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ABSTRACT: The effect of orbital magnetism on the chemical bonding of lateral,
two-dimensional artificial molecules is studied in the case of a 2e double quantum dot
(artificial molecular hydrogen). It is found that a perpendicular magnetic field reduces the
coupling (tunneling) between the individual dots and, for sufficiently high values, it leads
to complete dissociation of the artificial molecule. The method used is building on
Löwdin’s work on projection operators in quantum chemistry; it is a spin-and-space
unrestricted Hartree–Fock method in conjunction with the companion step of the
restoration of spin and space symmetries via projection techniques (when such
symmetries are broken). This method is able to describe the full range of couplings in
two-dimensional double quantum dots, from the strong-coupling regime exhibiting
delocalized molecular orbitals to the weak-coupling and dissociation regimes associated
with a generalized valence bond combination of atomic-type orbitals localized on the
individual dots. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem 90: 699–708, 2002
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Introduction

T wo-dimensional (2D) quantum dots (QDs)
[1, 2] are usually referred to as artificial atoms,

a term suggestive of strong similarities between
these manmade nanodevices and the physical be-
havior of natural atoms. As a result, in the last few
years, an intensive theoretical effort [2 – 13] has been
devoted toward the elucidation of the appropriate
analogies and/or differences. Recently, we showed
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[10 – 12] that in the absence of a magnetic field the
most promising analogies are mainly found out-
side the confines of the central-field approximation
underlying the independent-particle model and the
ensuing physical picture of electronic shells and the
Aufbau Principle. Indeed, as a result of the lower
electronic densities in QDs, strong e–e correlations
can lead (as a function of the ratio RW between the
interelectron repulsion and the zero-point kinetic
energy) to a drastically different physical regime,
where the electrons become localized, arranging
themselves in concentric geometric shells and form-
ing electron molecules (referred to also as Wigner
molecules in analogy to Wigner crystallization [14]
in infinite media). In this context, it was found
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[11, 12] that the proper analogy for the particular
case of a 2e QD is the collective-motion picture
reminiscent of the fleeting and rather exotic phe-
nomena of the doubly excited natural helium atom,
where the emergence of a “floppy” trimeric mole-
cule (consisting of the two localized electrons and
the heavy α-particle nucleus) has been well estab-
lished [15, 16].

A natural extension [10, 13, 17 – 23] of this theo-
retical effort has also developed in the direction of
2D QD molecules (QDMs, often referred to as artifi-
cial molecules), aiming at elucidating the analogies
and differences between such artificially fabricated
[24, 25] molecular nanostrustures and natural mole-
cules. (Depending on the arrangement of the in-
dividual dots, two classes of QDMs can be dis-
tinguished: lateral [10, 13, 17 – 24] and vertical [22,
23, 25] ones.)

In a previous article [21] and for the case of
zero magnetic field (field-free case), we addressed
the interplay of coupling and dissociation in lateral
QDMs. We showed that this interplay relates di-
rectly to the nature of the coupling in the artificial
molecules, and in particular to the question whether
such coupling can be described by the molecular or-
bital (MO) theory or the valence bond (VB) theory
in analogy with the chemical bond in natural mole-
cules.

A major attraction of QDs and QDMs is the
fact that, due to their larger size and different
materials parameters (i.e., electron effective mass
and dielectric constant), the full range of orbital
magnetic effects can be covered for magnetic-field
values easily attainable in the laboratory (<45 T).
This range extends from the weak-field perturbative
regime (Zeeman orbital splitting and perturbative
diamagnetism) to the intense-field regime exhibit-
ing a substantial spatial distortion of single-particle
electronic orbitals. This behavior contrasts with the
case of natural atoms and molecules for which mag-
netic fields of sufficient strength (i.e., >105 T) for the
production of novel phenomena [26, 27] related to
orbital magnetism beyond the perturbative regime
are known to occur only in astrophysical environ-
ments, e.g., on the surfaces of neutron stars. In this
article, we study the effect of orbital magnetism
on the interdot coupling in a lateral, two-electron
double quantum dot. This nanodevice represents
an artificial analog to the natural hydrogen mole-
cule and can be denoted as H2-QDM. It has been
suggested [19] that it can function as the elemental
two-qubit logic gate in quantum computing.

We find that the interplay of the MO versus the
VB description provides the proper framework for
understanding the influence of orbital magnetism
on the chemical bonding of the H2-QDM. In partic-
ular, we show that a perpendicular magnetic field
reduces the coupling between the individual dots
and, for sufficiently high values, it leads to the dis-
sociation of the artificial molecule. As a result, in
addition to the obvious parameters of interdot bar-
rier height and interdot separation, the magnetic
field supplies a third variable able to induce dissoci-
ation and thus to control the strength of the interdot
coupling.

