magnetic field. Solid line: densities from exact diagonalization.

Dashed line: densities from REM wave functions. Dotted line: den-
sities from Jastrow-Laughlin wave functions.

2mp(r)

B. Radial electron densities

We turn now our attention to a comparison of the radial C. Distribution of occupation numbers

electron densitie$ED’s). Figure 5 displays the correspond-  |n this subsection, we address the behavior of the
ing ED’s from EXD, REM, and CF-JL wave functions at occupation_number distributiom(|):<(I)|alTa||(I)> as a
three representative total angular momenta: Le=75 (v function of the single-particle angular momentumwhere
=1/5), 105 (1/7), and 135 (1/9). the creation and annihilation operators refer to the single-

An inspection of Fig. 5 immediately reveals th@} the  electron stategy(2) in the LLL. ForN=86, Fig. 6 displays
EXD radial ED’s(solid lineg exhibit a prominent oscillation the n(l)’s from all three families of wave functions—i.e.,
corresponding to the (1,5) molecular structusveraged EXD (solid circles, REM (open circle and JL(crosses—
over the azimuthal anglegindeed the integral of the exact and for the three representative angular moméntar5 (v
ED’s from the origin to the minimum point between the two =1/5), 105 (1/7), and 135 (1/9).
humps is practically equal to unity(ll) there is very good Again, an inspection of Fig. 6 immediately reveals that
agreement between the RE(dashed linesand exact ED’s; the EXD occupation numbers exhibit a prominent oscillation
this agreement improves with higher angular momentumgorresponding to the (1,5) molecular structéimedeed the
and(lll) the JL ED’s(dotted line$ miss the oscillation of the sum of the exach(l)’s from =0 to the minimum point
exact ED in all three cases in a substantial way. between the two humps is practically equal to upitil)

The inability of the radial ED’s calculated with the JL there is very good agreement between the REM and exact
functions to capture the oscillations exhibited by the exacbccupation numbers; this agreement improves with higher
ones was also seen recently for the 1/3 case and for all angular momentum; andll) for all three cases, the JL oc-
electron numberdl=6,7,8,9,10,11,12 in Ref. 6&ee in par- cupation numbers exhibit a systematically different trend and
ticular Fig. 1 therein We further note that the oscillations of they are not able to capture the oscillatory behavior of the
the exact ED’s in that figure correspond fully to the classicaEXD occupation numbers.

molecular ring arrangements listed in Ref. 41—e.g(1t@) We further note that a substantial discrepancy between JL
for N=8 and to(3,9 for N=12—in agreement with our and EXD occupation numbers was also noted in Ref. 64 for
rotating-electron-molecule interpretation. the case oN=7 electrons and=1/3 (L=63).
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L TABLE 1l. Case of N=3 electrons in high magnetic fileds.
os b 75 | Overlaps, (@ | O/ (D | O NP PF)) M2, of REM's (@s)
and JL functions @’s) with the corresponding exact eigenstates
(®dF*s) for various values of the angular momerta(v are the
corresponding fractional filling factorsRecall that the angular mo-
menta for the JL functions are’>=N(N—1)(2m+1)/2, with m
=0,1,2,3... . The JLoverlaps are from Ref. 1.

L(») aiL REM

S a3 0.999 46 0.98347
2 o8} L=105 15(1/5) 0.994 68 0.99473
E ] 21(1/7) 0.994 76 0.996 74
= 27(1/9) 0.99573 0.997 58
S ] 33(1/10) 0.996 52 0.998 07
8 | 39(1/13 0.997 08 0.998 39
8

O .

unity (=0.99) for both the REM and JL cases and for even
08} L=135 | rather high angular momente.g.,L =39 (v=1/13)].

