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Investigations of the exactly solvable excitation spectra of two-electron quantum dots with a para-
bolic confinement, for different values of the parameter RW expressing the relative magnitudes of the
interelectron repulsion and the zero-point kinetic energy, reveal for large RW a rovibrational spectrum
associated with a linear trimeric rigid molecule composed of the two electrons and the infinitely heavy
confining dot. This spectrum transforms to that of a “floppy” molecule for smaller RW . The conditional
probability distribution calculated for the exact two-electron wave functions allows identification of the
rovibrational excitations as rotations and stretching/bending vibrations.

PACS numbers: 73.20.Dx, 71.45.Lr, 73.23.–b
The behavior of three-body systems has been a continu-
ing subject of interest and a source of discoveries in vari-
ous branches of physics, both in the classical and quantum
regimes, with the moon-earth-sun system [1] and helium-
like atoms [2–7] (in the ground and excited states) being
perhaps the best known examples. Furthermore, insights
gained through such investigations often provide the foun-
dations for understanding the properties of systems with a
larger number of interacting particles.

Recently, analysis of the measured conductance [8] and
differential capacitance [9] spectra of two-dimensional
(2D) quantum dots (QD’s), created via voltage gates at
semiconductor heterointerfaces, led to their naming (by
analogy) as “artificial atoms.” In particular, this analogy
refers to identification of regularities in the measurements
which have been interpreted [8] along the lines of the
electronic shell model of natural atoms, which is founded
on the physical picture of electrons moving in a spherical
central field including the averaged contribution from
electron-electron interactions.

Motivated by the central role that spectroscopy played in
the development of our undestanding of atomic structure,
we investigate in this paper the exactly solvable excitation
spectrum of a two-electron (2e) parabolic QD as a proto-
typical three-body problem comprised of the two electrons
(X’s) and the (infinitely heavy) confining quantum dot (Y ).
Through probing of the structure of the exact wave func-
tions with the use of the conditional probability distribution
(CPD) [3], in conjunction with identification of regularities
of the excitation spectrum, we show that such a spectrum is
characteristic of collective dynamics resulting from forma-
tion of a linear trimeric molecule XYX [10]. In particular,
we find that the excitation spectrum of the 2e QD exhibits
for a weak parabolic confinement (i.e., small harmonic fre-
quency v0) a well-developed, separable rovibrational pat-
tern which is akin to the characteristic spectrum of natural
“rigid” triatomic molecules (i.e., molecules with stretching
and bending vibrational frequencies higher than the rota-
tional one). For stronger confinements (i.e., large v0), the
spectrum transforms to one characteristic of a “floppy” tri-
atomic molecule, converging finally to the independent-
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particle picture associated with the circular central mean
field of the QD.

The Schrödinger equation for a 2e QD with a para-
bolic confinement of frequency v0, with the 2D Hamil-
tonian given by H �
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i , where k and m� are, respectively, the
dielectric constant and electron effective mass, is separa-
ble in the center-of-mass (c.m.) and relative-motion (rm)
coordinates [11]. Consequently, the energy eigenvalues
may be written as ENM,nm � Ec.m.
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Ec.m.

NM � h̄v0�2N 1 jMj 1 1� with the N and M quantum
numbers corresponding to the number of radial nodes in
the c.m. wave function and M is the c.m. azimuthal quan-
tum number; ´rm�n, jmj� are the eigenvalues of the one-
dimensional Schrödinger equation [11],
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2 �i � 1, 2� be-
ing the electrons’ coordinates in dimensionless units and
l0 � �h̄�m�v0�1�2, that is the spatial extent of the lowest-
state wave function of a single electron. The so-called
Wigner parameter RW � �e2�kl0��h̄v0 multiplying the
Coulomb repulsion term expresses the relative strength of
the Coulomb repulsion between two electrons separated
by l0 and twice the zero-point kinetic energy of an elec-
tron moving in a harmonic confinement.

