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Magnetocohesion of nanowires
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The cohesive force and electronic conductance in nanowires modeled by soft- and hard-wall confining
potentials, under the influence of a magnetic figlthgnetocohesigrand in the linear and nonlinedfinite
applied voltaggregimes, are studied. The appearance of force oscillations as a function of the magnetic field
and their correlation with the corresponding characteristics of the electronic conductance are demonstrated. For
materials with a strong Fermi-surface anisotr@pyg., bismuth it is predicted that when the crystallographic
axis associated with the largest diagonal element of the effective-mass tensor is aligned along the direction of
the wire, the cohesive force increases dramatid@ijyan order of magnitudecompared to the case when that
axis is perpendicular to the wire direction.

[. INTRODUCTION model we investigate effects of the anisotropy of the Fermi
surface of metals on the cohesive force of the nanowire. We
Formation of interfacial wires of atomic dimensions show that for a bismuth wire the force oscillations are high-
(nanowire$ via elongation of contacts had been predictedest when the crystallographic axis corresponding to the larg-
through early molecular dynamiod/ID) simulationd and  est diagonal element of the electron-mass tensor is parallel to
observed experimentafly'® using tip-based microscopy, the axis of the wire.
pin-disk, and mechanical break junction techniques. Further- The paper is organized as follows. The theoretical model
more, it had also been found that the elongation mechanis#®! calculation of the cohesive force in nanowires is de-
of the wire involves an oscillatory variation of the pulling scribed in Sec. Il, and the results are discussed in Sec. Il
force! and that such oscillations are correldtedth stepwise ~ (hard-wall potential and Sec. IV(soft-wall potential, with
variations of the conductance through the wife'* The en-  an application to bismuth wirgsWe offer a summary in
ergetics and mechanical response in nanowires as well as tRec. V.
electrical transport through them have been analyzed using

MD simulations and electronic structure calculatibh® 18 Il. NANOWIRE COHESION: FORMALISM
as well as through the use of a jellium modef! and free- _ _ _
electron treatment®*including semiclassical analysi%2® The mechanical properties of nanowires may be charac-

In addition, the nature of the oscillatory behavior of the elon-t€rized by the cohesive fordg that is, the force required to
gation force and the conductance, originating from structuraglongate the wire whose volume remains constaduch a
rearrangements in the wire in conjunction with modificationsforce can be measured with atomic force microscosiyM)
of the electronic structure, have also been analyzed with thUring stretchindor compressionof a contact between a tip
same techniques. and a surfacé*%and it is given by

Because of the nature of the preparation methods cur-

rently used to generate such three-dimensi¢8B) nanow- F—_ (@) 1)

ires, it is often difficult to obtain reproducibly the same well- aL v’

defined structures of the wires from one experiment to

another, unlike the case of lithographically fabricated two-where L is the length of the wire of volum#&/, and the

dimensional wires controlled via voltage gates. Consegrand-canonical potentid) is given by

quently, it is particularly desirable in investigations of such

wires to explore the dependence of the wire’s propefties- u—E;

chanical and/or electricabn external fields, including mag- Q=—kgT> In 1+ex;{ KT ) , @)

netic fields?’~3° finite bias voltage’3? electromagnetic ' B

radiation’® and thermal gradientt;* which may be varied \yherek is the Boltzmann constarf, is the temperaturey

in a controllable manner. _ is the chemical potential, and ti are the electronic energy
To this end, we study in this paper the cohesive force ofgyels with the index denoting a set of quantum numbers

metallic nanowires under the influence of a magnetic f"*'%cluding spin.

(magnetocohesiorin the linear and nonlinear applied volt- |5 5 cylindrical wire the energy levels of the electrons

age regimes. Using a free-electron model for a wire de'may be expressed as a sum of transverseand longitudi-

scribed either by a hard-wall or by a soft-wall confining po- p2/2m,, parts:

tential, we demonstrate the effect of a magnetic field on the "2

oscillatory cohesion force and its correlation with the 2
magnetic-field-induced variations of the electric conductance E. = L 3
VP, EV+ ZmH! ()

through the wire. Furthermore, for the soft-wall potential
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region,V, remains constant during elongation of the wire in
accordance with the results of molecular dynamics
simulationst In this model all the geometrical parameters
depend only on the length of the wire. In the case of an
adiabatically slow variation oR(z) we can divide the wire
into thin cylindrical slices with radiR(z) and then use Eq.
(5) for the calculation of the thermodynamic potential.