Ever since they were calculated by Laughlin in his origi-
nal papet the JL overlaps foN=3 electrons have exercised
a great influence in the literature of the fractional quantum
Hall effect. Indeed, in a rather sweeping generalization to
. any N andL (note that Ref. 62 has indeed found that the JL
overlaps fory=1/3 remain very close to unity for all cases
with 5=<N=12), the close-to-unity values of the JL overlaps
have been presumed to provide “proof” that the CF-JL func-
Single-particle angular momentum, | tions approximate very well the corresponding exact many-
body wave functions; as we have already shown earlier, this

0.4

™ g
" 2K
0 Lioved i L L L 1

0 10 20 30 40

FIG. 6. Distribution of occupation numbers as a function of

single-particle angular momentuinfor N=6 electrons in high presumption is highly questionable.
gie-part gular ) uintor = g We have calculated the overlaps fde=6 electrons and
magnetic field. Solid circles: occupation numbers from exact diago-

nalization. Open circles: occupation numbers from REM wave]corthe three representative higher-angular-momentum values

functions. Crosses: occupation numbers from Jastrow-LaughIirlr=75_ (»=1/5), 105 (1/7), and 135 (1/9); the result_s are
wave functions. listed in Table Ill for both the REM and JL wave functions.

A most remarkable feature of the results in Table Il is that

the extraordinary, higher than 0.99 valu€amiliar from

The systematlc deV|at|o'ns petween t'he JL and EXD Ep,sl_aughlin’ s papeh are totally absent. Instead, the JL over-
and occupation numbers inevitably point to the conclusmqaps rapidly deteriorate for highdr's (lower v's), and for

that these two families of wave functions represent very dlf-V: 1/9 they have attained values below 0.67. In contrast, the

f9fe”t many-body physical problems. In.deed, the JL mnc'REM overlaps remain above 0.80 and slowly approach unity
tions have been fourtito be exact solutions for a special asl increases

class ofshort-rangetwo-body forces, while the EXD func- From our results for<1/5 and the results of Ref. 62 for

tions faithfully reflect thelong-range character of the Cou- »=1/3, it is apparent that the overlaps alone are not a reli-

lombic interelectron repulsion. On the other hand, as dis- : : :

. . o able index for assessing the agreement or disagreement be-
cusse(_j.m Ref. 15, the REM wave functions, derived thrc"Jngeen trial and exact wave functions. For example, Kor
a traditional many-body approach, are able to capture the:6 andL=75 (v=1/5), Table Ill shows that the JL and

correlations arising from the long-range character of theREM overlaps are close to each ot@B37 vs 0.81% How-

Coulomb force; the oscillatory behavior of the EXD and . "
REM ED’s and occupation numbefassociated with forma- ever, as earlier analyses based on the electron densities and

tion of Wigner moleculesconstitutes a prominent and un-

mistaken signature of such Coulombic correlations. TABLE IIl. Overlaps of JL and REM wave functions with the
exact ones foN=6 electrons and various angular momehtér

are the corresponding fractional filling factprs

D. Comparison of overlaps and total energies

We turn now our attention to the overlaps of the REM and L) L REM
JL wave functions with those obtained through exact diago- 75(1/5) 0.837 0.817
nalization. We start by listing in Table Il the overlaps for the  1051/7) 0.710 0.850
simpler case oN=3 electrons in high magnetic fields. One  1351/9) 0.665 0.860

sees immediately that these overlaps are all very close te
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TABLE IV. Total interaction energies of JL, REM, and exact TABLE V. Values of the ratioa [Eq. (14)] for JL, REM, and
diagonalization wave functions fod =6 electrons and various an- exact diagonalization wave functions fbi=6 electrons and vari-
gular momenta. (v are the corresponding fractional filling factors  ous angular momenth; v (given in parenthesg¢sare the corre-
The percentages within parentheses indicate relative errors. Recalponding fractional filling factors. Recall that the angular momenta
that the angular momenta for the JL functions afe=N(N—1)  for the JL functions are L'*=N(N—1)(2m+1)/2, m
(2m+1)/2,m=0,1,2,3. .. . Energies in units oéZ/KIB, wherex =0,1,2,3....
is the dielectric constant.