Denoting the exact spatial wave function of the 2e QD
by FNM,nm�u1, u2� (which is the product of the c.m. and
rm wave functions), and the spatial two-electron density by
WNM,nm�u1, u2� � jFNM,nm�u1, u2�j2, we define the usual
pair-correlation function (PCF) as

G�y� � 2p
Z Z

d�u1 2 u2 2 v�W�u1, u2� du1 du2 ,

and the CPD for finding one electron at v given that the
other is at v0 as
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P �v ju2 � v0� �
W�v, u2 � v0�R

du1 W�u1, u2 � v0�
,

where the M, N , n, and m indices of W (and therefore
of G and P ) have been suppressed. Note that the exact
electron densities are circularly symmetric.

With the above, we solved for the 2e QD energy spectra
and wave functions for values of RW � 200, 20, and 3.
We discuss first the RW � 200 case whose spectrum and
selected PCF’s and CPD’s are displayed in Fig. 1. As can
be seen immediately, for such a large value of RW , the
spectrum of the 2e QD (bottom part of Fig. 1) exhibits
the following three well-developed regularities: (I) for

FIG. 1. Spectra (bottom) and corresponding conditional
probability distributions (CPD’s) and pair-correlation functions
(PCF’s) shown, respectively, on the left and right of each of
the subplots [labeled (a)– (d)], for a 2e QD with RW � 200.
For each excitation band, the quantum numbers �N0, M0, n0, m�
are given at the bottom with m � 0, 1, 2, . . . (the levels for
m � 0 and m � 1 are not resolved on the scale of the figure
and appear as a thick line); only a few of the low lying
rotational and vibrational states are shown, with the collective
rovibrational behavior extending to higher excitations. The
CPD’s and PCF’s are labeled with the quantum numbers of
the corresponding levels. For the spectral rules governing the
spectrum and for the definition and interpretation of the CPD’s
and PCF’s, see the text. The solid dot in each of the CPD
subplots denotes the point v0 � �d0, 0�, where d0 � 2.6 is half
of the electron separation found in the PCF of the ground state
�0, 0, 0, 0�. All distances x, y, y, and d0 are in units of l0

p
2,

and energies are in units of h̄v0�2.
every band �N0, M0, n0, m�, with m � 0, 1, 2, . . . , while
N0, M0, and n0 are kept constant (in the following the
subscript “zero” denotes a number that is held constant
in a particular sequence), the energy spacing between
two adjacent levels m and m 1 1 increases linearly in
proportion to 2m 1 1; the bands �N0, 6M0, n0, 6m�
are degenerate. Note that the levels are spin singlet or
triplet for m even or odd, respectively, (II) the bands
�0, M0, 0, m� and �N0, 0, 0, m� correspond to excitations
of the center-of-mass motion with M0 and 2N0 vibra-
tional quanta (phonons) of energy h̄v0, respectively,
and (III) the bottom levels of the bands �0, 0, n0, m�
form a one-dimensional harmonic-oscillator spectrum
�n0 1 1�2�h̄vs.

The above three “spectral rules” specify a well-
developed and separable rovibrational spectrum exhibiting
collective rotations, as well as stretching and bending
vibrations [12]. Indeed, neglecting an overall constant
term, the above rules can be summarized as

ENM,nm � Cm2 1 �n 1 1�2�h̄vs

1 �2N 1 jMj 1 1�h̄vb ,

where the rotational constant C � 0.037, the phonon for
the stretching vibration has an energy h̄vs � 3.50, and
the phonon for the bending vibration coincides with that
of the c.m. motion, i.e., h̄vb � h̄v0 � 2 [12,13] (all en-
ergies are given in dimensionless units of h̄v0�2). Note
that the rotational energy is proportional to m2, as is appro-
priate for 2D rotations, unlike the case of natural triatomic
molecules where the rotational energy has a term propor-
tional to l�l 1 1�, l being the quantum number associated
with the 3D angular momentum. Observe also that the
bending vibration can carry by itself an angular momen-
tum h̄M and thus the rotational angular momentum h̄m
does not necessarily coincide with the total angular mo-
mentum h̄�M 1 m�.

