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R.N. Barnett, C.L. Cleveland, H. Häkkinen, W.D. Luedtke, C. Yannouleas, and U. Landman

School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA

Received: 1 September 1998 / Received in final form: 15 December 1998

Abstract. Size-evolutions of structural and spectral properties in two types of finite systems are discussed.
First we focus on energetics and structures of gold clusters, particularly AuN in the 40.N . 200 range ex-
hibiting a discrete sequence of optimal clusters with a decahedral structural motiff, and on the electronic
structure of bare and methyl-thiol passivated Au38 clusters. Subsequently, bonding and spectra of quan-
tum dot molecules (QDM’s) are investigated, using a single-particle two-center oscillator model and the
local-spin-density (LSD) method, for a broad range of interdot distances and coupling strengths. A mo-
lecular orbital classification of the QDM states correlates between the united-dot and separated-dots limits.
LSD addition energies and spin polarization patterns for QDM’s in the entire coupling range are analyzed,
guiding the construction of a constant interaction model. A generalization of the non-interacting-electrons
Darwin–Fock model to QDM’s is presented. Wigner crystallization of the electrons leading to formation of
Wigner supermolecules is explored in both the field-free case and with a magnetic field using a spin-and-
space unrestricted Hartree–Fock method.

PACS. 36.40.Cg Electronic and magnetic properties of clusters – 73.20.Dx Electron states in low-
dimensional structures (superlattices, quantum well structures and multilayers)

1 Introduction

That the properties of materials depend on their size
and form of aggregation is commonly expected and of-
ten observed, and research aimed at understanding the
systematics and origins of such size-evolutionary patterns
is a main theme in cluster science [1]. Unlike the behav-
ior of bulk matter where properties often scale with size,
the dependence of materials properties on size when some
(or all) of the physical dimensions are reduced is often of
discrete and non-monotonic nature. Such is the case for
finite clusters (termed zero-dimensional, 0D), for ultra-
thin wires (quasi one-dimensional, 1D), and for ultra-thin
(2D) films or a thin layer of electrons, as well as 0D quan-
tum dots, confined at a heterostructural interface (e.g., in
GaAs/AlGaAs). Examples of the discrete non-monotonic
nature of the variation of the properties of such sys-
tems with their size (expressed in terms of the number of
elementary constituents, i.e., electrons and atoms) and of
size evolutionary patterns include: the occurrence of magic
number sequences in clusters, originating from electronic-
and/or atomic (packing)-shell effects [1–4]; electronic shell
effects portrayed in addition energy spectra of 2D quan-
tum dots (“artificial atoms”) [5–7]; and electronic trans-
port, energetics and structural characteristics of metallic
nanowires [8, 9], including the occurrence of cluster-derived
structures [10], conductance quantization [9] and magic
radii sequences [11].

While research pertaining to the physical properties of
naturally occurring finite materials systems (e.g., atomic
and molecular aggregates) has by now nearly matured,
forming an area commonly referred to as “cluster sci-
ence”, studies of 0D artificially fabricated structures (of-
ten called “quantum dots”) are more recent, beginning
in the early 1980’s. Common to both finite materials ag-
gregates (e.g., metal and semiconductor clusters) and ar-
tificial dots is the quantization of the electrons’ motion
due to confinement, leading to frequent reference to the
latter as “artificial atoms” [5, 6]. Note, however, the dif-
ferent relevant length and energy scales in the two sys-
tems, with the Fermi wavelength and Fermi energy in typ-
ical metal clusters being ∼ 0.5 nm and ∼ 5 eV, while the
corresponding values in semiconductor heterostructures
(e.g., GaAs/AlGaAs) are ∼ 50 nm and 10 meV, respec-
tively, necessitating (in the latter) measurements under
cryogenic conditions. Moreover, in artificial quantum dots
the charge carriers are confined through electrical gating
and/or etching techniques applied to a two-dimensional
electron gas, with the capability of varying and control-
ling the dot’s size and shape. On the other hand, the
development of methods of preparation and isolation of
materials clusters with well defined sizes and geometrical
structures is more complex, requiring understanding of the
energetics of cohesion and binding in materials clusters
(metals in particular), as well as identification and eluci-
dation of the physical principles underlying self-selection
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of “magic” sequences of sizes and structural motifs in
these systems.