Our approach is twofold. As a first step, we uti-
lize a self-consistent-field theory which can go be-
yond the MO approximation, namely the spin-and-
space unrestricted Hartree–Fock (sS-UHF), which
was introduced by us [10, 11] for the description of
the many-body problem of both single [10, 11] and
molecular [10] QDs. The equations used are given
in Ref. [28], where they are simply referred to as
unrestricted Hartree–Fock (UHF); the additional sS
labeling employed by us emphasizes the range of
possible symmetry unrestrictions in the solutions
of these equations. In particular, the sS-UHF differs
from the more familiar restricted HF (RHF) in two
ways: (i) it relaxes the double-occupancy requirement—
namely, it employs different spatial orbitals for the
two different (i.e., the up and down) spin direc-
tions [thus the designation “spin (s) unresricted”],
and (ii) it relaxes the requirement that the electron or-
bitals be constrained by the symmetry of the external
confining field [thus the designation “space (S) un-
restricted”]. Since it is a general property [29] of the
HF equations to preserve at each iteration step the
symmetries of the many-body hamiltonian (when-
ever they happen to be present in the HF electron
density), the input trial density at the initial step
must be constructed in such a way as to a pri-
ori reflect the relaxation of the two requirements
mentioned above. Observe further that, in order to
describe electron localization, the sS-UHF employs
fully the fact that all N (where N is the number of
electrons) orbital-dependent effective (mean-field)
HF potentials can be different from each other.

We remark that within the terminology adopted
here, the simple designation Hartree–Fock (HF) in
the literature most often refers to our RHF, in par-
ticular in atomic physics and the physics of the
homogeneous electron gas. In nuclear physics, how-
ever, the simple designation HF most often refers
to a space (S)-UHF. The simply designated UHF as
used in chemistry (e.g., in calculations of open shell
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molecules) corresponds most often to our s-UHF
(but not simultaneously space unrestricted HF).

As a second step, we will show that, in con-
junction with Löwdin’s spin-projection technique
[30, 31], the solutions with broken space symmetry
allowed in QDMs by the sS-UHF provide a natural
vehicle for formulating a generalized valence bond
(GVB) referred to also as a generalized Heitler–
London (GHL), theory. This approach allows us to
describe the chemical bonding in artificial molecules
in both the case of an applied magnetic field and the
field-free case.

The Two-Center-Oscillator
Confining Potential

In the 2D two-center oscillator∗ (TCO), the single-
particle levels associated with the confining poten-
tial of the artificial molecule are determined by the
single-particle hamiltonian [32, 33]

H = T + 1
2

m∗ω2
xkx2 + 1

2
m∗ω2

yky′2
k + Vneck(y) + hk

+ g∗µB

h̄
B · s, (1)

where y′
k = y − yk with k = 1 for y < 0 (left) and

k = 2 for y > 0 (right), and the hk’s control the
relative well-depth, thus allowing studies of hetero-
QDMs. x denotes the coordinate perpendicular to
the interdot axis (y). T = (p − eA/c)2/2m∗, with A =
0.5(−By, Bx, 0), and the last term in Eq. (1) is the Zee-
man interaction with g∗ being the effective g factor,
µB the Bohr magneton, and s the spin of an indi-
vidual electron. Here we limit ourselves to systems
with h̄ωx1 = h̄ωx2 = h̄ωx. The most general shapes
described by H are two semiellipses connected by a
smooth neck [Vneck(y)]. y1 < 0 and y2 > 0 are the
centers of these semiellipses, d = y2 − y1 is the inter-
dot distance, and m∗ is the effective electron mass.

For the smooth neck, we use Vneck(y) =
1
2 m∗ω2

yk[cky′3
k + dky′4

k ]θ (|y| − |yk|), where θ (u) = 0 for
u > 0 and θ (u) = 1 for u < 0. The four constants ck

and dk can be expressed via two parameters, as fol-
lows: (−1)kck = (2 − 4εb

k )/yk and dk = (1 − 3εb
k )/y2

k ,
where the barrier-control parameters εb

k = (Vb −
hk)/V0k are related to the actual (controlable) height
of the bare barrier (Vb) between the two QDs, and
V0k = m∗ω2

yky2
k/2 (for h1 = h2, V01 = V02 = V0).

∗A 3D magnetic-field-free version of the TCO has been used
in the description of fission in metal clusters [32] and atomic nu-
clei [33].