In the absence of a magnetic field, and for a hard-wall
confinement on the surface of the circularly symmetric wire,
the transverse energy Ieveet‘,%,?r)1 in a cylindrical slice with
the radiusR(z) described by Eq(6) are given by(in this
section we consider nanowires made from metals with a qua-
dratic and isotropic dispersion law

(@ (b}

ﬁz')’rznn

FIG. 1. Models of nanowirega) A nanowire of a uniform cy- e%ﬁ)%:—g—. (7)
lindrical shape(b) A nanowire with a circular cross section but a 2m, R%(2)
variable axial shfape described by thelependence of the radius Here,m=0,*+1,... andn=1,2,... are the azimuthal and radial
R(2)=Ro+bZ* with Rya=const; see EQ(6). quantum numbers, respectively, amd is the effective mass
of the electrons corresponding to the motion in the plane
erpendicular to the axis of the wire. The zeros of the Bessel
nction vy, determine the positions of single or double
steps(depending on then degeneracy of the energy levels
of the conductandé and the oscillations of the cohesive
forcel%-2°In a longitudinal magnetic fiel¢H) the electronic
oL (2m, 112 energy levels are comput’é’drom the zeros of the confluent
(?) hypergeometric function

where v denotes a discrete set of quantum numbers,rand
is the electronic mass corresponding to the motion along th
axis of the cylindrical wire. Introducing the density of states
and integrating Eq.2) twice by parts we get for a cylindrical
wire

o= 3T

E— )/kgT kZ.R%(z) |m|+m+1
elE-mikg (_( R (2) _ [m| ,|m|+1,a(Z))=0, (8)

XEV: de(E—eV)3’2W. (4) 4a(z) 2

wherek? =2m, e/ R(2)1/%? and a= 7R?(z)H/ ¢, is the
z-dependent magnetic flux in the wire expressed in units of
the flux quantumpy=hcle.

From Egs.(5)—(8) the magnetic field dependence of the
ohesive forcdEq. (1)], arising from an elongation of the
1 (LR nanowire, can be calculate@n this section we neglect
T Qeydz. (5) magnetic-field-induced spin effe¢gtsSuch dependence on

—L2 the wire’s lengthL along with that of the conductance of the

. 36 . . . .
In the following we use this formalism for calculation of the Wir€"" iS displayed in Figs. 2 and 3 for several values of the

cohesive force for nanowires modeled by different forms of2PPlied magnetic fieldexpressed in units of the dimension-
the confining potential, and for field-free conditions as wellless flux @/ ¢o); in these figures we show results for nano-

as under the influence of a magnetic field. constrictions withkzRpa—=6 andkeRpa—4, corresponding,
respectively, to five and one conducting channels at zero

field [see solid lines in Figs.(3) and 3a)]. The main effect
of the magnetic field on the force is to modify the oscillatory
In the hard-wall potentia| model we consider nanowirespattern[WhiCh exists already in zero field; see solid lines in
with circular symmetry about the axis of the witgsaxis). A~ Figs. ab) and 3b)], including the appearance of new peaks.
wire of |ength|_ may be modeled as a constriction of a uni- This effect, which is correlated with variations in the wire’s
form cylindrical shape, i.e., with a constant cross-sectionafonductanc¢compare panelga) and (b) in Figs. 2 and §
radiusRO a|0ng thez axis [F|g 1(a)]' or as a constriction of Originates from magnetic-ﬁeld'indUCEd removal of degenera-
variable shapéFig. 1(b)]; in the latter case we assume that cies and shifts of the electronic transverse energy levels in
the Cross_sectiona' radin) Varies a|0ng the axis apara_ the nanowire. Since the force can be influenced both by an

In a wire with a slowly(adiabatically'* varying shape the
cross-sectional radii depend arisee beloy, and due to the
z dependence of the transverse energy leje)sn Eq. (4)]
we may define the thermodynamic potential of such a wire as