In light of the above, we focus on two systems which
serve to illustrate some of the issues which are the subject
of current research in this area. First we discuss gold nano-
clusters [12] (which may serve as an example of real ma-
terials quantum dots) [13] emphasizing aspects pertaining
to their structural evolution and spectra, and subsequently
we explore the electronic spectra of artificial (created by
gate voltages) [5] quantum dots and lateral quantum dot
molecules (QDM).

2 Structural evolution of gold nanocrystals

Nanometer size metal and semiconductor particles have
been the subject of recent intensive experimental and the-
oretical research efforts aiming at their (size) controlled
preparation and characterization and at an understanding
of their properties and their size dependencies, in antici-
pation of the potential use of particles in this size range
in optoelectronics, nanodevices, catalysis, and sensor tech-
nologies. Here we focus on gold nanoclusters which, as
has been shown recently [12(a,b,d),14], can be obtained
through controlled decomposition of gold-thiol molecules
AuSR (R is an n-alkyl group) in the presence of excess
RSSR molecules, which act as a passivant as well as etch-
ing agents. Most significant is the observation that in the
size range most pertinent to this study (that is, AuN with
N . 200) well-controlled growth and subsequent separa-
tion results in essentially quantitative conversion of atomi-
cally dispersed gold into several distinct fractions of molec-
ularly defined substances (rather than a continuum of sizes
and structures) with cluster sizes corresponding to (gold)
core masses near 8 k, 14 k, 22 k, and 28 k (k = 1000 amu,
or 5.08 Au atoms; i.e., expressed in terms of the number
of atoms, these isolated fractions consist of thiol passi-
vated gold clusters with gold cores of 40, 70, 110, and 140
atoms, respectively). These observations are in agreement
with our theoretical predictions obtained through explo-
rations of the atomistic energetics and structural motifs of
AuN clusters.

In the extensive structural survey, performed through
energy-minimization of atomistic models with many-body
embedded-atom (EAM) interactions [12(a,b,d)], we in-
cluded a broad range of structural forms, guided by ac-
tual observations (mainly high-resolution electron mi-
croscopy and X-ray diffraction) as well as by past expe-
rience [15]. These studies have shown that the structural
size-evolution in gold may be described as a sequence
of transitions; (i) first from specific “molecular” struc-
tures, at the extremely small size range, with equiva-
lent cluster diameter deq < 1 nm (< 30 atoms), to (ii)
ordered “noncrystallographic” (in particular Marks deca-
hedra [15, 16], m−Dh) structures (here we use this term
for motifs which do not occur in bulk crystals, e.g., five-
fold symmetric ones) at larger sizes, and then culminating
for sizes with deq > 2 nm (250 atoms), in (iii) crystal-
lites of bulk lattice structure (fcc) with specific faceted

Fig. 1. Energies of structurally optimized AuN (N ≤ 520)

clusters plotted as (E− εBN)/N2/3 versus N (on an N1/3

scale), where εB = 3.93 eV is the cohesive energy of an atom in
bulk Au. Various structural motifs are denoted as: Oh (open
diamond connected by long-dashed line); Ih (open diamond
connected by dotted line); TO (solid diamonds); t-TO (open
diamonds); TO+ (+); t−TO+ (open squares); i−Dh (open
pentagons); and m−Dh (solid stars), with the filled stars denot-
ing m−Dh clusters in the enhanced stability region. The 75, 101
and 146 atom m−Dh clusters corresponding to the stable struc-
tural sequence are denoted by encircled solid stars, and their
structures, as well as that of Au38, are shown. The (m, n, p)
indices of m−Dh are shown in the inset, for a (5, 5, 2) cluster.

morphologies (i.e., truncated octahedra, TO, variants
thereof, TO+, and their twins, t−TO). Since the first
regime has been commonly discussed in the cluster lit-
erature [17] and the “convergence” to the bulk structure
for large clusters (iii) was described by us in some de-
tail elsewhere [12(a,b)], we focus here on the intermediate
regime (ii) which is also the least “intuitive” and harder to
resolve [12(d)].