Further insight into the collective character of the spec-
trum displayed in Fig. 1 can be gained by examining the
CPD’s and PCF’s associated with selected states of the
rotational bands �N0, M0, n0, m� (the CPD’s are displayed
to the left of the PCF’s; notice that the PCF’s are always
circularly symmetric). The band �0, 0, 0, m�, being purely
rotational with zero phonon excitations, can be designated
as the “yrast” band, in analogy with the customary termi-
nology from the spectroscopy of rotating nuclei [14].

In Fig. 1(a), we display the CPD’s and PCF’s for three
specific states of the yrast band, i.e., the �0, 0, 0, 0�, the
�0, 0, 0, 3�, and the �0, 0, 0, 6�. The corresponding PCF’s
are all alike and centered around 2d0 � 5.2, which im-
plies that the two electrons keep apart from each other at
a distance 2d0. Because of the circular symmetry of the
PCF’s, however, one can conclude only that the two elec-
trons are moving on a thin circular shell of radius d0. To
reveal the formation of an electron molecule, one needs to
consider further the corresponding CPD’s [plotted in the
left column with v0 � �d0, 0�; the point v0 is denoted by
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a solid dot]. In fact, the CPD’s demonstrate that the two
electrons reside at all instances at diametrically opposite
points, thus forming a linear molecule XYX with two equal
bonds (X-Y and Y -X) of length d0. In addition, one can
see that all three CPD’s are practically identical, in spite of
the fact that the angular momentum changes from m � 0
(lower subplot) to m � 6 (upper subplot). This behavior,
namely, the constancy of the bond lengths irrespective of
the rotational energy, properly characterizes the electron
molecule as a rigid rotor.

Turning our attention away from the yrast band, we fo-
cus next on the bands �0, 0, 1, m� and �0, 0, 2, m�, which
are rotational bands built upon one- and two-phonon exci-
tations of the stretching vibrational mode. We have veri-
fied that the PCF’s and the CPD’s corresponding to these
bands share with the yrast band the property that they do
not change (at least for the levels displayed in Fig. 1) as
a function of m. Thus it is sufficient to study the bottom
states, i.e., those with m � 0, �0, 0, 1, 0� and �0, 0, 2, 0�,
whose corresponding PCF’s and CPD’s are displayed in
the lower and upper subplots of Fig. 1(b), respectively.
The PCF’s demonstrate the presence of internal excitations
with one and two nodes in the relative motion, but they
yield no further information regarding the electron mole-
cule. The CPD’s, however, plotted here for v0 � �d0, 0�
(the point v0 is kept the same for all subplots in Fig. 1)
immediately reveal the presence of excitations (specified
by the number of their nodes, i.e., here one or two) associ-
ated with the vibrational mode of the XYX molecule along
the interelecton axis (namely, the stretching vibration).

By examining the corresponding CPD’s, one can fur-
ther demonstrate that the two degenerate rotational bands
�0, 2, 0, m� and �1, 0, 0, m� are built upon the lowest two-
phonon excitations of the bending vibrational mode of the
linear molecule XYX. Again, we have verified that it is suf-
ficient to consider the two states at the bottom of the bands,
namely, the �1, 0, 0, 0� [see lower subplot of Fig. 1(c)] and
the �0, 2, 0, 0� [see upper subplot of Fig. 1(c)]. It can be
seen that both CPD’s describe vibrational excitations of
the XYX molecule which are perpendicular to the inter-
electron axis (namely, bending vibrations), with the one as-
sociated with the �1, 0, 0, 0� level having one node and the
one associated with the �0, 2, 0, 0� having no nodes (this is
in agreement with the fact that the normal mode associated
with the bending vibrations is related to the 2D harmonic-
oscillator describing the c.m. motion). We note that the
corresponding PCF’s [see right column in Fig. 1(c)] fail
to describe (in fact, they are completely unrelated to) the
bending vibrations; indeed they are identical to the ones
associated with the yrast band [Fig. 1(a)] which is devoid
of any vibrational excitations.

