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Group theoretical analysis of symmetry breaking in two-dimensional quantum dots
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We present a group theoretical study of the symmetry-broken unrestricted Hartree-Fock orbitals and electron
densities in the case of a two-dimensionalN-electron single quantum dot~with and without an external
magnetic field!. The breaking of rotational symmetry results in canonical orbitals that~1! are associated with
the eigenvectors of a Hu¨ckel Hamiltonian having sites at the positions determined by the equilibrium molecular
configuration of the classicalN-electron problem and~2! transform according to the irreducible representations
of the point group specified by the discrete symmetries of this classical molecular configuration. Through
restoration of the total-spin and rotational symmetries via post-Hartree-Fock projection techniques, we show
that the point-group discrete symmetry of the unrestricted Hartree-Fock wave function underlies the appear-
ance of magic angular momenta~familiar from exact-diagonalization studies! in the excitation spectra of the
quantum dot. Furthermore, this two-step symmetry-breaking and symmetry-restoration method accurately de-
scribes the energy spectra associated with the magic angular momenta.

DOI: 10.1103/PhysRevB.68.035325 PACS number~s!: 73.21.La
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I. INTRODUCTION

A. Background of the mean-field breaking of spatial
symmetries in quantum dots

Two-dimensional~2D! quantum dots~QD’s! created at
semiconductor interfaces with refined control of their si
shape, and number of electrons are often referred1–4 to as
‘‘artificial atoms.’’ For high magnetic fields (B), it has been
known for some time~ever since the pioneering work5 of
Laughlin in 1983 concerning the fractional quantum H
effect! that 2D few-electron systems exhibit comple
strongly correlated many-body physics. Nevertheless,
low magnetic fields, the term artificial atoms was used i
tially to suggest that the physics of electrons in such m
made nanostructures is exclusively related to that underly
the traditional description6 of natural atoms~pertaining par-
ticularly to electronic shells and the Aufbau principle!, where
the electrons are taken7 to be moving in a spherically aver
aged effective central mean field. This traditional picture w
given support by experimental studies3,4 on vertical QD’s,
which were followed8 by a series of sophisticated theoretic
investigations yielding results conforming to it.

However, in 1999, the circular~for 2D QD’s! central-
mean-field picture was challenged by the discovery of so
tions with brokenspacesymmetry in the context of spin-and
space unrestricted Hartree-Fock~sS-UHF! mean-field
calculations.9,10 These broken-symmetry~BS! solutions ap-
pear spontaneously~due to a phase transition! when the
strength of the interelectron repulsion relative to the ze
point kinetic energy (RW) exceeds a certain critical value
They indicate the formation of Wigner~or electron! mol-
ecules~WM’s or EM’s! with the electrons located at the ve
tices of nested regular polygons~often referred to as concen
tric rings!, familiar from studies of classical poin
charges.11,12 Such molecules were characterized by us
strong or weak Wigner crystallites depending on their rig
ity or lack thereof~i.e., floppiness!, suggesting the existenc
of additional13 ‘‘phase transitions’’ as a function of the pa
rameterRW ~see Sec. II B for its precise definition!. Further-
0163-1829/2003/68~3!/035325~16!/$20.00 68 0353
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more, it was noted9 that the symmetry breaking should b
accompanied by the emergence of a spectrum of collec
rovibrational excitations~finite-size analogs of the Goldston
modes!. A subsequent investigation14 based on exact solu
tions for a helium QD~2e QD! confirmed these results an
provided a systematic study of the molecular rovibratio
collective spectra and their transition to independent part
excitations, as the rigidity of the WM was reduced throu
variation of the controlling parameterRW .

We remark here that the lower-energy BS UHF solutio
already capture10 part of the correlation energy, compared
the restricted HF~RHF! ones. Improved numerical accurac
has been achieved in subsequent studies15–17through the res-
toration of the broken symmetries via projection techniqu
Consequently, the methodology of symmetry breaking at
UHF mean-field level and of subsequent symmetry resto
tion via post Hartree-Fock methods18 provides a systematic
controlled hierarchy of approximations toward the exact
lution, with anticipated advantages for complex many el
tron systems~under field-free conditions15 and in the pres-
ence of a magnetic field16,17!, whose treatment is
computationally prohibitive with other methods~e.g., exact
diagonalization!.

B. Background of the mean-field breaking of symmetries in
other finite-size fermionic systems

The mean-field approach has been a useful tool in el
dating the physics of small fermionic systems, from natu
atoms and atomic nuclei to metallic nanoclusters and, m
recently, of two-dimensional quantum dots. Of particular
terest for motivating the present work~due to spatial-
symmetry-breaking aspects! has been the mean-field descri
tion of deformed nuclei and metal clusters~exhibiting
ellipsoidal shapes!. At a first level, deformation effects in
these systems can be investigated via semiempirical m
field models, like the particle-rotor model19 of Bohr and
Mottelson ~nuclei!, the anisotropic-harmonic-oscillato
model of Nilsson~nuclei20 and metal clusters21!, and the
©2003 The American Physical Society25-1
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CONSTANTINE YANNOULEAS AND UZI LANDMAN PHYSICAL REVIEW B 68, 035325 ~2003!
shell-correction method of Strutinsky~nuclei22 and metal
clusters23,24!. At the microscopic level, the mean field is ofte
described25,26 via the self-consistent single-determinantal H
theory. At this level, however, the description of deformati
effects mentioned above requires25,27 consideration of unre-
stricted Hartree-Fock wave functions that break explicitly
rotational symmetries of the original many-body Ham
tonian, but yield HF determinants with lower energy co
pared to the symmetry-adapted restricted Hartree-Fock s
tions.

In earlier publications,9,10,15–17we have shown that, in the
strongly correlated regime, UHF solutions violating the ro
tional ~circular! symmetry arise most naturally in the case
2D single QD’s and for both the cases of zero and h
magnetic field.28 Unlike the case of atomic nuclei, howeve
where symmetry breaking is associated with quadrupole
formations, spontaneous symmetry breaking in 2D QD’s
duces electron localization associated with the formation
WM’s.

The violation in the mean-field approximation of the sym
metries of the original many-body Hamiltonian appears to
paradoxical at a first glance. However, for the specific ca
arising in nuclear physics and quantum chemistry, two th
retical developments have resolved this paradox. They
~1! the theory of restoration of broken symmetries via p
jection techniques29,30 and ~2! the group theoretical analysi
of symmetry-broken HF orbitals and solutions in chemi
reactions initiated by Fukutome,31 who used of course the
symmetry groups associated with the natural 3D molecu
Despite the different fields, the general principles establis
in these earlier theoretical developments have provide
wellspring of assistance in our investigations of symme
breaking in QD’s. In particular, the restoration of brok
circular symmetry in the case of single QD’s has alrea
been demonstrated by us in three recent publications.15–17,32

C. Content of this paper

In the present paper, we will provide an in-depth gro
theoretical analysis of broken-symmetry UHF orbitals a
electron densities~ED’s! in the case of single paraboli
QD’s. We will show that such an analysis provides furth
support for our earlier interpretation concerning the spon
neous formation of collectively rotating electron~or Wigner!
molecules~REM’s!. Indeed we will demonstrate deep anal
gies between the electronic structure of the WM and tha
the natural 3D molecules. In particular, we will show that t
breaking of rotational symmetry results in canonical UH
orbitals that are associated with the eigenvectors o
molecular-type Hu¨ckel Hamiltonian having ‘‘atomic’’ sites a
positions specified by the equilibrium configuration of t
classicalN-electron problem; these ‘‘atomic’’ sites are loca
ization sites for the electrons, and they do not imply t
presence of a positive nucleus. Thus, in contrast to the f
delocalized and symmetry-adapted, independent-part
model-type orbitals of the RHF, the BS UHF orbitals wi
thesame spin directionresemble closely the molecular orbi
als ~MO’s! formed by linear combinations of atomic orbita
~LCAO’s!, which are prevalent33 in chemistry.~Naturally, the
03532
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LCAO behavior of the UHF orbitals with the same spin d
rection allows for a more precise understanding of the te
‘‘electron localization’’ used by us in previous publications!
An important conclusion of the present paper is that the
UHF orbitals are not necessarily unique; what matters,
analogy with the LCAO-MO’s of natural molecules, is th
they transform according to the irreducible representation
the point group specified by the discrete symmetries of
classical equilibrium configuration.11

Our study leads to the following two main results:~i! in
analogy with 3D natural molecules, the WM’s can rotate a
the restoration of the total-spin and rotational symmetries
projection techniques describes their lowest rotational ba
~yrast bands14,34! in addition to the ground state and~ii ! the
lowering of the symmetry, which results in the~discrete!
point-group symmetry of the UHF wave function, underli
the appearance of the sequences of magic angular mom
~familiar from exact-diagonalization studies35–40! in the ex-
citation spectra of single QD’s. Since exact-diagonalizat
methods are typically restricted to small sizes withN<10,
the present two-step method of breakage and subsequen
toration of symmetries offers a promising new avenue
accurately describing larger 2D electronic systems. A c
crete example of the potential of this approach is provided
Ref. 16 and Ref. 17, where our use of the the symme
breaking and symmetry-restoration method yielded anal
expressions for correlated wave functions that offer a be
description of theN-electron problem in high magnetic field
compared to the Jastrow-Laughlin5 expression.