Because of their discrete nature, atomistic models of
various structural motifs and morphologies correspond to
specific size (number-of-atoms) sequences. For example,
the number of atoms in m-Dh decahedral crystallites
can be expressed as N = 1/6{30p3−135p2 + 207p−102 +
[5m3 + (30p− 45)m2 + (60(p2 − 3p) + 136)m] + n[15m2 +
(60p−75)m+3(10p2−30p)+66]}−1, withm, n, and p as
defined in Fig. 1 (bottom left inset). Examination of the
energetics of the various structural motifs (Fig. 1) leads
to identification of the energy-optimal pattern (“magic
number” sequence). This procedure predicts that m−Dh
clusters and fcc TO clusters (and their TO+ and twinned
variants) form the dominant size-sequences for AuN . Fur-
thermore, except in the very small size-range, the icosahe-
dral (Ih) motif is found to be energetically non-competitive
(due to accumulated icosahedral strain which grows with
volume [15]), fcc clusters with octahedral (Oh) and cubeoc-
tahedral (CO) morphologies are also noncompetitive with
energies of the latter lying above the scale of the figure,
and the competition between the fcc-TO motif and the
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Fig. 2. Density of (Kohn–Sham) states (DOS) for optimized
(a) Au38 cluster, and (b) Au38(SCH3)24 cluster [structures
shown in insets, with only the gold and sulfur (darker spheres)
atoms and one of the CH3 groups shown in (b)]. The atomic
valence eigenvalues of Au are marked with filled dots in (a)
and those for SCH3 in (b). The dashed vertical lines denote the
Fermi energy. The width of the energy bins is 0.2 eV.

Dh one maintains throughout, with the Dh advantage
somewhat diminishing for larger clusters (due to accu-
mulated volume dependent decahedral strain, which is
smaller than the icosahedral one [15]). In the size range
of interest to us here (50 < N . 200), the lowest-energy
cluster sequence is made of Au75, Au101 and Au146 all
belonging to the m−Dh motif, with the (m, n, p) indices
as indicated in Fig. 1 (see circled stars), and in very
close correspondence with the mass-spectrometrically esti-
mated core-masses of the fractionated samples used in the
XRD measurements.

Furthermore, analyses of X-ray diffraction (XRD) in-
tensity patterns measured for powder samples of each of
the well separated (14 k, 22 k, and 28 k) fractions using a
“first principles” mode of analysis [12(b,d),18] have shown
that the above predicted sequence of clusters yields the
best agreement with the data, to the exclusion of alterna-
tive ones [in each case, the theoretical result is not changed
when the number of atoms is reduced by two, correspond-
ing to removal of the top and bottom vertex atoms of the
m−Dh (see Fig. 1)]

Consequently, we conclude from the above analysis that
for gold the 1 nm. deq . 2 nm size-range is punctuated by
the formation of a discrete sequence of primarily three clus-
ter sizes with m-Dh structues, thus providing an energetic
and structural explanation for the observed preferential
formation of this discrete sequence of stable gold nanocrys-
tallites in this size range.

Having discussed above structural issues pertaining to
gold clusters, we turn now to examination of their elec-
tronic properties with reference to charging characteristics,
in light of their use as quantum dots and recent electro-
chemical charging experiments [13]. In particular, we focus
on the smallest cluster shown in Fig. 1, that is Au38 (corres-
ponding to the ∼ 8000 amu experimentally separated gold
core-mass fraction [14(b)]). The optimal structure for this
cluster calculated with the use of the EAM potentials is
fcc with a TO morphology (Fig. 1). The electronic dens-
ity of states (DOS) for the Au38 cluster, calculated via the
local density functional (LDA) theory, with the use of non-
local norm-conserving relativistic pseudopotentials [19, 20]
(s, p, and d, with s taken as local and a plane wave ki-
netic energy cutoff of 62 Ry) is shown in Fig. 2(a), along
with the structure of the cluster which has been further re-
laxed using the Hellmann–Feynman forces via the method
described in [21]. The DOS of Au38 exhibits a three-fold
degenerate HOMO state (6 states including spin, with 2
holes) due to the octahedral symmetry. Furthermore, there
is a set of 18 empty states (including spin) just above the
Fermi level, and gaps of 1.3 eV and 1.1 eV below and above
the Fermi level, respectively. The orbital characters of the
HOMO show significant s, p, and d hybridization. We note
here that the total width of the valence band (9 eV) already
corresponds closely to that of bulk fcc Au [22], although the
finite size of the cluster leads to opening of a gap below the
Fermi energy (bulk Au has a very low DOS in that region).