The single-particle levels of H, including an ex-
ternal perpendicular magnetic field B, are obtained
by numerical diagonalization in a (variable-with-
separation) basis consisting of the eigenstates of the
auxiliary hamiltonian:

H0 = p2

2m∗ + 1
2

m∗ω2
xx2 + 1

2
m∗ω2

yky′2
k + hk. (2)

This eigenvalue problem is separable in x and y;
i.e., the wave functions are written as �mν(xy) =
Xm(x)Yν(y). The solutions for Xm(x) are those of a
one-dimensional oscillator, and for Yν(y) they can be
expressed through the parabolic cylinder functions
[32, 33] U[αk, (−1)kξk], where ξk = y′

k

√
2m∗ωyk/h̄,

αk = (−Ey + hk)/(h̄ωyk), and Ey = (ν + 0.5)h̄ωy1 + h1

denote the y-eigenvalues. The matching conditions
at y = 0 for the left and right domains yield the
y-eigenvalues and the eigenfunctions Yν (y) (m is in-
teger and ν is in general real).

In this article, we will limit ourselves to symmet-
ric (homopolar) QDMs, i.e., h̄ωx = h̄ωy1 = h̄ωy2 =
h̄ω0, with equal well-depths of the left and right
dots, i.e., h1 = h2 = 0. In all cases, we will use
h̄ω0 = 5 meV and m∗ = 0.067me (this effective-mass
value corresponds to GaAs).

The Many-Body Hamiltonian

The many-body hamiltonian H for a dimeric
QDM comprising N electrons can be expressed as a
sum of the single-particle part H(i) defined in Eq. (1)
and the two-particle interelectron Coulomb repul-
sion,

H =
N∑

i = 1

H(i) +
N∑

i = 1

N∑
j>i

e2

κrij
, (3)

where κ is the dielectric constant and rij denotes the
relative distance between the i and j electrons.

As we mentioned in the Introduction, we will use
the sS-UHF method for determining at a first level
an approximate solution of the many-body problem
specified by the hamiltonian (3). The sS-UHF equa-
tions are solved in the Pople–Nesbet–Roothaan for-
malism [28] using the interdot-distance adjustable
basis formed with the eigenfunctions �mν(x, y) of
the TCO defined previously.

As we will explicitly illustrate for the case of the
H2-QDM, the next step in improving the sS-UHF
solution involves the use of projection techniques in
relation to the UHF single Slater determinant.
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Artificial Molecular Hydrogen
(H2-QDM) in a Magnetic Field:
A Generalized Valence Bond Approach

THE sS-UHF DESCRIPTION

As an introductory example to the process of
symmetry breaking in HF, we consider in this sub-
section the field-free (B = 0) case of H2-QDM with
κ = 20 (this value is an intermediate one to the three
different values of κ that will be considered below in
the case of an applied magnetic field). Figure 1 dis-
plays the RHF and sS-UHF results for the P = Nα −
Nβ = 0 case (singlet) and for an interdot distance
d = 30 nm and an interdot barrier Vb = 4.95 meV
(α and β denote up and down spins, respectively).
In the RHF (Fig. 1, left), both the spin-up and
spin-down electrons occupy the same bonding (σg)
molecular orbital. In contrast, the sS-UHF results
exhibit breaking of the spatial reflection symmetry;
namely, the spin-up electron occupies an optimized∗
1s atomiclike orbital (AO) in the left QD, while the
spin-down electron occupies the corresponding 1s′
AO in the right QD. Concerning the total energies,
the RHF yields ERHF(P = 0) = 13.68 meV, while
the sS-UHF energy is EsSUHF(P = 0) = 12.83, rep-
resenting a gain in energy of 0.85 meV. Since the
energy of the triplet is EsUHF(P = 2) = EsSUHF(P =
2) = 13.01 meV, the sS-UHF singlet conforms to the
requirement [34] that for two electrons at zero mag-
netic field the singlet is always the ground state; on
the other hand the RHF MO solution fails in this re-
spect.

PROJECTED WAVE FUNCTION AND
RESTORATION OF THE BROKEN SYMMETRY

To make further progress, we utilize the spin-
projection technique to restore the broken symmetry
of the sS-UHF determinant (henceforth we will drop
the prefix sS when referring to the sS-UHF determi-
nant),

√
2�UHF(1, 2) =

∣∣∣∣u(r1)α(1) v(r1)β(1)
u(r2)α(2) v(r2)β(2)

∣∣∣∣
≡ ∣∣u(1)v̄(2)

〉
, (4)

where u(r) and v(r) are the 1s (left) and 1s′ (right) lo-
calized orbitals of the sS-UHF solution. An example
of such orbitals for the field-free case is displayed

∗The optimized orbitals are anisotropic (i.e., noncircularly
symmetric), reflecting polarization effects due to the electronic
interdot interaction.