Qire=

IIl. HARD-WALL POTENTIAL MODEL

bolic shapg applied magnetic field and/or by changes in the wire’s length
we show in Figs. &) and 3c¢) the force as a function of both
(22)? L L ¢l po andL. For wires made from normal metals the ampli-
R(2) =Rg+ (Rmax— Ro) [z Ty =3 (6)  tude of the force oscillations is of the order of nanonewtons,

nN. For nanowires made of such metals with only a few
with the radius at the ends of the constricted secttbat is,  conducting channel@.e., narrow wire§ very high magnetic
at the region connected to the legdR, ., =R(£L/2), kept fields are required in order to achieve a magnetic flux of the
constant. We assume also that the volume of the constricteatder of ¢ in the cross section of the nanowire. On the other
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FIG. 2. (a) ConductancéG, in units of 22/h) and(b) cohesive FIG. 3. Same as Fig. 2, butfa 3 D wire with keRpa,=4.
force (F, in units of 322m{%=m¥?R3 ) of a 3D wire, modeled

via a hard-wall confining potential with a variable shépig. 1(b)], ~ Whereu.=u*eU. By taking the derivative of)., with
plotted vs its dimensionless length/Ryq, With keRn.,=6. The  respect to wire length, the magnetocohesion of the nanow-

different curves correspond to the marked values of the dimensiori*€ in the nonlinear(finite applied voltage regime can be
less magnetic fluxp/ ¢o=HwR?/(hc/e). (c) The cohesion force calculated.
plotted vSL/Ry,a and ¢/ ¢ . In Fig. 4(a) we show the magnetic field dependence of the
force at different values of an applied voltagxpressed in
hand, for semimetalli¢chismuth-type wires a magnetic flux units of eU/eg) for a wire with keRy=5, corresponding to
of severalg, is readily achievable, while the amplitude of three conducting channels ldt=0 andU— 0. Indeed, these
the force oscillations for such wires is smallsee the next results illustrate that the oscillatory dependence of the force
section. on the magnetic field may be significantly influenced by an
The highest sensitivity of the cohesive force to the appliecapplied voltage; see also Fig(l} where the simultaneous
magnetic field occurs in the vicinity of changes in the wire’'sdependence of the force on the magnetic field and the ap-
conductancéclose to a step rise; see Figs. 2 andtBat is, plied voltage is displayed. We remark also that, as seen from
for conditions where the highest transverse endogynduc-  Fig. 4, with the use of a finite applied voltage, magnetoco-
tance channglin the wire is located near the Fermi energy. hesion effects may be observed at lower magnetic field val-
Such conditions can be achieved through mechanicales than otherwise.
manipulatior® of the wire or via application of a finite

voltage?” the latter, being an independent external param- |y SOFT-WALL CONFINING POTENTIAL  (FOCUSING

eter, may allow measurements of the mechanical and trans- ON BISMUTH WIRES )
port characteristics in a reproducible way. To demonstrate . _ _ _
the combined effect of a finite bias voltatleand an applied In the previous section we discussed the cohesive force

magnetic field on the cohesion force we consider the cylinand conductance in nanowires modeled by a hard-wall con-
drical wire shown in Fig. (8). The thermodynamics of the fining potential. In this section we turn to nanowires modeled
wire may be described in terms of different effective electro-by a soft-wall harmonic potential of the forth

chemical potentials for opposite-moving electréhdNith

the assumption that the wire is symmetric and that the po- M s s

tential drop takes place in the vicinity of the wire’s er{tisgat Ux(X,y)= R?(z) (x“+y), (10
is, near the contacts to the reservpirthe thermodynamic

potential may be written as where the effective radius of the wirB(z), is given by Eg.

(6). This model allows an analytic solution of the Schro
Qey= e —E)+Q(u_—E)], 9 dinger equation in a magnetic field. In addition, it is particu-
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takes into account spin effects in a magnetic field and may be
of importance for bismuth wires because of possible large
values of the effectivey factor (see, for example, Ref. 37
Changing variables in Eq12) as x=x;(m,/m;)** andy
=y,(m;/m,)Y4 we obtain the Schiinger equation for an

- 02 electron with an _effectiveépyclotrorj massm, = (m;m,)*?
and an anisotropic potential

(2)
14 eU/g;:

0.4

“IE
= ] U (x,y)=3m, (o} + wiyd), (14
0 with the confining frequencies, , given by
2 T T T T T T T 2/-L

2 _
0 1 2 3 4 5 6 7 W1 = my R (2) (15

The transverse energy levels of the electron are expressed in
terms of the frequencies; , (or diagonal mass elements ,
corresponding to the axes perpendicular to the axis of the
wire), and they are given B

\ 0
L
.