L(v) JL REM Exact
L(v) JL REM Exact
75(1/5) 5.000 1.964 2.877
75(1/5) 2.2093(0.32% 2.2207(0.85% 2.2018 105(1/7) 7.000 1.972 2.708
85(3/17) 2.0785(0.65%  2.0651 1351/9) 9.000 1.978 2.726
95(3/19 1.9614(0.55% 1.9506
105(1/7) 1.8618(0.46% 1.8622(0.48% 1.8533
1153/23 1.7767(0.45% 17692  Vvalues fora’" (derived by dividing the proper’"s; see Fig.
1253/25) 1.7020(0.38%  1.6956 6) are equal to th+1 vv_it_hin numerical accuracy. As seen
135(1/9) 1.6387(0.50%  1.6361(0.34%  1.6305 from Table V, a most striking weakness of the JL functions is

that the corresponding’'s diverge asL—, a behavior

which contrasts sharply with the EXD values that remain at
occupation numbers show, the JL wave function is not all times finite and somewhat smaller than 3. Such a dramatic
good approximation to the exact one; in contrast, the REMlifference in behavior should be possible to be checked
wave function offers a much better description. experimentally. Furthermore, we note that the REM values,
In addition to the overlaps, earlier studie®e, e.g., Ref. although somewhat smaller, are close to the EXD ones and
44) have also relied on the total energies for assessing th&main bounded als— .
agreement, or not, between CF and exact wave functions. We We conclude that this dramatic qualitative and quantita-
thus list in Table IV the total energies fdt=6 and for the tive weakness of the JL functions is due to their being exact
three representative higher-angular-momentum values solutions of a family of short-range interparticle foréé©n
=75 (v=1/5), 105 (1/7), and 135 (1/9). It is seen that boththe other hand, as we have stressed earlier in this paper and
the JL and REM total energies exhibit very small relativein Ref. 15, the REM functions are able to capture the essen-
errors compared to the corresponding EXD ones in all thre&ial effects of the correlations associated with the long-range
instances, a fact that indicates that, by themselves, the totgloulomb force; thus, in agreement with the EXD results, the
energie&’ are an even less reliable index compared to thdREM « values remain finite as— .
overlaps. In particular, note that fof=6 andL =135, the
JL and exact total energies differ only in the third decimal V. SUMMARY
point, while at the same time the JL overlap is only 0.665
(see Table II). Exact diagonalization results for the lowest rotational
band of a circular QD witiN=6 electrons in strong mag-

E. Exponents of the current-voltage power law netic fields were reportédin the range of high angular mo-
menta, 76<L=<140 (covering the corresponding range of
tfractional filing factors, 1/5v=1/9). These EXD results
were used in a thorough assessment of the ability
a1 1) of the composite-fermithastrow-'LaughIi’n and rotating-

— . max 7 (14) electron-molecuf€ trial wave functions to approximate the
n(lox exact wave functions in the case of 2D QD’s.
) ) A detailed comparisoriaddressing five properties: i.e.,
OJfL the corresponding occupation numbersl#@x—l_ and  prediction of magic angular momenta, radial electron densi-
Inax- The interest in this ratio is due to the following two ties, occupation number distributions, overlaps and total en-
facts:(I) the value ofa for the JL function at different frac- ergies, and exponents of current-voltage power) lalows
tional fillings has a particular analytic vald&;”i.e., itis  that the REM many-body wave functions provide a descrip-
given by’ (v)=1/v=2m+1, m=1,2,34...; and(ll) @ tion that is superior to that obtained through the CF-JL ones.
happens to enter as the exporfént of the voltage in the ~ An important finding is that “global” quantitieslike over-
current-voltage lawoV* for external electron tunneling into laps and total energigsire not particularly reliable indices
an edge of a fractional quantum Hall system. Recent invesfor comparing exact and trial wave functions; a reliable de-
tigations have found that both the experimefftaind  cision on the agreement, or lack of it, between exact and trial
computed® EXD value of @ at v=1/3 deviates from the JL wave functions should include detailed comparisons of quan-
prediction of 3, being in all instances somewhat smadllet, tities like radial electron densities and/or occupation number
~2.7). distributions.
Table V displays the values af for N=6 and for the JL, We finally note that the CF-JL wave functions have been
REM, and EXD wave functions at various values of the totalmost useful for the modeling of the bulk fractional quantum
angular momentunh.. We have checked that our numerical Hall effect. However, theoretical investigations concerning