FIGURE 1. Lateral H2-QDM at zero magnetic field:
Occupied orbitals (modulus square, bottom half) and
total charge (CD) and spin (SD) densities (top half) for
the P = 0 spin unpolarized case. Left column: RHF
results. Right column: sS-UHF results exhibiting a
breaking of the space symmetry. The numbers displayed
with each orbital are their eigenenergies in meV, while
the up and down arrows indicate an electron with an up
or down spin. The numbers displayed with the charge
densities are the total energies in meV. Unlike the RHF
case, the spin density of the sS-UHF exhibits a well
developed spin density wave. Distances are in nm and
the electron densities in 10−4 nm−2. The choice of
parameters is m∗ = 0.067me, h̄ω0 = 5 meV, d = 30 nm,
Vb = 4.95 meV, κ = 20.

in the right column of Figure 1. Similar localized or-
bitals appear also in the B �= 0 case, so that in general
the functions u(r) and v(r) are complex. α and β de-
note the up and down spin functions, respectively.
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In Eq. (4) we also define a compact notation for the
�UHF determinant, where a bar over a space orbital
denotes a spin-down electron; absence of a bar de-
notes a spin-up electron.

�UHF(1, 2) is an eigenstate of the projection Sz

of the total spin S = s1 + s2, but not of S2. One
can generate a many-body wave function which
is an eigenstate of S2 with eigenvalue s(s + 1)h̄2

by applying the projection operator introduced by
Löwdin [30, 31],

Ps ≡
∏

s′ �= s

S2 − s′(s′ + 1)h̄2

[s(s + 1) − s′(s′ + 1)]h̄2 , (5)

where the index s′ runs over the quantum numbers
of S2.

The result of S2 on any UHF determinant can be
calculated with the help of the expression

S2�UHF = h̄2
[

(Nα − Nβ)2/4 + N/2 +
∑
i<j

�ij

]
�UHF,

(6)
where the operator �ij interchanges the spins of
electrons i and j provided that their spins are differ-
ent; Nα and Nβ denote the number of spin-up and
spin-down electrons, respectively, while N denotes
the total number of electrons.

For the singlet magnetic state of two electrons
(N = 2), one has Nα = Nβ = 1, Sz = 0, and S2 has
only the two quantum numbers s = 0 and s = 1. As
a result,

2
√

2P0�UHF(1, 2) = (1 − �12)
√

2�UHF(1, 2)
= ∣∣u(1)v̄(2)

〉 − ∣∣ū(1)v(2)
〉
. (7)

In contrast to the single-determinantal wave func-
tions of the RHF and sS-UHF methods, the projected
many-body wave function (7) is a linear superposi-
tion of two Slater determinants and thus represents
a corrective step beyond the mean-field approxima-
tion.

Expanding the determinants in Eq. (7), one finds
the equivalent expression

2P0�UHF(1, 2) = (
u(r1)v(r2) + u(r2)v(r1)

)
χ(0, 0), (8)

where the spin eigenfunction is given by

χ(s = 0; Sz = 0) = (
α(1)β(2) − α(2)β(1)

)
/
√

2. (9)

Equation (8) has the form of a Heitler–London
(HL) [35] or valence bond∗ [36, 37] wave func-
tion for the singlet magnetic state. However, unlike

∗The early empirical electronic model of valence was primar-
ily developed by G. N. Lewis who introduced a symbolism where
an electron was represented by a dot (e.g., H:H) with a dot be-

the HL scheme which uses the orbitals φL(r) and
φR(r) of the separated (left and right) atoms,† ex-
pression (8) employs the sS-UHF orbitals which are
self-consistently optimized for any separation d, po-
tential barrier height Vb, and magnetic field B. As
a result, expression (8) can be characterized as a
GVB‡ (also termed GHL) wave function. Taking into
account the normalization of the spatial part, we ar-
rive at the following improved wave function for
the singlet state exhibiting all the symmetries of the
original many-body hamiltonian (here, the spatial
reflection symmetry is automatically restored along
with the spin symmetry),

�s
GVB(1, 2) = ns

√
2P0�UHF(1, 2), (10)

where the normalization constant is given by

n2
s = 1/(1 + SuvSvu), (11)

Suv being the overlap integral of the u(r) and v(r)
orbitals (which are complex in the presence of a
magnetic field B),

Suv =
∫

u∗(r)v(r) dr. (12)

The total energy of the GVB state is given by

Es
GVB = n2

s [huu+hvv+Suvhvu+Svuhuv+Juv+Kuv], (13)

tween the atomic symbols denoting a shared electron. Later in
1927 Heitler and London formulated the first quantum mechani-
cal theory of the pair-electron bond for the case of the hydrogen
molecule. The theory was subsequently developed by Pauling
and others in the 1930s into the modern theory of the chemical
bond called the Valence Bond Theory.