Since the group theoretical aspects of symmetry break
at the mean-field level~and their relation to the properties o
the exact solutions! remain a vastly unexplored territory i
the area of condensed-matter finite-size systems, in the
lowing we will present an introductory investigation of the
through a series of rather simple, but nontrivial, illustrati
examples from the field of 2D parabolic QD’s. The plan
the paper is as follows: Section II reviews briefly the set
UHF equations employed by us; Secs. III and IV present
case of three electrons in the absence and in the presen
an external magnetic fieldB, respectively. The more compli
cated case of six electrons atB50 is investigated in Sec. V
while Sec. VI discusses the companion step of the restora
of broken symmetries, which underlies the appearance
magic angular momenta in the exact spectra. Finally, S
VII presents a summary.

Before leaving the Introduction, we wish to stress th
analogs of several of the group theoretical concepts and
nipulations employed in this paper can be found in textbo
concerning standard applications of symmetry groups to
electronic structure and chemistry of 3D natural molecul
Here, however, we will use these otherwise well-know
group theoretical aspects to elucidate the molecular inter
tation of the BS UHF determinants~and associated orbitals!
in the unexpected context of a newly arising area of phys
namely, the physics of strong correlations in 2D circular
tificial atoms~QD’s!.

II. UHF EQUATIONS

A. Pople-Nesbet equations

The UHF equations we are using are the Pople-Nesb41

equations described in detail in Chap. 3.8 of Ref. 26. F
5-2
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GROUP THEORETICAL ANALYSIS OF SYMMETRY . . . PHYSICAL REVIEW B68, 035325 ~2003!
completeness, we present here a brief description of th
along with details of their computational implementation
us to the 2D case of semiconductor QD’s.

The key point is that electrons ofa ~up! spin are de-
scribed by one set of spatial orbitals$c j

au j 51,2, . . . ,K%,
while electrons ofb ~down! spin are described by a differen
set of spatial orbitals$c j

bu j 51,2, . . . ,K% ~of course in the
RHF c j

a5c j
b5c j ). Next, one introduces a set of basis fun

tions $wmum51,2, . . . ,K% ~constructed to beorthonormalin
our 2D case!, and expands the UHF orbitals as

c i
a5 (

m51

K

Cm i
a wm , i 51,2, . . . ,K, ~1!

c i
b5 (

m51

K

Cm i
b wm , i 51,2, . . . ,K. ~2!

The UHF equations are a system of two coupled ma
eigenvalue problems

FaCa5CaEa, ~3!

FbCb5CbEb, ~4!

whereFa(b) are the Fock-operator matrices andCa(b) are the
vectors formed with the coefficients in the expansions~1!
and~2!. The matricesEa(b) arediagonal, and as a result Eqs
~3! and ~4! arecanonical~standard!. Notice that noncanoni-
cal forms of HF equations are also possible~see Chap. 3.2.2
of Ref. 26!. Since the self-consistent iterative solution of t
HF equations can be computationally implemented only
their canonical form, heretofore canonical orbitals and so
tions will always be implied, unless otherwise noted expl
itly. We note that the coupling between the two UHF equ
tions ~3! and~4! is given explicitly in the expressions for th
elements of the Fock matrices below@Eqs.~7! and ~8!#.

Introducing the density matricesPa(b) for a(b) electrons,

Pmn
a 5(

a

Na

Cma
a ~Cna

a !* ~5!

Pmn
b 5(

a

Nb

Cma
b ~Cna

b !* , ~6!

whereNa1Nb5N, the elements of the Fock-operator m
trices are given by

Fmn
a 5Hmn1(

l
(
s

Pls
a @~msunl!2~msuln!#

1(
l

(
s

Pls
b ~msunl!, ~7!

Fmn
b 5Hmn1(

l
(
s

Pls
b @~msunl!2~msuln!#

1(
l

(
s

Pls
a ~msunl!, ~8!
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where Hmn are the elements of the single-electron Ham
tonian with an external magnetic fieldB and an appropriate
potential confinement, and the Coulomb repulsion is
pressed via the two-electron integrals

~msunl!

5
e2

k E dr1dr2wm* ~r1!ws* ~r2!
1

ur12r2u
wn~r1!wl~r2!,

~9!

with k being the dielectric constant of the semiconduc
material. Of course, the Greek indicesm, n, l, ands run
from 1 to K.

For a QD, the external confinement is assumed to be p
bolic, and the single-particle Hamiltonian in a perpendicu
external magnetic fieldB is written as

H5
~p2eA/c!2

2m*
1

1

2
m* v0

2~x21y2!1
g* mB

\
B•s. ~10!

The vector potentialA is given in the symmetric gauge by

A~r !5
1

2
B3r5

1

2
~2By,Bx,0!, ~11!

and the last term in Eq.~10! is the Zeeman interaction with
g* being the effectiveg factor,mB the Bohr magneton, ands
the spin of an individual electron.m* is the effective elec-
tron mass andv0 is the frequency parameter of the parabo
potential confinement.

The system of the two coupled UHF matrix equations~3!
and~4! is solved self-consistently through iteration cycles42

For obtaining the numerical solutions, we have used a se
K578 basis statesw i ’s that are chosen to be the produ
wave functions formed out from the eigenstates of the o
dimensional harmonic oscillators along thex andy axes. This
basis is often referred to as ‘‘Real Cartesian harmonic os
lator basis.’’ Note that the valueK578 corresponds to all the
states of the associated 2D harmonic oscillator up to
including the 12th major shell.

Having obtained the self-consistent solution, the to
UHF energy is calculated as

EUHF5
1

2 (
m

(
n

@~Pnm
a 1Pnm

b !Hmn1Pnm
a Fmn

a 1Pnm
b Fmn

b #.

~12!

B. Solutions representing Wigner molecules

As a typical example of a solution that can be extrac
from the above UHF equations, we mention the case oN
519 electrons for\v055 meV, RW55 (k53.8191), and
B50. The Wigner parameterRW[Q/\v0, whereQ is the
Coulomb interaction strength; Q5e2/k l 0, with l 0
5(\/m* v0)1/2 being the spatial extent of the lowest singl
electron wave function in the parabolic confinement.

Figure 1 displays the total electron density of the BS UH
solution for these parameters, which exhibits breaking of
rotational symmetry. In accordance with ED’s for smaller d
sizes published by us earlier,9,10 the ED in Fig. 1 is highly
5-3
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CONSTANTINE YANNOULEAS AND UZI LANDMAN PHYSICAL REVIEW B 68, 035325 ~2003!
suggestive of the formation of a Wigner molecule, with
~1,6,12! ring structure in the present case. This polygo
ring structure agrees with the classical one11 and is suffi-
ciently complex to instill confidence that the Wigne
molecule interpretation is valid. The following questio
however, arises naturally at this point: is such a molecu
interpretation limited to the intuition provided by the lan
scapes of the total ED’s, or are there deeper analogies
the electronic structure of natural 3D molecules? The ans
to the second part of this question is in the positive, and
remainder of this paper is devoted to discovering such an
gies. However, since theN519 case represents a rather co
plicated group theoretical structure, for simplicity and tran
parency, we will study in the following smaller QD size
This, however, will not result in any loss of generality in o
conclusions.