X

€nn,=fiw (N1+3)+ho (ny+3), (16)

327ml?
F( W—J‘-ﬁfmﬂ)
~
T

with

0.4

0. =3[ 02+ (014 0,)2]2x [ w2+ (01— wp) 2]V,
o1 ’ eU/g; (17)

Here, n; and n, are non-negative integers and,
FIG. 4. (a) Cohesive forcdF, in units of 3z2mY% zm¥?R3_) ~ =eH/cm, is the cyclotron frequency. The energy levels

of a 3D wire, modeled via a hard-wall confining potential with a €n,n, given by Egs.(16) and (17) transform to the Fock-

uniform cylindrical shap€¢Fig. 1(a)], plotted vs the dimensionless Darwin level$®in the symmetric case; = w,= wy (i.e., iso-

magnetic flux¢/ ¢o, with keRy=5. Different curves correspond to tropic Fermi surfacewith

the marked values of the applied volta@é in units of eg /e). (b)

The cohesion force plotted s/ ¢y andeU/ er . wsi _ %(w§+4w§)1/2i we. (18)

)
ve ° ©

larly convenient for investigations of the effects of anisot-
ropy of the electronic Fermi surface and may be applied to Ror
study of bismuth nanowires. Consider the case of an ellip
soidal Fermi surface when one of the crystallographic axe
(the z axi9) is taken to be parallel to the axis of the wire. In
a longitudinal magnetic field with the symmetric gauge for
the vector potential, i.e.,

In the following we discuss the results of our calculations
bismuth nanowires with different orientations of the crys-
tallographic axes with respect to the axis of the wire. In our
Ralculations we use the following values for the diagonal
elements of the mass tens8rm,, 0.02n,, and 0.006n,.
We use 0.012 eV for the Fermi energy agit= 50 for theg
factor [the effectiveg factor for bismuth is of the order of
A=3(—Hy,Hx,0), (11  mMo/m, (Ref. 37].

o ) _ In Fig. 5 we show(a) the conductance an) the cohe-
the Schrainger equation corresponding to the transversesion force as a function of the length of a bismuth nanowire
electronic motion in a cylindrical slice of radii&(z) reads  for different values of an applied magnetic field. The con-

52 (9 ieH \2 52 (9 ieH \2 ductance of the wire decrease_s with the length as the rad_ius
S ) - _(_+ —x| of the narrowest part of the wires decreases, thus reducing
2my\9x  fic 2my\dy  hc the number of the conducting electronic channels in the
bottleneck of the constriction. The cohesive force oscillates
+ 2’“ (X2+y?) = e, (12) as a function of the length of the wire in correspondence with
R%(2) the changes in the conductance. Note that for stronger ap-
and the electronic energy is given by plied magnetic fields the values for the conductance, as well

as the amplitude of the cohesive force, are smaller since a
7 smaller number of conducting channels exigtslow Er) in
E=eto -+ 39%BH. (13 the narrowest part of the constriction. The main effect of the
3 magnetic field on the force is to modify the oscillatory pat-
Herem; (i=1,2,3) are diagonal elements of the effective-tern[which exists already in zero field; see the solid line in
mass tensog* is the effectiveg factor, B=ef/2myc is the  Figs. 5a) and Fb)], including the appearance of new peaks.
Bohr magneton, andh, is the free-electron mass. The last This effect, which is correlated with variations in the wire’s
term in Eqg.(13) is the Zeeman interaction energy, which conductancdcompare panel¢a) and (b)], originates from

2
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Length (10-5cm):
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Length (10%cm)
) _ ) ) FIG. 6. (a) ConductancéG, in units of 22%/h) and(b) cohesive
FIG. 5. (8) ConductancéG, in units of 22°/h) and(b) cohesive  force (F in pN) of the bismuth wire described in Fig. 5 plotted vs
force (F, in pN) of a bismuth wire, modeled via a soft-wall confin-  the magnitude of the applied longitudinal magnetic figfdunits of
ing potential with a variable shape, plotted vs the length of the wiretes|a, 7. The different curves correspond to the marked values of
L (in units of 10 °cm). The different curves correspond to the the length of the wirdin units of 10°° cm).
marked values of the applied longitudin@le., directed along the
axis of the \_Nire) magnetic field(in units of tesla, 7. _The Fermi o e2/h rather than 2%/h due to removal of the degeneracy
energy for bismuth was taken to be 0.012 eV. The diagonal elemerds he electron energy levels by the Zeeman spin splitting.
of the mass tensor corresponding to the direction along the axis of The calculations of the cohesion force and of the conduc-
:ir(';‘s"’i';es'g’rm;?g ’W?rr;d;gi eaf:‘zgt'i\t’? fz)cﬁtlc; rng‘:;; dc.’l‘jr calc;la— tance presented above pertain to bismuth wires oriented such
L 9 814 ) @ee. 9 that the largest diagonal element of the electron-mass tensor
(8)] such that its volumeY(=2.13x 10"*cm) and the radius of coincides with the axis of the wira(;=mg). In this case the
its maximal cross sectionR(,,=1.02X10°cm) remained con- . ; s .
stant. The geometry of the wire is shown in Figbjl amplitude of the cohesion force is maximal. Indeed, it may
' be shown easily that the cohesion force behaves as

magnetic-field-induced removal of both orbital and spin de- |:~m”1’2/(mi’2Rg)_ (19
generacies and shifts of the electronic transverse energy lev-
els in the nanowire. Since for a wire with a fixed number of conducting channels,