Another quantity of theoretical and experimental interes
is the ratio
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the bulk system have unavoidably, due to computationatally self-contained problem when exact diagonalization cal-
limitations, relied on finite-size systems to assessvdiiglity  culations become available; in the near future, a wider range
of the CF-JL wave functions. Thus it is natural to conjectureof such calculations will be within reach, due to new genera-
that the unexpected finding of this paper—i.e., that the CF-Jttions of powerful computers.

functions exhibit remarkable weaknesses in reproducing the
exact wave functions of QD’s in higB—may have ramifi-
cations for our present understanding of the fractional quan-
tum Hall effect itself. Investigations of such probable rami-  This research is supported by the U.S. DQ@&ant No.
fications and related questions concerning the domain dfFGO05-86ER-45234 Computations were carried out at the
validity of the REM and CF-JL wave functions in the bulk Georgia Tech Center for Computational Materials Science
will be addressed in future publications. In the present papeand the National Energy Research Scientific Computing
we focused on the case of QD’s, which constitute a theoretiCenter(NERSQ.

ACKNOWLEDGMENTS

*Electronic address: Constantine.Yannouleas@physics.gatech.edtfC. Yannouleas and U. Landman, Phys. Rev. 182t5325(1999;

Electronic address: Uzi.Landman@physics.gatech.edu 85, 222QE) (2000.

IR.B. Laughlin, Phys. Rev. Letg0, 1395(1983. 25C.E. Creffield, W. Hasler, J.H. Jefferson, and S. Sarkar, Phys.

°R.B. Laughlin, Phys. Rev. B7, 3383(1983. Rev. B59, 10 719(1999.

3S.M. Girvin and T. Jach, Phys. Rev. 2B, 4506(1983. 26R. Egger, W. Hasler, C.H. Mak, and H. Grabert, Phys. Rev. Lett.

4J.K. Jain, Phys. Rev. B1, 7653(1990. 82, 3320(1999; 83, 462E) (1999.

®S.-R. Eric Yang, A.H. MacDonald, and M.D. Johnson, Phys. Rev2’C. Yannouleas and U. Landman, Phys. Rev. [&5}.1726(2000.
Lett. 71, 3194(1993. 28\, Hausler, B. Reusch, R. Egger, and H. Grabert, Physi@88

6J.K. Jain and T. Kawamura, Europhys. L&, 321 (1995. 1772(2000.

’T. Kawamura and J.K. Jain, J. Phys.: Condens. Ma&{e2095 29A.V. Filinov, Y.E. Lozovik, and M. Bonitz, Phys. Status Solidi B
(1996. 221, 231(2000.

8H.-M. Miiller and S.E. Koonin, Phys. Rev. B4, 14 532(1996. 305 M. Reimann, M. Koskinen, and M. Manninen, Phys. Reg2B

9T. Seki, Y. Kuramoto, and T. Nishino, J. Phys. Soc. %#5.3945 8108(2000.
(1996. 31B. Reusch, W. Fasler, and H. Grabert, Phys. Rev.63, 113313

0p A, Maksym, Phys. Rev. B3, 10 871(1996. (2001).