In previous publications,9,10 we found thatspacesymme-
try breaking in the UHF equations appears spontaneously
RW.1. Below we choose to work with larger values ofRW
~e.g., 10 or higher!, for which the effects of strong correla
tions are fully developed. The group theoretical investigat
of the intermediate regime near the phase transition is left
a future publication. In all calculated cases, we used\v0
55 meV, m* 50.067me ~GaAs!, andg* 520.44 ~GaAs!.

We note that the Pople-Nesbet UHF equations are pri
rily employed in quantum chemistry for studying the grou
states of open-shell molecules and atoms. Unlike our stu
of QD’s, however, such chemical UHF studies consid
mainly the breaking of the total spin symmetry, and not t
of the space symmetries. As a result, for purposes of em
sis and clarity, we have often used~see, e.g., our previou
papers! prefixes to indicate the specific unrestrictions
volved in our UHF solutions, i.e., the prefix s for the tot
spin and the prefix S for the space unrestriction.

C. Solutions representing pure spin density waves

Before leaving this section, we mention another class
BS solutions which can appear in single QD’s; namely,

FIG. 1. UHF electron density in a parabolic QD forN519 and
Sz519/2, exhibiting breaking of the circular symmetry atRW55
and B50. The choice of the remaining parameters is\v0

55 meV andm* 50.067me . Distances~along the horizontalx and
y axes! are in nanometers and the electron density~along the verti-
cal axis! in 1024 nm22.
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spin density waves~SDW’s!. The SDW’s are unrelated to
electron localization and thus are quite distinct from t
WM’s; in single QD’s, they were obtained43 earlier within
the framework of spin density functional theory.44 To empha-
size the different nature of SDW’s and WM’s, we present
Fig. 2 an example of a SDW obtained with the UHF a
proach @the corresponding parameters areN514, Sz50,
RW50.8 (k523.8693), andB50]. Unlike the case of
WM’s, the SDW exhibits a circular ED@see Fig. 2~a!#, and
thus does not break the rotational symmetry. Naturally,
keeping with its name, the SDW breaks the total-spin sy
metry and exhibits azimuthal modulations in the sp
density45 ~SD! @see Fig. 2~b!; however, the number of hump
is smaller than the number of electrons46#. The SDW’s in
single QD’s appear for RW&1 and are of lesse
importance47; thus in the following we will exclusively study
the case of WM’s.

III. THREE ELECTRONS WITHOUT MAGNETIC FIELD

A. SzÄ3Õ2 fully spin polarized case

We begin with the case ofN53 fully spin polarized (Sz
53/2) electrons in the absence of a magnetic field and
RW510 (k51.9095). Fully spin polarized UHF determ

FIG. 2. UHF solution in a parabolic QD exhibiting a pure sp
density wave forN514, Sz50, RW50.8, andB50. ~a! The total
electron density exhibiting circular symmetry;~b! The spin density
exhibiting azimuthal modulation~note the 12 humps whose numb
is smaller than the number of electrons!. The choice of the remain-
ing parameters is\v055 meV andm* 50.067me . Distances are
in nanometers and the electron and spin densities in 1024 nm22.
5-4
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FIG. 3. The RHF case forN53 andSz53/2
at RW510. ~a!–~c! Real orbitals atB50. ~e!–~g!
The modulus square of the complex orbitals for
vanishingly small valueB50.0001 T. ~d! The
corresponding circular electron density for bo
cases. The choice of the remaining parameters
\v055 meV andm* 50.067me . Distances are
in nanometers. The real orbitals are
1023 nm21 and the orbital densities and total E
in 1024 nm22. The arrows indicate the spin di
rection.
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nants preserve the total spin, but for this value ofRW the
lowest in energy UHF solution is one with broken circul
symmetry. As will be seen below, broken rotational symm
try does not imply no space symmetry, but a lower poi
group symmetry. Before proceeding with the study of the
solution, however, it will be helpful to review the symmetr
adapted RHF solution first. This RHF solution can be o
tained from the UHF equations~3! and~4! by using a circu-
lar electron density guess as the input of the first iteration
the independent particle model, theN53, Sz53/2, andB
50 2D case corresponds to a closed electronic shell w
configuration 1s1p11p2 or 1s1px1py (p6}px6 ipy
}re6 iu), and thus the independent-particle-model ED
necessarily circular. We will confirm that the RHF solutio
03532
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conforms indeed to the prediction of the independent part
model, and subsequently we will contrast the UHF solut
to it.

The RHF solution forRW510 andB50 has an energy o
92.217 meV; the corresponding orbitals are real and are
played in the left column of Fig. 3. They are like the 1s @Fig.
3~a!#, 1px @Fig. 3~b!#, and 1py @Fig. 3~c!# orbitals of the
independent particle model. The nodeless 1s orbital has a
maximum atr .0 due to the large Coulomb repulsion; i
energy is 44.526 meV. The energy of the two degeneratepx
andpy orbitals is 50.489 meV. Notice that neither thepx nor
py orbital is rotationally symmetric; however, the total E
@Fig. 3~d!# has the expected circular symmetry. It is of inte
est to obtain the RHF solution for a very small external ma
5-5
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CONSTANTINE YANNOULEAS AND UZI LANDMAN PHYSICAL REVIEW B 68, 035325 ~2003!
netic field ~i.e., in the limit B→0). In this case, the calcu
lated total and orbital energies, as well as the total ED@Fig.
3~d!#, remain unchanged. However, the two degeneratep or-
bitals are now complex@p6 ; see Fig. 3~f! and Fig. 3~g!# and
have good angular momental 561, and thus their modulus
square is circularly symmetric.

We focus now on the sS-UHF solution forN53 andSz
53/2, and for the same choice of parameters as with
RHF case. The UHF total energy is 89.691 meV, and thu
is lower than the corresponding RHF one. In Fig. 4 we d
play the UHF symmetry-violating orbitals~a!–~c! whose en-
ergies are~a! 44.801 meV and~b! and ~c! 46.546 meV;
namely, the two orbitals~b! and~c! with the higher energies
are again degenerate in energy. An inspection of Fig. 4
mediately reveals that these orbitals have retained s
properties of the delocalized 1s, 1px , and 1py orbitals, fa-
miliar from the independent particle model and the RHF; t
is, orbital ~a! is nodeless, while each one of the orbitals~b!
and ~c! has a single nodal line. However, overall the B
orbitals ~a!–~c! drastically differ from the orbitals of the in
dependent particle model. In particular, they are associ
with specific sites~within the QD! forming an equilateral
triangle, and thus they can be described as having the s
ture of a linear combination of ‘‘atomic’’~site! orbitals. Such
LCAO MO’s are familiar in natural molecules, and this ana
ogy supports the term ‘‘electron~or Wigner! molecules’’ for
characterizing the BS UHF solutions.

In the LCAO-MO approximation, one needs to solve
matrix eigenvalue equation determined by the overlapsSi j

( iÞ j ) and the Hamiltonian matrix elementsH̃ i j andH̃ ii be-
tween the atomic orbitals. A further simplifie
approximation,48 the Hückel approximation~HüA!, consists

FIG. 4. The S-UHF case exhibiting breaking of the circu
symmetry forN53 andSz53/2 atRW510 andB50. ~a!–~c! Real
orbitals. ~d! The corresponding electron density. The choice of
remaining parameters is\v055 meV and m* 50.067me . Dis-
tances are in nanometers. The real orbitals are in 1023 nm21 and
the total ED in 1024 nm22. The arrows indicate the spin direction
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in taking all Si j 50, and allH̃ i j 50 unless thei th and j th
atoms ~sites! are adjacent. For our example this latter a
proximation is applicable, since the valueRW510 is rather
high. When using the notatione5H̃115H̃225H̃33 and 2b

5H̃125H̃135H̃23,0, the Hückel eigenvalue equation fo
the case ofN53 electrons on the vertices of an equilate
triangle is written as

S e 2b 2b

2b e 2b

2b 2b e
D S f 1

f 2

f 3

D 5ES f 1

f 2

f 3

D , ~13!

and the associated LCAO-MO’s arec i5 f 1
i f11 f 2

i f2

1 f 3
i f3, havingEi eigenvalues withi 51,2,3. Thef j ’s are

the original Gaussian-type atomic~site! orbitals.
From the eigenvalues and eigenvectors of Eq.~13!, one

finds the following three LCAO-MO’s:

c15~f11f21f3!/A3 ~14!

with energyE15e22b,

c25~2f12f22f3!/A6 ~15!

with energyE25e1b, and

c35~f22f3!/A2 ~16!

with energyE35E2. It is apparent that the structure of the
three LCAO-MO’s and the level diagram of their energi
agree very well with the corresponding symmetry-brok
UHF orbitals @displayed in Figs. 4~a!–4~c!# and their ener-
gies. ~Using the HF values forE1 and E2, one findse
'45.961 meV andb'0.585 meV.! We notice here that
such LCAO orbitals are familiar in organic chemistry and a
associated with the theoretical description of carbocyclic s
tems and, in particular, the molecule C3H3 ~cyclopropenyl,
see, e.g., Ref. 33!.