In Fig. 6 we show as a function of the strength of theRo~1/m*?, one obtainsF~m,. This estimate demon-

applied magnetic fielda) the conductance ant) the cohe-  strates enhancemefrder of magnitudeof the amplitude of
sion force for wires of different lengths, oriented such thatthe cohesion force oscillations in the wires whetgs maxi-
their largest (n,) diagonal element of the mass tensor cor-mal (mg) compared to the wires wherm, is minimal
responds to the axis of the wire. All wires in Fig. 6 have the(0.0068n,). For bismuth nanowires with a fixed transverse
same volume and the radiug,,,,, at the end of the constric- dimension the influence of the crystallographic axis orienta-
tion. The behavior of the conductance as a function of thaion will have an even more profound effect on the electronic
magnetic field demonstrates a “magnetic switch” effect dis-transport and cohesion force. Indeed, for a fixed valuRpf
cussed by us previousfy. The pattern of variation of the we find that the amplitude of the force oscillations will be 3
cohesion force correlates with the step pattern of the condumrders of magnitude larger for wires with their crystallo-
tance. From comparison of the different curves in Fig. 6 wegraphic axis corresponding to the largest diagonal element of
observe that wires with a larger number of conductanceghe mass tensor oriented along the axis of the wire, compared
channels exhibit a higher sensitivity to the magnetic field.to wires where such a crystallographic axis is perpendicular
Note the appearance of conductance steps with a magnitude the axis of the wire. The crystallographic axis orientation
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will also affect the electronic transport through the nanowiremuth nanowires with approximately the same number of
sincem, , as well as the strong anisotropy, will define the conducting channels the amplitude of the cohesion force is
number of conducting channels in the narrowest part of thebout an order of magnitude larger if the largest diagonal
nanowire. We also note that wires with smalfer are more element of the mass tensor lies along the axis of the wire as
sensitive to the magnetic field and are much better candidate®mpared to wires where that crystallographic axis is perpen-
for the demonstration of the influence of an applied magnetidicular to the symmetry axis of the wire. Additionally, the
field on the electronic quantum transport; wires with such asoft-wall potential model for nanowire may be generalized
crystallographic axis orientation may exhibit “magnetic for calculations with arbitrary orientation of the magnetic
blockade” of the quantum electronic transporat rather field; for a similar analysis of the magnetoconductance with

modest magnetic field values. an arbitrary orientation of the applied magnetic field see
Refs. 28, 30, and 41.
V. SUMMARY Experimental investigations of cohesive force fluctuations

] are of importance because they allow probing of aspects per-
The model analysis that we performed demonstrates thahining to electronic contributions to the cohesive force aris-

the elongation process in nanowires may be influenced bjhg during an elongation process of the nanowires. Such ef-
external parameters such as a magnetic field and/or an apscts may be observed more easily in semimetallic nanowires
plied bias voltage. We studied magnetomechanical propertiagith the use of magnetic fields with fluxes of the order of the
in nanowires modeled via hard- and soft-wall confining po-fux quantum; e.g., for a bismuth nanowire with a few trans-
tentials. In both cases oscillations of the cohesive force occUferse electronic modegthat is, Bi wires with radii of
when the quantized conductance of the wire changes from.20_50 nm this corresponds to readily available magnetic
one conductance plateau to another. The soft-wall potentiaglg|ds of several teslas.

model allows an analytical analysis of the magnetocohesion
and is applicable to metals with a strong anisotropy of the
Fermi surface. We have shown that the amplitude of the
cohesive force oscillations depends on the orientation of the This study is supported by the U.S. Department of En-
crystallographic axes with respect to the axis of the nanowergy, Grant No. FG05-86ER45234. Calculations were per-
ire. For special orientations of the crystallographic axis theformed at the Georgia Tech Center for Computational Mate-
force oscillations might be substantially enhanced. For bisfials Science.
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