The CPD and PCF of the bottom level (i.e., with m � 0)
of the rotational band �1, 0, 1, m�, which is built upon more
complicated phonon excitations of mixed bending and
stretching character (not shown in Fig. 1), are displayed
in Fig. 1(d). It is easily seen that the CPD represents a
1728
vibrational motion of the electron molecule both along the
interelectron axis (one excited stretching-mode phonon)
and perpendicularly to this axis (two excited bending-
mode phonons). In fact, the CPD in Fig. 1(d) can be
viewed as a composite made out of two CPD’s shown
previously, one in the lower subplot of Fig. 1(b) and
the other in the lower subplot of Fig. 1(c). Returning
to Fig. 1(d), one can see again that, in contrast to the
CPD which enables detailed probing of the excitation
spectrum, the information which may be extracted from
the corresponding PCF is rather limited.

The rigidity of the electron molecule, which is so well
established for RW � 200, will naturally weaken as the
parameter RW decreases and the XYX molecule will start
exhibiting an increasing degree of “floppiness.” Such flop-
piness can be best observed in the yrast band, which, be-
ginning with the higher levels, will gradually deviate from
the spectral rule (I) discussed above, and eventually it will
become unrecognizable as a rotational band. This is il-
lustrated in the lower subplot of Fig. 2(a) which displays
the yrast band for RW � 20. Specifically, one can see that

FIG. 2. Spectra (bottom) and CPD’s (top) of the correspond-
ing ground-state levels for 2e QD’s with (a) RW � 20, and
(b) RW � 3. At each of the bottom panels, the spectrum of
the yrast band [i.e., �0, 0, 0, m�; m � 0, 1, 2, . . .] is shown on
the left, and the lowest levels of the bands �0, 0, n0, m� for
n0 � 0, 1, 2, . . . , forming a stretching vibrational spectrum (i.e.,
with constant spacing) are displayed on the right. The solid
dot in each of the CPD subplots denotes the point v0 � �d0, 0�,
where d0 is half of the electron separation found in the cor-
responding ground-state PCF’s (not shown here). Energies in
units of h̄v0�2 and distances in units of l0

p
2; e.g., for GaAs

material parameters (m� � 0.067me, k � 12.9) and RW � 3,
one has h̄v0 � 1.2 meV and l0

p
2 � 43.54 nm.
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only the lowest four levels honor approximately rule (I),
the higher ones tending to develop a constant energy spac-
ing between adjacent levels [this spacing converges slowly
to the energy spacing h̄v0 (i.e., to the value 2 in dimen-
sionless units) of the parabolic confinement]. In the case
RW � 3, one can hardly identify any rotational sequence
in the levels of the yrast band [plotted at the bottom subplot
of Fig. 2(b)]. Indeed, although the energy spacing between
the second and the third levels is larger than that between
the first and the second levels (but with a ratio substantially
different than 3�1), the spacing between higher levels ap-
proaches quickly the value 2 of the external confinement.

However, in spite of the floppiness exhibited by the
excitation spectra in Fig. 2, the (singlet) ground state of
the 2e QD for both RW � 20 and RW � 3 drastically
deviates from the 1s2 close-shell orbital configuration
expected from the independent-particle picture. Rather, as
demonstrated by the corresponding CPD’s (top subplots
in Fig. 2), in both these cases of smaller RW ’s, the ground
state is still associated with formation of rather well-
developed XYX electron molecules, but with progressively
smaller bond lengths. Finally, we remark that the stretch-
ing vibrations are more robust and tend to better preserve
a constant spacing between the bottom levels of the bands
�0, 0, n0, m� [these levels were grouped in a vibrational
band �0, 0, n, 0� and are plotted on the right-hand side of
the lower subplots in Fig. 2].

The remarkable emergence of rovibrational excitations
for parabolically confined 2e QD’s, under magnetic-field-
free conditions, provides direct evidence for the formation
of electron molecules in QD’s, with their rigidity con-
trolled by the parameter RW . Such electron molecules and
associated collective excitation spectra are general proper-
ties [15–17] of QD’s (with greater spectral complexity in
many-electron QD’s), whose observations (and manipula-
tions through controlled pinning of the collective rotations
[15(b)]) form outstanding experimental challenges.
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