Naturally, since the orbitals~b! and ~c! are degenerate in
energy, they are not uniquely defined: any linear combinat
associated with a unitary 232 transformation will produce a
pair of different, but equivalent (b8) and (c8) orbitals. The
fact that the UHF orbitals in Fig. 4 have the specific high
symmetrized~see below! form given above is the result of a
accidental choice of the initial electron density input in t
HF iteration. We have checked that any such pair of (b8) and
(c8) orbitals leaves the 2D total UHF electron density u
changed. This suggests that there is an underlying group
oretical structure that governs the BS UHF orbitals. The i
portant point is not the uniqueness or not of the 2D sS-U
orbitals, but the fact that they transform according to t
irreducible representations of specific point groups, leav
both the sS-UHF determinant and the associated elec
densities invariant. Given the importance of this observati
we proceed in the rest of this section with a group theoret
analysis of the BS sS-UHF orbitals for theN53 and Sz
53/2 case.

The ED portrayed in Fig. 4~d! remains invariant unde
certain geometrical symmetry operations—namely, those
an unmarked, plane and equilateral triangle. They are~1! the

e
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identity E, ~2! the two rotationsC3 ~rotation by 2p/3) and
C3

2 ~rotation by 4p/3), and~3! the three reflectionssv
I , sv

II ,
and sv

III through the three vertical planes, one pass
through each vertex of the triangle. These symmetry op
tions for the unmarked equilateral triangle constitute the
ements of the groupC3v .33,49

One of the main applications of group theory in chemis
is the determination of the eigenfunctions of the Schro¨dinger
equation without actually solving the matrix equation~13!.
This is achieved by constructing the so-calledsymmetry-
adapted linear combinations~SALC’s! of AO’s. A widely
used tool for constructing SALC’s is the projection opera

P̂m5
nm

uGu (
R

xm~R!R̂, ~17!

whereR̂ stands for any one of the symmetry operations
the molecule, andxm(R) are the characters of themth irre-
ducible representation of the set ofR̂’s. ~The xm’s are tabu-
lated in the socalled character tables.33,49! uGu denotes the
order of the group andnm the dimension of the represent
tion.

The task of finding the SALC’s for a set of three 1s-type
AO’s exhibiting theC3v symmetry of an equilateral triangl
can be simplified, since pure rotational symmetry by its
~the rotationsC3 and C3

2, and not the reflectionssv’s
through the vertical planes! is sufficient for their determina
tion. Thus one needs to consider the simpler character ta50

of the cyclic groupC3 ~see Table I!.
From Table I, one sees that the set of the three 1s AO’s

situated at the vertices of an equilateral triangle spans
two irreducible representationsA and E, the latter one con-
sisting of two associted one-dimensional representations
construct the SALC’s, one simply applies the three proj
tion operatorsP̂A, P̂E8, andP̂E9 to one of the original AO’s,
let us say thef1,

P̂Af1'~1!Êf11~1!Ĉ3f11~1!Ĉ3
2f1

5~1!f11~1!f21~1!f35f11f21f3 , ~18!

P̂E8f1'~1!Êf11~«!Ĉ3f11~«* !Ĉ3
2f1

5f11«f21«* f3 , ~19!

P̂E9f1'~1!Êf11~«* !Ĉ3f11~«!Ĉ3
2f1

5f11«* f21«f3 . ~20!

TABLE I. Character table for the cyclic groupC3 @«
5exp(2pi/3)#.

C3 E C3 C3
2

A 1 1 1
E8 1 « «*
E9 1 «* «
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The A SALC in Eq. ~18! has precisely the same form as th
c1 MO in Eq. ~14!, which was determined via a solution o
the Hückel Eq. ~13!. The twoE SALC’s @Eq. ~19! and Eq.
~20!#, however, are complex functions and do not coinc
with the realc2 andc3 found above@Eq. ~15! and Eq.~16!#.
As we will see in Sec. IV, these complex SALC’s agree w
the BS UHF orbitals obtained in the case of an applied m
netic field B→0. On the other hand, a set of two real a
orthogonal SALC’s that spans theE representation can b
derived fron Eq.~19! and Eq.~20! by simply adding and
substracting the two complex ones. This procedure reco
immediately the realc2 andc3 discussed earlier.

We stress here that the UHF orbitals of Fig. 4 arecanoni-
cal ~see Sec. II A!. As is well known from quantum
chemistry,26 in general the canonical spin orbitals will b
spread out over the different sites~atoms! of a natural mol-
ecule and will form a basis for the irreducible representatio
of the symmetry group of the molecule. Once the canon
orbitals are available, there is an infinite number ofnonca-
nonical spin orbitals that spanreduciblerepresentions of the
symmetry group of the molecule and can be obtained vi
unitary transformation of the canonical set. We remind
reader that noncanonical spin orbitals are solutions of a g
eralized HF equation involving off-diagonal elementsEi j in
the matrix formed out of the HF orbital energies~see Sec.
II A !. Naturally, the unitary transformation leaves the UH
determinant and total energy invariant. In particular there
unitary matrix that transforms the canonical spin orbitals
the fully localized AO’s; i.e., for theN53 andSz53/2 case,
such a unitary matrix transforms the canonicalc i ’s ( i
51,2,3) to the noncanonical AO’sf i ’s.

Note that such noncanonical orbitals forN53 were re-
cently used51 to formulate a non-self-consistent variant to t
Pople-Nesbet HF equations listed in section II.A. This va
ant relied on the manifestation of spontaneous symm
breaking that was discovered earlier via our self-consis
UHF results. Notice, however, that Ref. 51 obtained an
complete wave function, since the companion step of re
ration of the rotational symmetry was not considered~see
Sec. VI below!.

B. SzÄ1Õ2 partially spin polarized case

In Fig. 5, we display the sS-UHF symmetry-violating o
bitals ~a!–~c! for the case of a partially polarized QD a
RW510 andB50 with two spin-up and one spin-down ele
trons (N53 andSz51/2). The UHF orbital energies of thes
electrons are~a! 45.350 and~b! 46.515 meV for the spin-up
orbitals and~c! 45.926 meV for the spin-down orbital. An
inspection of Fig. 5 reveals that these orbitals have retai
the nodal structure of the corresponding independe
particle-model orbitals in the familiar 1s21px configuration;
namely,~a! and ~c! are nodeless, while~b! exhibits a single
nodal line. Apart from this property, however, and in cons
nance with theSz53/2 case studied in a previous subsectio
the BS UHF orbitals again differ drastically from the on
associated with the independent particle model; again t
are associated with three sites within the QD arranged in
5-7
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CONSTANTINE YANNOULEAS AND UZI LANDMAN PHYSICAL REVIEW B 68, 035325 ~2003!
equilateral triangle. In contrast to the fully polarized ca
however, there are no linear combinations of atomic orbi
involving all three vertices of the triangle. Indeed the sing
spin-down electron remains by itself as an unmodified A
while only the two spin-up electrons combine to form LCA
MO’s. This behavior here is a special case of a general p
erty of the sS-UHF; i.e., only AO’s associated with the sa
spin direction can in principle combine to form LCAO
MO’s. This property, however, does not extend to the gen
alized Hartree-Fock method,31,52 which incorporates the ad
ditional unresctriction that thez projection (Sz) of the total
spin is not preserved and it is not a good quantum num
~Notice that unlike the practice in this paper, Ref. 31 uses
term UHF for the generalized HF.!