1W.Y. Ruan and H-F. Cheung, J. Phys.: Condens. Matte#35  32A. Matulis and F.M. Peeters, Solid State Commui7, 655
(1999. (2002.

12C. Yannouleas and U. Landman, Phys. Re%1B15 895(2000). 33A.V. Filinov, M. Bonitz, and Y.E. Lozovik, Phys. Rev. LetB6,
13p A, Maksym, H. Imamura, G.P. Mallon, and H. Aoki, J. Phys.: 3851 (2002).

Condens. Mattet2, R299(2000. 34C. Yannouleas and U. Landman, J. Phys.: Condens. Matter
14C.E. Creffield, J.H. Jefferson, S. Sarkar, and D.L.J. Tipton, Phys. L591 (2002.

Rev. B62, 7249(2000. 35p A, Sundqvist, S.Y. Volkov, Y.E. Lozovik, and M. Willander,
15C. Yannouleas and U. Landman, Phys. Re6@3115315(2002. Phys. Rev. B66, 075335(2002.
18M. Rontani, G. Goldoni, F. Manghi, and E. Molinari, Europhys. 3¢S A. Mikhailov and K. Ziegler, Eur. Phys. J. B8, 117 (2002.

Lett. 58, 555 (2002. 373.A. Mikhailov, Physica HAmsterdam 12, 884 (2002.
7B, Szafran, S. Bednarek, and J. Adamowski, Phys. Re67B  38S.A. Mikhailov, Phys. Rev. B55, 115312(2002).

045311(2003. 39A, Harju, S. Siljamaki, and R.M. Nieminen, Phys. Rev.6B,
18gee, e.g., A. L. Jacak, P. Hawrylak, and A. Wajsjantum Dots 075309(2002.

(Springer, Berlin, 1998 in particular Chap. 4.5. 40C. Yannouleas and U. Landman, Phys. Re683035325(2003.
19R.C. Ashoori, NaturéLondon 379, 413(1996. 4ly.M. Bedanov and F.M. Peeters, Phys. Rev® 2667 (1994.
293, Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and L.P"2F. Bolton and U. Resler, Superlattices Microstruci3, 139

Kouwenhoven, Phys. Rev. Left7, 3613(1996. (1993.

?IL. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R43ynder conditions of partial spin polarizatighe., low magnetic
M. Westervelt, and N. S. Wingreen, iMesoscopic Electron
Transport Vol. 345 of NATO Advanced Study Institute, Series E
edited by L. L. Sohn, L. P. Kouwenhoven, and G. Stiiklu-
wer, Dordrecht, 1997 p. 105.

22F.D.M. Haldane, Phys. Rev. Lef1, 605(1983; S.A. Trugman
and S. Kivelson, Phys. Rev. 81, 5280(1985.

fields), the molecular configurations may exhibit distortions
away from the classical equilibrium configurations. With in-
creasingRy,, however, the classical molecular configurations
are recoveredsee Ref. 38

443 K. Jain and R.K. Kamilla, Int. J. Mod. Phys.18, 2621(1997.

45

BWe use the well-known formula=N(N—1)/2L (see Ref. 2, 46E' Goldmann and S.R. Renn, Phys. Rew 13 296(1997).

which specifies the corresponding fractional filling factors in the S-R. Eric Yang and J.H. Han, Phys. Rev5 R12 681(1998.

47 .
thermodynamic limit. We stress, however, that in this paper we, M. Taut, J. Phys.: Condens. Matte?, 3689(2000.

focus exclusively on finite-size systems; thus, throughout this M. Manninen, S. Viefers, M. Koskinen, and S.M. Reimann, Phys.
paper,v is used as a more compact index in place of Rev. B64, 245322(2000.