†References [19, 20] have studied, as a function of the mag-
netic field, the behavior of the singlet–triplet splitting of the
H2-QDM by diagonalizing the two-electron hamiltonian inside
the minimal four-dimensional basis formed by the products
φL(r1)φL(r2), φL(r1)φR(r2), φR(r1)φL(r2), φR(r1)φR(r2) of the 1s or-
bitals of the separated QDs. This Hubbard-type method [19] (as
well as the refinement employed by Ref. [20] of enlarging the
minimal two-electron basis to include the p orbitals of the sep-
arated QDs) is an improvement over the simple HL method (see
Ref. [19]), but apparently it is only appropriate for the weak-
coupling regime at sufficiently large distances and/or interdot
barriers. In addition this method fails explicitly (it yields a triplet
ground state at B = 0 [19]) for small values of κ . Our method
is free of such limitations, since we employ here an interdot-
distance adjustable basis of at least 70 spatial TCO molecular
orbitals when solving for the sS-UHF ones. Even with considera-
tion of the symmetries, this amounts to calculating a large num-
ber of two-body Coulomb matrix elements, of the order of 106.

‡More precisely our GVB method belongs to a class of projec-
tion techniques known as variation before projection, unlike the
familiar in chemistry GVB method of Goddard and co-workers
(Goddard III, W. A.; Dunning, Jr., T. H.; Hunt, W. J.; Hay, P. J.
Acc Chem Res 1973, 6, 368), which is a variation after projection
(see Ref. [29]).
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where h is the single-particle part (1) of the total
hamiltonian (3), and J and K are the direct and
exchange matrix elements associated with the e–e re-
pulsion e2/κr12. For comparison, we give also here
the corresponding expression for the total energy of
the HF “singlet” (i.e., the determinant with Sz = 0),
either in the RHF (v = u, no spin contamination) or
the sS-UHF (spin-contaminated) case,

Es
HF = huu + hvv + Juv. (14)

For the triplet with Sz = ±1, the projected wave
function coincides with the original HF determi-
nant, so that the corresponding energies in all three
approximation levels are equal; i.e., Et

GVB = Et
RHF =

Et
UHF.

COMPARISON OF RHF, sS-UHF,
AND GVB RESULTS

In this section, we study in detail the behavior of
the interdot coupling in the H2-QDM in the pres-
ence of a perpendicular magnetic field. We present
numerical results for three values of the dielec-
tric constant, namely, κ = 45 (e–e repulsion much
weaker than the case of GaAs), κ = 25 (e–e repulsion
weaker than the GaAs case), and κ = 12.9 (case of
GaAs). In particular we study the evolution of the
energy difference, �ε = Es − Et, between the singlet
and the triplet states as a function of an increasing
magnetic field varying from B = 0 to B = 9 T. The
evolution of the two occupied sS-UHF orbitals of the
singlet state is illustrated by plotting them at the two
end values, B = 0 and B = 9 T. In all three figures
(i.e., Figs. 2, 3, and 4), the lower half corresponds to a
vanishing interdot barrier Vb = 0 (unified deformed
dot at B = 0), while the upper half corresponds to a
finite value of Vb, thus being closer to the notion of a
molecule proper. The interdot distance is chosen to
be d = 30 nm in all three cases.

Case of κ = 45

Figure 2 displays the evolution of �ε as a func-
tion of the magnetic field for κ = 45 and for all
three approximation levels, i.e., the RHF (MO the-
ory, top solid line), the sS-UHF (dashed line), and
the GVB (lower solid line). (The same convention
for the �ε(B) curves is followed throughout this ar-
ticle.) The case of Vb = 0 is shown at the bottom
panel, while the case of Vb = 3.71 meV is displayed
in the top panel. The insets display as a function of
B the overlap (modulus square, |Suv|2) of the two
orbitals u(r) and v(r) of the singlet state. In this cal-
culation, the effective g factor was set equal to zero,

FIGURE 2. Lateral H2-QDM in the presence of
a magnetic field and for κ = 45: The left column displays
the energy difference �ε between the singlet and triplet
states according to the RHF (MO theory, upper solid
line), the sS-UHF (dashed line), and the GVB approach
(projection method, lower solid line) as a function of the
applied magnetic field B. The two other columns display
the sS-UHF spin-up (↑) and spin-down (↓) occupied
orbitals (modulus square) of the singlet state for B = 0
(field-free case, middle column) and B =9 T (right
column). The top half corresponds to a bare interdot
barrier of Vb = 3.71 meV, while the bottom half describes
the no barrier case Vb = 0. For B = 9 T complete
dissociation has been practically reached. The choice of
the remaining parameters is m∗ = 0.067me,
h̄ω0 = 5 meV, d = 30 nm, and g∗ = 0. Distances are
in nm and the orbital densities in 10−4 nm−2. Insets:
The overlap integral (modulus square) of the two orbitals
of the singlet state as a function of B.

g∗ = 0, so that the gain of energy due to the Zeeman
effect does not obstruct for large B the convergence
of �ε toward zero. Due to its smallness relative to
h̄�eff = h̄(ω2

0 + ω2
c /4)1/2 (where ωc = eB/m∗c is the

cyclotron frequency), the actual Zeeman contribu-
tion can simply be added to the result calculated for
g∗ = 0.