TABLE II. Character table for the group$E, sv
I %.

E sv
I

A2 1 21
B1 1 1

FIG. 5. The sS-UHF solution exhibiting breaking of the circu
symmetry forN53 andSz51/2 atRW510 andB50. ~a!–~b! Real
orbitals for the two spin-up electrons.~c! Real orbital for the single
spin-down electron.~d! Total electron density.~e! Spin density~dif-
ference of the spin-up minus the spin-down partial electron de
ties!. The choice of the remaining parameters is\v055 meV and
m* 50.067me . Distances are in nanometers. The real orbitals ar
1023 nm21 and the densities~ED and SD! in 1024 nm22. The
arrows indicate the spin direction.
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In the same spirit with the treatment of the fully polarize
case in Sec. III A, and taking into consideration the dec
pling of the two different spin directions in the sS-UHF, on
can write a corresponding Hu¨ckel matrix equation for the
N53 andSz51/2 case as follows:

S e 2b 0

2b e 0

0 0 e
D S f 1

f 2

f 3

D 5ES f 1

f 2

f 3

D . ~21!

From the eigenvalues and eigenvectors of Eq.~21!, one
finds the following three LCAO-MO’s: ~a! c15(f1

1f2)/A2 with energy E15e2b, ~b! c25(f12f2)/A2
with energy E25e1b, and ~c! c35f3 with energy E3
5e. The structure of these three LCAO-MO’s agrees ve
well with the corresponding symmetry-violating UHF orbi
als for theN53 andSz51/2 case displayed in Figs. 5~a!–
5~c!. This agreement extends also to the level diagrams
the corresponding orbital energies.~Using the UHF values
for E1 and E2, one finds b50.582 meV and e
545.932 meV'E3.!

Concerning the underlying symmetry-group structure
the UHF orbitals in Fig. 5, we observe that~unlike the fully
polarized case! the two rotations—i.e.,C3 ~rotation by 2p/3)
and C3

2 ~rotation by 4p/3)—are not part of the symmetr
operations of the relevant point group@due to the dissimilar-
ity between spin-up and spin-down orbitals; this can be s
clearly through inspection of the spin density in Fig. 5~e!#.
Because of the 2D character of the dot, the only symme
operations for theN53 andSz51/2 case are the identityE
and a single reflection,sv

I , through the vertical plane pass
ing through the spin-down electron. Such a group$E, sv

I % is
a subgroup of the familiarC2v group associated with the 3D
H 2O molecule~observe that the O atom corresponds to
spin-down electron and the two H atoms correspond to
two spin-up electrons!. According to Ref. 33~see p. 181!, the
representationG formed by the three original AO’s can b
reduced to irreducibleA2 and B1 representations asG5A2
12B1. By applying projection operators@see Eq.~17!# to the
f1 AO and using the character Table II, one finds the f
lowing two normalized SALC’s:

cA2
5~f12f2!/A2 ~22!

and

cB1
5~f11f2!/A2. ~23!

Naturally the second SALC ofB1 symmetry is

cB1
8 5f3 . ~24!

Once more, we stress the fact that the SALC’s@Eqs.~22!–
~24!# derived above via symmetry-group theory have t
same structure as the canonical UHF orbitals displayed
Fig. 5. Observe further that in the generalized HF~as also in
the case of the H2O molecule and the allyl anion! the two
SALC’s of B1 symmetry are allowed to couple, producin

i-

in
5-8



e

is
ot
e
at
t-
ry
a
es
di
n

l-
b
at
e

in

m

the

s

al

r

or-

e-

r-
ture

.

n

he

ar

-

GROUP THEORETICAL ANALYSIS OF SYMMETRY . . . PHYSICAL REVIEW B68, 035325 ~2003!
more complicated orbitals and energy level diagrams~see p.
1037 of Ref. 31 and p. 183 in Ref. 33!

IV. THREE ELECTRONS IN A FINITE MAGNETIC FIELD

A. SzÄ3Õ2 fully polarized case

In this section, we study the case of three fully polariz
electrons under a magnetic fieldB. Since forBÞ0 the BS
UHF orbitals are necessarily complex functions, Fig. 6 d
plays the modulus square of these orbitals. The UHF t
ED displayed in Fig. 6~d! and the modulus square of th
orbitals exhibit an apparentC3v symmetry as was the case
B50 ~Sec. III A!. However,the phases of the complex orbi
als at BÞ0 contribute to a modification of the symmet
group. This modification has been studied earlier for the c
of infinite crystalline systems with periodic space lattic
where the electrons occupy Bloch orbitals, and such stu
have led to the consideration of two physically equivale
group structures: namely, theray groups53 and themagnetic
translation groups.54 In our case of a finite periodic crysta
lite, the corresponding magnetic rotation groups would
straightforward to consider. However, in order to appreci
the modifications introduced by the magnetic field, it will b
simpler to modify the Hu¨ckel ~tight-binding! Hamiltonian
according to the Harper-Peierls prescription,55,56 which ac-
counts for the magnetic gauge transformation when mov
from one crystalline site to another.

Thus according to Peierls and Harper, the proper ato
orbitalsf̃ j ’s for BÞ0 ~centered atRj ) are the realf j ’s mul-
tiplied by an appropriate phase as follows,

f̃ j~r ;Rj !5f j~r ;Rj !e
( ie/\c)A(Rj )•r. ~25!

FIG. 6. The S-UHF solution exhibiting breaking of the circul
symmetry forN53 andSz53/2 at RW510 andB52 T. ~a!–~c!
Orbitals ~modulus square! for the three spin-up electrons.~d! Total
electron density. The choice of the remaining parameters is\v0

55 meV, m* 50.067me , and g* 520.44. Distances are in na
nometers and the densities~orbital and ED! in 1024 nm22. The
arrows indicate the spin direction.
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Because of this position-dependent phase in the AO’s,
hopping matrix elementsH̃ i j ~see Sec. III A! are now com-
plex, and the Hu¨ckel equation~13! for three electrons is
modified as follows:

S e 2beiV 2be2 iV

2be2 iV e 2beiV

2beiV 2be2 iV e
D S f 1

f 2

f 3

D 5ES f 1

f 2

f 3

D ,

~26!

where V[V i j 5(e/\c)A(Rj2Ri)•Ri , (i , j )5(1,2),(2,3),
(3,1), with Rk , k51,2,3 being the positions of the vertice
of the equilateral triangle. Notice thatV5(2pF)/(3F0),
where F is the total magnetic flux through the equilater
triangle andF05hc/e is the unit flux.

From the eigenvectors of Eq.~26!, one finds the following
LCAO-MO’s:

c1}f̃11f̃21f̃3 , ~27!

c2}e2p i /3f̃11e22p i /3f̃21f̃3 , ~28!

c3}e22p i /3f̃11e2p i /3f̃21f̃3 , ~29!

with corresponding orbital energies

E15e22b cosV, ~30!

E25e22bcos@~2p/31V!#, ~31!

E35e22b cos@~2p/32V!#. ~32!

Substituting the specific value forV given above, one can
write the eigenvalues~30!–~32! in a more symmetric com-
pact form

Ej5e22b cosF2p

3 S j 1
F

F0
D G , j 51,2,3. ~33!

Since the original AO’s do not practically overlap fo
RW510, the phases in front of thef i ’s in Eqs.~27!–~29! do
not contribute substantially to the modulus square of the
bitals. As a result, for all values ofB, all three orbitals exhibit
similar orbital densities that are approximately equal tof1

2

1f2
21f3

2. Observe that this agrees very well with the b
havior of the canonical UHF orbitals~modulus square! at B
52 T displayed in Fig. 6. At zero magnetic fieldB50, the
LCAO-MO’s in Eqs. ~27!–~29! reduce to the specific form
given earlier in Eqs.~18!–~20! of Sec. III A. We stress here
that in Sec. III A these LCAO-MO’s were derived from a
guments based exclusively on the group theoretical struc
of the C3v symmetry group.