035326-9



CONSTANTINE YANNOULEAS AND UZI LANDMAN PHYSICAL REVIEW B 68, 035326 (2003

49%. Wan, K. Yang, and E.H. Rezayi, Phys. Rev. L&8, 056802 %M. Stone, H.W. Wyld, and R.L. Schult, Phys. Rev4B, 14 156

(2002. (1992.
50X. Wan, E.H. Rezayi, and K. Yang, cond-mat/03023d&hpub-  ®2E.V. Tsiper and V.J. Goldman, Phys. Rev6B, 165311(2001).
lished). 53M. Kasner, Ann. Phys(Berlin) 11, 175 (2002, and references
5IA. Harju, S. Siliamaki, and R.M. Nieminen, Phys. Rev. L&8, therein.
226804(2002. 84V.A. Kashurnikov, N.V. Prokof’ev, B.V. Svistunov, and I.S. Tupi-

52p. Ring and P. SchuckThe Nuclear Many-body Problem
(Springer, New York, 1980Chap. 11, and references therein.

53C. Yannouleas and U. Landman, Eur. Phys. 118373 (2002.

54C. Yannouleas and U. Landman, Int. J. Quantum Che®n699
(2002.

55K. Maki and X. Zotos, Phys. Rev. B8, 4349(1983.

tsyn, Phys. Rev. B4, 8644 (1996.
65g v, Tsiper, J. Math. Phy<l3, 1664 (2002.
6R. B. Lehoucq, D. C. Sorensen, and C. Ya#@RPACK Users’
Guide: Solution of Large-Scale Eigenvalue Problems with Im-
plicitly Restarted Arnoldi Method&SIAM, Philadelphia, 1998
57Reference 9 gives the full list of the nine CF magic numbers in
6The definitionz=x+1y is associated with positive angular mo-  the interval (= »=1/3). Reference 6 excludes two of them:
menta for the single-particle states in the lowest Landau level. In i.e., the CF magic angular momenta 27 and 33.
Ref. 15, we used=x—1y and negative single-particle angular ®®A.H. MacDonald, S.R.E. Yang, and M.D. Johnson, Aust. J. Phys.
momenta in the lowest Landau level. The final expressions for 46, 345(1993.
the trial wave functions do not depend on these choices. 89At B=0, the interelectron Coulombic repulsion can also induce
’Both the finite-size REM molecule and several sophisticated bulk (as a function of increasing,,) a similar succession of phase

Wigner crystal(BWC) approaches at higB (listed at the end of
this footnote start with a single-determinantal UHF wave func-
tion constructed out of the orbitals in E€L), and both do im-
prove it by introducing additional correlations; however, the na-
ture of these correlations is quite different between the REM and
BWC approaches. Indeed, due the the finite size of the system,
the REM approach includes correlations associated with fluctua-
tions in theazimuthalangle(see Ref. 15 and 40these correla-
tions arise from the restoration of the circular symmetry and
result in states with good total angular momefita particular
magicangular momenta; see Sec. IV.Aaturally, in the BWC

transitionsJi.e., normal fluid— (0,6) molecule— (1,5 mol-
eculd; see Fig. 2 in Ref. 24.

There is no “variational dilemma” from the fact that the CF-JL

and REM functions are two essentially different wave functions

with very close expectation values of the energy. Indeed, the
CF-JL wave functions correspond to a Hamiltonian with short-

range two-dody interactions, while the REM functions corre-

spond to the actual Hamiltonian of the Coulomb problem that
involves long-range interelectron interactions. Therefore these
represent two separate variational problems.

13, Mitra and A.H. MacDonald, Phys. Rev. B, 2005(1993.

approaches, angular momentum conservation and magic angul&X.G. Wen, Phys. Rev. B1, 12 838(1990; Int. J. Mod. Phys. B

momenta are not considered; for example, Lam and Girvin in-
clude correlations fromvibrationaktype fluctuations of the

6, 1711(1992.

73\.J. Goldman and E.V. Tsiper, Phys. Rev. L&, 5841 (2007).