We observe first that as a function of B, for both
the Vb = 0 and the Vb = 3.71 meV cases and for all
three levels of approximation, the �ε energy differ-
ence starts from a minimum negative value (singlet
ground state) and progressively increases to zero;
after crossing the zero value, it remains positive
(triplet ground state). However, for large values of
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B there is a sharp contrast in the behavior of the
RHF curves compared to the sS-UHF and GVB ones.
Indeed after crossing the zero axis, the RHF curves
incorrectly continue to rise sharply and very early
they move outside the range of values plotted here
(at B = 9 T, the RHF values are 0.93 and 1.21 meV
for Vb = 0 and 3.71 meV, respectively). In contrast,
after reaching a broad maximum, the positive �ε

branches of both the sS-UHF and GVB curves con-
verge to zero for sufficiently large values of B.

The convergence of the singlet and triplet to-
tal energies to the same value indicates that the
H2-QDM dissociates as B attains sufficiently large
values. This is also reflected in the behavior of the
overlaps (see insets) as a function of the magnetic
field. In fact, the overlaps decrease practically to
zero as a function of B, suggesting that the two cor-
responding orbitals u(r) and v(r) of the singlet state
tend to become strongly localized on the individual
dots.

The molecular dissociation induced by the mag-
netic field and the associated electron localization
is further demonstrated by an examination of the
orbital densities (orbitals modulus square) them-
selves. These densities are plotted for both the end
values of B = 0 (field-free case, middle column) and
B = 9 T (strong magnetic field, right column). For
B = 9 T, it is apparent that the plots portray orbitals
well localized on the individual dots. In contrast, for
B = 0 the orbitals are clearly delocalized over the
entire QDM. In particular, for B = 0 and Vb = 0 the
two orbitals u(r) and v(r), which are different in gen-
eral, have collapsed to the same 1s-type distorted
orbital associated with the single-particle picture of
a unified deformed dot.

One effect of choosing a very weak e–e repulsion
(κ = 45) is that in the Vb = 0 case the three lev-
els of approximation collapse to the same MO value
(no symmetry breaking) for magnetic fields below
B < 2.9 T, a fact that is also reflected in the or-
bitals themselves (see the B = 0 case in the middle
column of the lower half of Fig. 2). However, for
Vb = 3.71 meV, even such a weak e–e repulsion does
not suffice to inhibit symmetry breaking in the field-
free case. As a result, for B = 0 and Vb = 3.71 meV,
the two u(r) and v(r) orbitals, although spread out
over the entire molecule, are clearly different and
the GVB singlet lies lower in energy than the cor-
responding MO value.

A second observation is that both the sS-UHF and
the GVB solutions describe the dissociation limit
(�ε → 0) for sufficiently large B rather well. In ad-
dition in both the sS-UHF and the GVB methods the

singlet state at B = 0 remains the ground state for
all values of the interdot barrier. Between the two
singlets, the GVB one is always the lowest, and as
a result the GVB method presents an improvement
over the sS-UHF method both at the level of sym-
metry preservation and at the level of energetics.
Furthermore, whether a singlet or triplet, the GVB
always results in a stabilization of the ground state;
the improved behavior of the GVB over the sS-UHF
holds for all values of κ .

We note that the failure of the MO (RHF) approx-
imation to describe the dissociation process induced
by the magnetic field is similar to its failure to
describe dissociation of the molecule in the field-
free case as a function of the interdot barrier and
distance (see Ref. [21]). As discussed in Ref. [21],
due to the underlying MO picture, the spin-density
functional calculations of Refs. [17, 18] also fail to
describe the molecular dissociation process in the
field-free case.∗ Such spin-density functional cal-
culations are expected to fail in the presence of a
magnetic field as well.