Naturally, whenV50, the orbital energies in Eq.~33!
reduce to the correspondingB50 result derived in Sec
III A: namely, E15e22b andE25E35e1b. Notice, how-
ever, that for arbitrary values ofB, the degeneracy betwee
E2 and E3 is lifted. In addition, the three energiesE1 , E2,
andE3 in Eq. ~33! exhibit prominent Aharonov-Bohm~AB!
oscillations. It is interesting to compare this behavior to t
5-9
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CONSTANTINE YANNOULEAS AND UZI LANDMAN PHYSICAL REVIEW B 68, 035325 ~2003!
behavior of the calculated canonical UHF orbital energies
RW510. These UHF orbital energies as a function ofB are
displayed in Fig. 7. An inspection of Fig. 7 reveals that t
UHF orbital energies do exhibit~as expected! an Aharonov-
Bohm oscillation as a function ofB. However, these oscilla
tions are more complicated from what can be simply ant
pated from the analytic formulas in Eq.~33!. Namely, the
amplitude of the UHF AB oscillations decreases asB in-
creases. This behavior is due to a decrease in the hop
parameterb, which results from the spatial shrinkage of th
Gaussian-type UHF orbitals as a function ofB. Eventually,
for B→`, all three energies are degenerate. We notice
complete degeneracy of all UHF orbitals for anyN appears
also in theB50, RW→` limit.

The electronic structure of the UHF fully polarized thre
electron molecule in a magnetic field, which was discus
above and which exhibits Aharonov-Bohm oscillations, do
not have an analog in the realm of natural molecules. Ho
ever, apart from theB dependence ofb, it agrees in a re-
markable way with the ‘‘noninteracting spectra’’ of the ar
ficial molecules that can be formed out of 1D ring arrays
single QD’s.57

B. SzÄ1Õ2 partially polarized case

Figure 8 displays the BS UHF orbitals~modulus square!
and the total ED for the partially polarizedN53, Sz51/2
case in a magnetic fieldB52 T. As with theB50 case~Sec.
III B !, the spin-down orbital is decoupled from the tw
spin-up ones. As a result the corresponding Hu¨ckel matrix
equation is of the form

S e 2beiV 0

2be2 iV e 0

0 0 e8
D S f 1

f 2

f 3

D 5ES f 1

f 2

f 3

D , ~34!

where in generale8Þe due to the energy difference betwee
the two spin directions introduced by the Zeeman term. Fr
the solutions of Eq.~34!, one finds the following LCAO-

FIG. 7. The S-UHF orbital energies~in meV! for N53, Sz

53/2, andRW510 as a function of the magnetic fieldB ~in tesla!,
exhibiting a prominent Aharonov-Bohm oscillation. The choice
the remaining parameters is\v055 meV, m* 50.067me , and
g* 520.44.
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MO’s: ~a! c15(eiVf̃11f̃2)/A2 with energyE15e2b, ~b!

c25(eiVf̃12f̃2)/A2 with energyE25e1b, and ~c! c3

5f̃3 with E35e8. The total electron density constructed o
of these LCAO-MO’s is again of the formf1

21f2
21f3

2

~compare with Sec. IV A!. The corresponding UHF orbital
~modulus square! and ED displayed in Fig. 8 are obviousl
conforming to these forms.

Concerning the Hu¨ckel orbital energiesEj , j 51,2,3, we
note that they do not depend on the magnetic fieldB through
V. As a result, unlike the previous case of the fully polariz
electrons, AB oscillations should not develop in the UH
orbital energies. To check this prediction, we dispaly in F
9 the UHF orbital energies as a function ofB. In contrast to
Fig. 7, AB oscillations are absent in Fig. 9, a behavior wh
apparently relates to the fact that no UHF orbital covers
area of the equilateral triangle~the single spin-down orbita
does not couple to the two spin-up ones, which lie on
straight line!.

V. SIX ELECTRONS AT ZERO MAGNETIC FIELD

We discuss now the case of six fully polarized electrons
zero magnetic field. The corresponding total S-UHF elect
density forRW515 (k51.2730) is displayed in Fig. 10~a!
~bottom frame!. Unlike the case of smaller numbers of pa
ticles with N<5, a system of six electrons is the smalle
that forms a Wigner molecule with a two-ring arrangeme
Such a ring arrangement is denoted by (1,5) to distinguis
from a single-ring arrangement (0,N).

f

FIG. 8. The sS-UHF solution exhibiting breaking of the circul
symmetry forN53, Sz51/2 at RW510 andB52 T. ~a!–~b! Or-
bitals ~modulus square! for the two spin-up electrons.~c! Orbital
~modulus square! for the spin-down electron.~d! Total electron den-
sity. The choice of the remaining parameters is\v055 meV, m*
50.067me , andg* 520.44. Distances are in nanometers and
densities~orbital and ED! in 1024 nm22. The arrows indicate the
spin direction.
5-10
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Naturally, single-ring molecular arrangements (0,N) are
familiar from the quantum chemistry of carbocyclic syste
~Ref. 33; see also Secs. III and IV!. The more complicated
~1,5! arrangement, however, is a molecular structure
known to traditional chemistry. Nevertheless, contact to
ganic chemistry can be retained by observing that the~0,5!
outer ring has a group symmetry similar to the cyclic hyd
carbon C5H5. As a result, and in direct analogy with th
C5H5 molecule~see p. 152 in Ref. 33!, the SALC’s of the
~0,5! arrangement are as follows:

c~A!5
1

A5
~f11f21f31f41f5!, ~35!

c~E1a!5A2

5
~f11f2cosu1f3cos 2u1f4cos 2u

1f5cosu!, ~36!

c~E1b!5A2

5
~f2sinu1f3sin 2u2f4sin 2u2f5sinu!,

~37!

c~E2a!5A2

5
~f11f2cos 2u1f3cosu1f4cosu

1f5cos 2u!, ~38!

c~E2b!5A2

5
~f2sin 2u2f3sinu1f4sinu2f5sin 2u!,

~39!

where u52p/5. The corresponding orbital energies aree
22b for the single orbital ofA symmetry,e2(2 cosu)b for
the two degenerate orbitals ofE1 symmetry, and e
2(2 cos 2u)b for the remaining two degenerate orbitals
E2 symmetry.

FIG. 9. The sS-UHF orbital energies~in meV! for N53, Sz

51/2, andRW510 as a function of the magnetic fieldB ~in tesla!.
No AB oscillations are present. The choice of the remaining par
eters is\v055 meV, m* 50.067me , andg* 520.44. The arrows
indicate the spin direction.
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Returning back to the case of the~1,5! ring arrangement,
we notice that the sixth AO,f6, at the center is ofA sym-
metry, and thus it can only couple to a MO of the~0,5! ring
with the same symmetry; namely, the orbitalc(A) in Eq.
~35!. As a result, both~0,5! and the~1,5! ring arrangements
share the same four MO’s ofE1 andE2 symmetry.

The coupling matrix element between thef6 and c(A)
orbitals is given by

E f6H̃c~A!dr5
1

A5
(
k51

5 E f6H̃fkdr52A5d. ~40!

To find the MO’s of the~1,5! ring with A symmetry, we
need to solve the 232 matrix equation

S e22b 2A5d

2A5d ẽ
D S g1

g2
D 5ES g1

g2
D . ~41!

We note that, due to the different coordination and d
tances, the quantitiesd and ẽ associated with the central AO

FIG. 10. The canonical S-UHF real orbitals forN56 and Sz

53 and forRW515 andB50. ~a! The total electron density.~b!,
~c! Middle row: the two orbitals ofA symmetry.~d!, ~e! Top row:
the two degenerate orbitals ofE2 symmetry. The choice of the
remaining parameters is\v055 meV and m* 50.067me . Dis-
tances are in nanometers. The real orbitals are in 1023 nm21 and
the electron density in 1024 nm22. The arrows indicate the spin
direction.

-
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CONSTANTINE YANNOULEAS AND UZI LANDMAN PHYSICAL REVIEW B 68, 035325 ~2003!
are different from the corresponding quantitiesb and e as-
sociated with the AO’s of the outer ring.