BWC that are more in tune with the expected translational in-"*A.M. Chang, M.K. Wu, C.C. Chi, L.N. Pfeiffer, and K.W. West,

variance of a bulk system. As a result, the REM exhibits drasti-
cally different properties from the properties of &hkelectron
piece of the bulk Wigner crystal. Rather, the REM wave func-
tions exhibit properties associated with the incompressible
magic angular momentum states in the spectra of QD’s, which
are finite-sizeprecursorsto the “correlated-liquid” fractional
guantum Hall states of the bulkee Ref. 18 For sophisticated
BWC approaches at higb, see, e.g., P.K. Lam and S.M. Girvin,
Phys. Rev. B30, 473(1984; H. Yi and H.A. Fertig,ibid. 58,
4019(1998.

%8C.G. Darwin, Proc. Cambridge Philos. Sc7, 86 (1930; V.

Fock, Z. Phys47, 446 (1928.

59n the case oN=6 electrons, we have used 338, 5444, 32 134,

and 118765 terms in this decomposition for=45 (v=1/3),

75 (1/5), 105 (1/7), and 135 (1/9), respectively. These num-
bers correspond to all the Slater determinants with15(2m

+1) and individual angular momenl&lfnLaX=5(2m+ 1), in-
cluding the cases with zero coefficients. We remind the reader
that )% =(2m+1)(N—1) is the maximum individual angular
momentum allowed in the JL states. The Slater decomposition of
the JL states foN=2,3,4,5,6, but only forr=1/3, has been
reported earlier in G.V. Dunne, Int. J. Mod. Phys.7B4783
(1993.

805, Wolfram, Mathematica: A System for Doing Mathematics by

Computer(Addison-Wesley, Reading, MA, 1991

Phys. Rev. Lett86, 143(2001), and references therein.

"SWe have specifically considered the limit when the confining po-

tential can be neglected compared to the confinement induced by
the high magnetic field. In higB, the effect of the confining
potential amounts simply in selecting a specific magic angular
momentum statésee Sec. IV A as the ground state of the sys-
tem (the specific value of the magicdepends on the strength of

B and the parameters of the confinemeint most studiegsee,
e.g., Ref. 6, Ref. 9, or Ref. 13the external confinement has
been modeled as a harmonic potential. Most recently, however,
Wanet al. (Ref. 49 and Ref. 50have studied few-electron QD’s
taking into consideration a disklike neutralizing positive back-
ground. Indeed, these authors employ a confining potential aris-
ing from a positive background charge distributed uniformly on
a parallel disk at a distanakfrom the electron layefthe typical

din experiments ifi=105 ; see Ref. 50 As was the case with
the harmonic external potential, these authors found again that
their external confinement influences which magistate be-
comes the ground state of the system. Most importantly, the
ground-state wave functions in their exact diagonalization study
exhibit strong oscillations in the radial electron density an
apparent agreement with the classical ring configurations of
Wigner moleculesand in disagreement with the CF-JL wave
functions. It is interesting to note the coincidence, for all prac-
tical purposes, of the exact radial electron densityNe+6 and
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L =105 calulated by Waet al. with that calculated by ugom-
pare Fig. %d) in Ref. 50 with the middle panel of Fig. 5 in this
papel. In order to account for the disagreement between the
exact and CF-JL wave functions, Wenal. were led to use the
concept of “edge reconstruction.” In the case studied by us,
however, our exact diagonalization resuléd those of Tsiper
and Goldman; see Ref. &o not include any external confine-
ment, a fact that rules out “edge reconstruction” as the under-

PHYSICAL REVIEW B68, 035326 (2003

lying cause for the disagreement between the exact and CF-JL
wave functions. As we have pointed out in this paper previously
(see Sec. IVE and also Ref. )15his disagreement arises from
the fact that the CF-JL functions do not capture the long-range
character of the Coulomb interelectron repulsion. On the con-
trary the REM wave functions are able to capture the long-range
Coulombic correlations and thus are in better agreement with the
wave functions from exact diagonalization.
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