Case of κ = 25

The influence of the magnetic field on the prop-
erties of the H2-QDM in the case of a stronger e–e
repulsion (κ = 25) is described in Figure 3. Again
we set g∗ = 0 for the same reasons as in the previ-
ous case; the meaning of �ε and of the displayed
orbitals is the same as in Figure 2. Compared to

∗Symmetry breaking in coupled QDs within the local
spin density (LSD) approximation has been explored by
Kolehmainen, J.; Reimann, S. M.; Koskinen, M.; Manninen, M.
Eur Phys J D 2000, 13, 731. However, unlike the HF case for
which a fully developed theory for the restoration of symme-
tries has long been established (see, e.g., Ref. [29]), the breaking
of space symmetry within the spin-dependent density functional
theory poses a serious dilemma (Perdew, J. P.; Savin, A.; Burke, K.
Phys Rev A 1995, 51, 4531). This dilemma has not been fully re-
solved todate; several remedies (like projection, ensembles, etc.)
are being proposed, but none of them appears to be completely
devoid of inconsistencies (Savin, A. Recent Developments and
Applications of Modern Density Functional Theory; Seminario,
J. M., Ed.; Elsevier: Amsterdam, 1996; p. 327). In addition, due
to the unphysical self-interaction error, the density-functional
theory is more resistant against symmetry breaking (see Bauern-
schmitt, R.; Ahlrichs, R. J Chem Phys 1996, 104, 9047) than the
sS-UHF, and thus it fails to describe a whole class of broken
symmetries involving electron localization, e.g., the formation at
B = 0 of Wigner molecules in QDs (see footnote 7 in Ref. [10]),
the hole trapping at Al impurities in silica (Laegsgaard, J.; Stok-
bro, K. Phys Rev Lett 2001, 86, 2834), or the interaction driven
localization–delocalization transition in d- and f -electron sys-
tems, like plutonium (Savrasov, S. Y.; Kotliar, G.; Abrahams, E.
Nature 2001, 410, 793).
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FIGURE 3. Lateral H2-QDM in the presence of
a magnetic field and for κ = 25: The left column displays
the energy difference �ε between the singlet and triplet
states according to the RHF (MO theory, upper solid
line), the sS-UHF (dashed line), and the GVB approach
(projection method, lower solid line) as a function of the
applied magnetic field B. The two other columns display
the sS-UHF spin-up (↑) and spin-down (↓) occupied
orbitals (modulus square) of the singlet state for B = 0
(field-free case, middle column) and B = 9 T (right
column). The top half describes the case of a bare
interdot barrier of Vb = 3.71 meV, while the bottom half
describes the no barrier case Vb = 0. For B = 9 T
complete dissociation has been practically reached.
The choice of the remaining parameters is
m∗ = 0.067me, h̄ω0 = 5 meV, d = 30 nm, and g∗ = 0.
Distances are in nm and the orbital densities are in
10−4 nm−2. Insets: The overlap integral (modulus
square) of the two orbitals of the singlet state as a
function of B.

the κ = 45 case, the increase of the e–e repulsion
is accompanied by an overall strengthening of sym-
metry breaking and electron localization, since there
is no range of parameters for which the sS-UHF and
GVB solutions collapse into the symmetry-adapted
MO (RHF) one. Indeed, even for Vb = 0 the three
levels of approximation provide different values for
the singlet–triplet difference �ε, with the GVB so-
lution yielding in the field-free case the highest
stabilization for the singlet. For Vb = 3.71 meV, the
MO solution fails outright even in the field-free case
for which it predicts a positive �ε (triplet ground
state) in violation of the theorem stating [34] that

the ground state of a 2e system at B = 0 is always
a singlet.

The overall strengthening of electron localization
is also reflected in the behavior of the overlap in-
tegrals (see insets), since now they start at B = 0
with smaller values compared to the corresponding
values of the κ = 45 case. In addition, the trend
toward stronger electron localization with smaller
κ can be further confirmed by an inspection of the
orbitals of the singlet state displayed in the middle
(B = 0) and right (B = 9 T) columns of Figure 3.
Compared to the corresponding orbitals in Figure 2,
this trend is obvious and we will not describe it in
detail. It will suffice to stress only that, whatever the
degree of initial electron localization at B = 0, the
applied magnetic field enhances even further this
localization, achieving again a practically complete
dissociation of the artificial molecule at B = 9 T.

Case of κ = 12.9 (GaAs)

The dielectric constant for a GaAs heterointerface
is κ = 12.9, which corresponds to a further increase
in the e–e repulsion compared to the two previous
cases of κ = 45 and κ = 25. This case is presented
in Figure 4. Note that here the Zeeman contribution
has been included from the beginning by taking g∗
to be equal to its actual value in the GaAs heteroint-
erfaces; i.e., g∗ = −0.44. As a result, the sS-UHF and
GVB curves for �ε converge to a straight line rep-
resenting the Zeeman linear dependence γ B (with
γ ≈ 0.026 meV/T for Sz = +1, short dashed line)
instead of vanishing for large B.