Using the notation

Q5A20d21~ ẽ2e12b!2, ~42!

the two solutions of the matrix equation~41! have energies
( ẽ1e22b7Q)/2 and eigenvectors~unnormalized! $ẽ2e
12b6Q,A20d%, respectively. Accordingly, one MO of th
~1,5! ring is constructed by adding and the other by subtra
ing a fraction of thec(A) orbital from the central AO. This
behavior agrees very well with the two S-UHF orbitals d
played in the middle row of Fig. 10@~b! and ~c!#.

Concerning the S-UHF orbitals displayed in the top ro
of Fig. 10@~d! and~e!#, we notice that they are degenerate
energy and that they agree very well with the two MO’s
E2 symmetry. Indeed the S-UHF orbital in Fig. 10~d! exhib-
its five total humps, three of them positive and the other t
negative, in remarkable agreement~apart from an overall
sign! with the MO in Eq.~38! ~note that cosu50.3090.0
and cos 2u520.8090,0). In particular, counterclockwise
the polarities of the humps in Fig. 10~d! are (2,1,2,2,
1), differing only by an overall sign from the correspondin
polarities of the MO in Eq.~38!. Even more impressive is th
fact that there is quantitative agreement regarding the a
lute heights of the humps in these two orbitals~see the values
of cosu and cos 2u listed above!. The other S-UHF orbital in
Fig. 10~e! exhibits a total of four humps, two of them pos
tive and the other two negative, and having an alternati
(1,2,1,2) arrangement. This is again in remarkab
agreement with the second MO ofE2 symmetry in Eq.~39!,
since sinu.0 and sin 2u.0. Additionally, we note that the
agreement between the UHF orbital in Fig. 10~e! and the MO
in Eq. ~39! extends further to the absolute heights of t
humps, since sinu50.9511.0.58785sin 2u.

Finally, there are two other degenerate UHF orbitals t
are not displayed in Fig. 10. They are not identical to
c(E1a) andc(E1b) SALC’s in Eqs.~36! and ~37!, but we
have checked that they span theE1 irreducible representa
tion.

VI. RESTORATION OF CIRCULAR SYMMETRY
AND EXACT SPECTRA

A. Group structure and sequences of magic angular momenta

In the previous sections, we demonstrated that the
UHF determinants and orbitals describe indeed 2D electro
molecular stuctures~Wigner molecules! in close analogy
with the case of natural 3D molecules. However, the study
the WM’s at the UHF level restricts their description to t
intrinsic ~nonrotating! frame of reference. Motivated by th
case of natural atoms, one can take a subsequent step
address the properties ofcollectively rotating WM’s in the
laboratory frame of reference. As is well known, for natu
atoms, this step is achieved by writing the total wave fu
tion of the molecule as the product of the electronic and io
partial wave functions. In the case of the purely electro
WM’s, however, such a product wave function requires
assumption of complete decoupling between intrinsic a
03532
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collective degrees of freedom, an assumption that migh
justifiable in limiting cases only.

As we demonstrated earlier,15–17 in the framework of the
BS UHF solutions this companion step can be performed
using the post-Hartree-Fock method ofrestoration of broken
symmetries25 ~RBS! via projection techniques~PT’s!. Ex-
amples demonstrating the RBS method have been prese
by us in two cases:~I! the ground state~with angular mo-
mentum I 50) of two interacting electrons in a parabol
quantum dot in the absence of a magnetic field15 and~II ! the
yrast rotational band~see Sec. I C and precise definition
Ref. 58! of a system ofN interacting electrons in high mag
netic fields16,17 ~fractional-quantum-Hall regime!. In both
cases, we showed that the RBS method~as adapted to the
case of 2D BS UHF solutions! yields correlated~multideter-
minantal! many-body wave functions that approximate ve
well the corresponding exact solutions.58 In particular, in the
latter case, our use16,17 of the RBS method yielded analyti
expressions for the correlated wave functions that offe
better description of theN-electron problem in highB com-
pared to the Jastrow-Laughlin5 expression.

In this section, we will not proceed any further with e
plicit numerical or analytic derivations of additional RB
wave functions. Instead, we will use the RBS approach
illustrate through a couple of concrete examples how cer
universal properties of the exact solutions—i.e., the app
ance of magic angular momenta in the exact rotatio
spectra35–40—relate to the symmetry broken UHF solution
Indeed,we will demonstrate that the magic angular momen
are a direct consequence of the symmetry breaking at
UHF level and that they are determined fully by the molec
lar symmetries of the UHF determinant.59

As an illustrative example, we have chosen the relativ
simple, but nontrivial, case ofN53 electrons. ForB50,
both theSz51/2 andSz53/2 polarizations can be consid
ered. We start with theSz51/2 polarization, whose BS UHF
solution ~let us denote it byu↓↑↑&) was presented in Sec
III B and which exhibits a breaking of the total spin symm
try in addition to the rotational symmetry. We first proce
with the restoration of the total spin by noticing thatu↓↑↑&
has a point-group symmetry lower~see Sec. III B! than the
C3v symmetry of an equilateral triangle. TheC3v symmetry,
however, can be readily restored by applying the project
operator~17! to u↓↑↑& and by using the character table of th
cyclic C3 group ~see Table I!. Then for the intrinsic part of
the many-body wave function, one finds two different thre
determinantal combinations: namely,

F intr
E8 ~g0!5u↓↑↑&1e2p i /3u↑↓↑&1e22p i /3u↑↑↓& ~43!

and

F intr
E9 ~g0!5u↓↑↑&1e22p i /3u↑↓↑&1e2p i /3u↑↑↓&, ~44!

whereg050 denotes the azimuthal angle of the vertex as
ciated with the original spin-down orbital inu↓↑↑&. We note
5-12
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that the intrinsic wave functionsF intr
E8 and F intr

E9 are eigen-

states of the square of the total spin operatorŜ2 (Ŝ
5( i 51

3 ŝi) with quantum numbers51/2. This can be verified

directly by applyingŜ2 to them.60

To restore the circular symmetry in the case of a (0,N)
ring arrangement, one applies the projection operator15,25

2pPI[E
0

2p

dg exp@2 ig~ L̂2I !#, ~45!

where L̂5( j 51
N l̂ j is the operator for the total angular mo

mentum. Notice that the operatorPI is a direct generalization
of the projection operator~17! to the case of the continuou
cyclic group C` @the phases exp(igI) are the characters o
C`].

The RBS-projected wave functionCRBS ~having both
good total spin and angular momentum quantum number! is
of the form

2pCRBS5E
0

2p

dgF intr
E ~g!eigI , ~46!

where now the intrinsic wave function@given by Eq.~43! or
Eq. ~44!# has an arbitrary azimuthal orientationg. We note
that, unlike the phenomenological Eckardt-frame model39,61

where only a single product term is involved, the RBS wa
function in Eq.~46! is an average over all azimuthal dire
tions of an infinite set of product terms. These terms
formed by multiplying the UHF intrinsic partF intr

E (g) by the
external rotational wave function exp(igI) ~the latter is prop-
erly characterized as ‘‘external,’’ since it is an eigenfuncti
of the total angular momentumL̂ and depends exclusively o
the azimuthal coordinateg).

The operatorR̂(2p/3)[exp(2i2pL̂/3) can be applied to
CRBS in two different ways: namely, either to the intrins
partF intr

E or the external part exp(igI). Using Eq.~43! and the

propertyR̂(2p/3)F intr
E8 5exp(22pi/3)F intr

E8 , one finds

R̂~2p/3!CRBS5exp~22p i /3!CRBS, ~47!

from the first alternative, and

R̂~2p/3!CRBS5exp~22pI i /3!CRBS, ~48!

from the second alternative. Now ifCRBSÞ0, the only way
that Eqs.~47! and ~48! can be simultaneously true is if th
condition exp@2p(I21)i/3#51 is fulfilled. This leads to a
first sequence of magic angular momenta associated with
tal spins51/2: i.e.,

I 53k11, k50,61,62,63, . . . . ~49!

Using Eq.~44! for the intrinsic wave function and follow
ing similar steps, one can derive a second sequence of m
angular momenta associated with good total spins51/2: i.e.,

I 53k21, k50,61,62,63, . . . . ~50!
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In the fully polarized case, the UHF determinant was d
scribed in Sec. III A. This UHF determinant, which we d
note asu↑↑↑&, is already an eigenstate ofŜ2 with quantum
numbers53/2. Thus only the rotational symmetry needs
be restored; that is, the intrinsic wave function is simp
F intr

A (g0)5u↑↑↑&. SinceR̂(2p/3)F intr
A 5F intr

A , the condition
for the allowed angular momenta is exp@22pIi /3#51, which
yields the following magic angular momenta:

I 53k, k50,61,62,63, . . . . ~51!

We note that in high magnetic fields only the fully pola
ized case is relevant and that only angular momenta witk
.0 enter in Eq.~51! ~see Ref. 16!. In this case, in the ther
modynamic limit, the partial sequence withk52q11, q
50,1,2,3, . . . , is directly related to the odd filling factors
n51/(2q11) of the fractional quantum Hall effect@via the
relationn5N(N21)/(2I )]. This suggests that the observe
hierarchy of fractional filling factors in the quantum Ha
effect may be viewed as a signature originating from
point group symmetries of the intrinsic wave functionF intr ,
and thus it is a manifestation of symmetry breaking at
UHF mean-field level.

B. Quantitative description of the yrast band

The usefulness of the RBS wave functions@Eq. ~46!# is
not limited to deriving universal properties of the exact sp
tra, like the sequences of magic angular momenta@see Sec.
VI A #. As we demonstrated in earlier publications, in t
regime of strong correlations, the RBS wave functions
proximate very well the corresponding exact many-bo
wave functions.

Indeed, in Ref. 15 we offered~as a function ofRW) a
systematic comparison between the RBS and exact gro
state (I 50) energies atB50 for N52 electrons in a para
bolic QD. For RW519.09, we found that the relative erro
was approximately 0.7%. Furthermore, in Ref. 16, for t
case of highB, we derivedanalytic RBS wave functions,
named ‘‘REM wave functions.’’ As we showed16 explicitly
for the case ofN56 electrons, the radial electron densiti
associated with the REM functions accurately reproduce
ones extracted from exact-diagonalization calculations.

In this subsection, we offer additional examples perta
ing to the ability of the RBS wave functions to reproduce t
exact yrast spectra of parabolic QD’s. In particular, Table
lists the REM and exact yrast energies in the range of ma
angular momenta 70<I<130 for N56 electrons in highB.
Details concerning the REM wave functions and the exa
diagonalization method in the lowest Landau level are giv
in Ref. 17, and they will not be repeated here.

The RBS and exact yrast spectra (0<I<6) for the case
of N52 electrons atB50 andRW519.09 are given in Table
IV. Details concerning their calculation are given in Ref.
and in the Appendix~where we present the final formula fo
calculating RBS energies for both even and odd angular
menta!.

We note that the relative errors in both Table III and Tab
IV are small~smaller than 1% in the majority of cases!.
5-13
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VII. SUMMARY

In this paper, we have introduced a group theoreti
analysis of broken-symmetry UHF orbitals and total elect
densities in the case of single 2D semiconductor QD’s. T
analysis provided further support for our earli
interpretation9,10,14,15concerning the spontaneous formati
of collectively rotating electron~or Wigner! molecules. In-
deed the group theoretical analysis enabled us to unveil
ther deeper analogies between the electronic structure o
Wigner molecules and that of the natural 3D molecules.
particular these deeper analogies are the following:~I! The
breaking of rotational symmetry results in canonical UH
orbitals that are associated with the eigenvectors o
molecular-type Hu¨ckel Hamiltonian with sites at position
specified by the equilibrium configuration of the classic
N-electron problem.~II ! The broken-symmetry canonica
UHF orbitals transform according to the irreducible rep

TABLE III. Case of N56 electrons in high magnetic fieldB:
total interaction energies in the lowest Landau level of REM a
exact-diagonalization wave functions for various magic angu
momentaI of the yrast band. The REM functions are analytica
specified RBS wave functions derived in Ref. 16. The percenta
within parentheses indicate relative errors. Energies in units
e2/k l B , wherek is the dielectric constant andl B5A\c/eB is the
magnetic length. For details concerning the exact-diagonaliza
method and the REM wave functions, see Ref. 17. For additio
values ofI, see Ref. 17.

I REM Exact

70 2.3019~0.85%! 2.2824
80 2.1455~0.71%! 2.1304
90 2.0174~0.60%! 2.0053
100 1.9098~0.51%! 1.9001
110 1.8179~0.45%! 1.8098
120 1.7382~0.40%! 1.7312
130 1.6681~0.36%! 1.6621

TABLE IV. Case of N52 electrons in a parabolic QD atB
50: total energies of RBS and exact wave functions for vario
magic angular momentaI of the yrast band. The percentages with
parentheses indicate relative errors. The choice of remaining pa
eters is\v055 meV, k51 (RW519.09), andm* 50.067me . En-
ergies in units of meV. For details concerning the method for fi
ing exact solutions to the two-electron problem, see Ref. 14.
details concerning the calculation of the RBS yrast spectrum,
Ref. 15 and the Appendix.

I RBS Exact

0 52.224~0.75%! 51.831
1 52.696~0.77%! 52.292
2 54.086~0.88%! 53.615
3 56.240~1.04%! 55.654
4 59.065~1.39%! 58.255
5 62.065~1.27%! 61.285
6 63.911~1.13%! 64.642
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sentations of the point group specified by the discrete s
metries of this classical molecular configuration.~III ! The
WM’s formed out of the broken-symmetry UHF solution
can rotate, and the restoration of the total-spin and rotatio
symmetries results~in addition to the ground state! in states
defining the lowest rotational bands~i.e., yrast bands! of the
WM’s. ~IV ! The breaking of the circular symmetry results
lowering of the symmetry. This is expressed by the discr
point-group symmetry of the UHF wave function, and it u
derlies the appearance of sequences of magic angular
menta ~familiar from exact-diagonalization studies! in the
excitation spectra of single QD’s.

Since exact-diagonalization methods are typically
stricted to small sizes withN<10, the two-step method o
breakage and subsequent restoration of symmetries offe
promising new venue for accurately describing larger
electronic systems. A concrete example of the potentia
this approach is provided by Ref. 16, where our use of
the symmetry-breaking and symmetry-restoration meth
yielded analytic expressions for correlated wave functio
that offer a better description of theN-electron problem in
high magnetic fields compared to the Jastrow-Laughlin5 ex-
pression.

Furthermore, the group theoretical analysis strongly s
gests an interesting simplified variant approach for carry
out the first step of symmetry breaking. This variant rests
the observation that, in all cases of WM’s, the broke
symmetry UHF orbitals are generic linear combinations
Gaussian-type functions@with a proper phase forBÞ0; see
Eq. ~25!# specified simply by their widths and positions
Rj ’s from the center of the QD. The linear combinations c
be fully specified from the group theoretical analysis of t
appropriate classical equilibrium configurations,11 and a de-
terminant of the corresponding LCAO-MO’s can readily
written down. Then a simple variational calculation of th
minimum total energy of this determinant will yield the p
rameterss and Rj ’s without the need to carry out the sel
consistent UHF iterations. This simplified approach cou
treat even larger sizes without major loss of accuracy. Ad
accuracy can then be obtained through the subsequent st
restoration of the broken symmetries.
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APPENDIX

For the case ofN52 electrons in a parabolic QD atB
50, we reported in Ref. 15 the RBS formulas for calculati
energies of yrast-band states withevenangular momentaI.
These formulas@see Eqs.~11!–~13! in Ref. 15# were gener-
ated via a projection of the ‘‘singlet’’ UHF determinant. Th
corresponding RBS formulas forodd values ofI are gener-
ated via a projection of the triplet UHF state.

In this appendix, we present the formulas covering b
even and odd angular momenta. They are
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~A2!
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n~g!5SusSvt6SutSvs , ~A3!

where the upper signs apply in the case of evenI ’s and the
lower signs in the case of oddI ’s. Heres(r ) andt(r ) are the
initial u(r ) andv(r ) broken-symmetry UHF orbitals rotate
by an angleg, respectively.Vuvst and Vuvts are two-body
matrix elements of the Coulomb repulsion, andSus , etc., are
the overlap intergrals.
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