The results presented in Figure 4 confirm again
the trend that electron localization becomes stronger
the stronger the interelectron repulsion. As we
found previously, the proper description of this
strong electron localization requires consideration
of symmetry breaking via the sS-UHF (long dashed
curve in the �ε vs. B plots) and the subsequent
construction of GVB wave functions via projection
techniques (solid curve in the �ε vs. B plots). The
MO description is outright wrong, since the cor-
responding �ε values are positive in the whole
interval 0 ≤ B ≤ 9 T; in fact they are so large that
the whole MO curves lie outside the plotted ranges
in Figure 4. For B = 9 T, and in both the barrierless
(Vb = 0) case and the case with an interdot barrier
of Vb = 4.94 meV, the artificial molecule has prac-
tically dissociated. Compared to the previous cases
of κ = 45 and κ = 25, the molecule starts with a
stronger electron localization already in the field-
free case and with increasing B it moves much faster
toward complete dissociation.

706 VOL. 90, NO. 2



MAGNETIC-FIELD MANIPULATION

FIGURE 4. Lateral H2-QDM in the presence of
a magnetic field and for κ = 12.9 (GaAs): The left
column displays the energy difference �ε between the
singlet and triplet states according to the sS-UHF (long
dashed line) and the GVB approach (projection method,
solid line) as a function of the applied magnetic field B.
The two other columns display the sS-UHF spin-up (↑)
and spin-down (↓) occupied orbitals (modulus square)
of the singlet state for B = 0 (field-free case, middle
column) and B = 9 T (right column). The top half
describes the case of a bare interdot barrier of
Vb = 4.94 meV, while the bottom half describes the no
barrier case Vb = 0. For B = 9 T complete dissociation
has been practically reached. The choice of the
remaining parameters is m∗ = 0.067me, h̄ω0 = 5 meV,
d = 30 nm, and g∗ = −0.44 (GaAs). Distances are in nm
and the orbital densities are in 10−4 nm−2. Insets: The
overlap integral (modulus square) of the two orbitals of
the singlet state as a function of B.

Overview of Common Trends in the
Singlet–Triplet Energy Difference

According to the GVB calculations, the common
trend that can be seen in all cases (independent
of the value of κ) is that the singlet–triplet en-
ergy difference is initially negative (singlet ground
state) in the field-free case. With increasing mag-
netic field, this energy difference becomes larger
(diminishes in absolute value), crosses the value of
zero at a certain B0, and remains positive (triplet
ground state) for all B ≥ B0, converging from above
to the straight line representing the Zeeman con-
tribution (or to zero if the Zeeman contribution is
neglected). This means that for sufficiently large val-

ues of B the singlet–triplet energy difference is given
simply by the Zeeman energy and that the mole-
cule has practically dissociated. The trend toward
dissociation is reached faster the stronger the e–e re-
pulsion.

It is interesting to note again that for κ = 45
(weaker e–e repulsion) the sS-UHF and GVB solu-
tions collapse to the MO solution for values of the
magnetic field smaller than B ≤ 2.9 meV. However,
for the stronger e–e repulsions (κ = 25 and κ = 12.9)
the sS-UHF and GVB solutions remain energetically
well below the MO solution. Since the separation
considered here (d = 30 nm) is a rather moderate
one (compared to the value l0 = 28.50 nm at B = 0
for the extent of the 1s lowest orbital of an individ-
ual dot with h̄ω0 = 5 meV), we conclude that there
is a large range of materials parameters, interdot
distances, and magnetic-field values for which the
QDMs are weakly coupled and cannot be described
by the MO theory; a similar conclusion was reached
in Ref. [21] for the field-free case.

Conclusions

We have shown that, even in the presence of an
applied magnetic field, the sS-UHF method, in con-
junction with the companion step of the restoration
of symmetries when such symmetries are broken,
is able to describe the full range of couplings in a
QDM, from the strong-coupling regime exhibiting
delocalized molecular orbitals to the weak-coupling
one associated with Heitler–London-type combina-
tions of atomic orbitals.

The breaking of space symmetry within the sS-
UHF method is necessary in order to properly de-
scribe the weak-coupling and dissociation regimes
of QDMs. The breaking of the space symmetry
produces optimized atomiclike orbitals localized
on each individual dot. Further improvement is
achieved with the help of projection techniques
which restore the broken symmetries and yield mul-
tideterminantal many-body wave functions. The
method of the restoration of symmetry was explic-
itly illustrated for the case of the H2-QDM in the
presence of a magnetic field. It led to the introduc-
tion of a generalized valence bond many-body wave
function as the appropriate vehicle for the descrip-
tion of the weak-coupling and dissociation regimes
of artificial molecules.

Additionally, we showed that the RHF, whose
orbitals preserve the space symmetries and are delo-
calized over the whole molecule, is naturally associ-
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ated with the molecular orbital theory. In a general-
ization of the field-free case of natural [36 – 38] and
artificial [21] molecules, it was found that the RHF
fails to describe the weak-coupling and dissociation
regimes of QDMs in the presence of an applied mag-
netic field as well.
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