Passivation of the Au38 cluster was simulated by sym-
metrically positioning 24 methylthiol (SCH3) molecules on
the (111) facets close to the (100) edges; the choice of thiol-
molecules to gold-atoms ratio (24/38) was guided by re-
sults from X-ray photoelectron spectroscopy measured for
a separated fraction of gold-hexamethylthiol with a gold
core-mass of ∼ 8000 amu [23]. The optimized LDA struc-
ture is shown in Fig. 2(b) together with the corresponding
DOS. In the relaxed structure, the average interatomic dis-
tances in the gold crystallite are somewhat larger (2.95 Å−
2.97 Å) in the passivated cluster compared to 2.74 Å−
2.78 Å in the bare one, and the 8 atoms in the middle of the
(111) facets are relaxed inwards with respect to the facet
edges.

The most prominent features in the DOS of the passi-
vated Au38(SCH)24 cluster are: (i) the two narrow “bands”
at about −18.5 and −15.2 eV, formed from the SCH3 mo-
lecular orbitals; (ii) the gold states are shifted up by 1.8 eV;
(iii) the filling of the gap below the Fermi energy, and
(iv) the significant reduction of electron holes at, and just
above, the Fermi energy (the number of empty states in-
cluding spin reduces to 6). The gap above the Fermi level is
0.9 eV. There is still a three-fold degenerate HOMO state,
and a spatial analysis of it’s orbital charge density reveals
that it is concentrated around the outermost 24 gold atoms
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and the surrounding 24 sulfur atoms, having d-character
on the gold and p-character on the sulfurs. Furthermore,
we find that the passivation of the cluster is accompanied
by charge transfer from the Au38 core crystallite to the pas-
sivating molecules (total amount of close to 2 electrons).

In light of recent solution-phase electrochemical en-
semble Coulomb staircase measurements on butane-thiol
passivated Au38 clusters [13], we evaluated the addition
energy (∆ε, see section III) which may be expressed as
∆ε=E(Ne +1)−2E(Ne)+E(Ne−1) = δε+e2/C, where
Ne is the number of electrons and δε= ε(Ne + 1)− ε(Ne)
is the change in the single-electron energy of the highest
occupied level, and the charging energy e2/C defines the
effective capacitance. Calculations for Ne =N0

e ±1 (where
Ne = N0

e is the number of electrons in the neutral passi-
vated cluster), and noting that when changing the charge
on the cluster from −2 to +2 the added electron fills the
holes in the degenerate set of levels (i.e., δε≈ 0 and thus ∆ε
yields the charging energy), resulted in an effective capaci-
tance of ∼ 0.085 aF, which compares well with the experi-
mentally estimated value (0.13 aF); the difference between
the two values may be accounted for by the longer chain
thiols used in the experiments and the local polarization
effects around the cluster in solution which would tend to
increase the effective capacitance. Further details pertain-
ing to these studies may be found elsewhere [24].

3 Quantum dots and dot molecules

While in the previous section we focussed on certain ener-
getic and structural issues pertaining to natural materials’
clusters, we turn now to a discussion of (artificial) quantum
dots (QD’s) created in semiconductor heterostructures,
containing a (small) adjustable number of electrons (con-
trolled by gate voltages). Recent measurements on such
systems revealed a remarkable similarity between their
spectra (e.g., shell structure) and that of naturally oc-
curring zero-dimensional fermionic systems (e.g., atoms,
nuclei, and clusters) suggesting the naming of these solid-
state structures as “artificial atoms” [5, 6], with potential
utilization in electronics and computer technologies. More-
over, most recently several investigations have been made
toward extending such an analogy to “artificial quantum
dot molecules” (QDM’s) [5, 25] and artificial “quantum
dot clusters”, as well as, “artificial crystals” comprised of
coupled quantum dots.

Theoretical investigations of the electronic structure of
single QD’s are rather abundant including: non-interacting
single-electron (SE) treatments (Darwin–Fock model [26]
for two-dimensional (2D) harmonically confined elec-
trons in the presence of a magnetic field); self-consistent
methods, i.e., Hartree, restricted and unrestricted Hartree–
Fock [27] (HF and UHF, respectively), spin-and-space
unrestricted Hartree–Fock (sS-UHF) [28], and local dens-
ity functional methods [29] (LDA, LSD, and current-LSD);
and exact diagonalization studies [27(a), 30] (limited to
a small number of electrons, typically less than 10). On
the other hand, systematic understanding of the electronic

spectra of lateral QDM’s [28] (with and without exter-
nal magnetic fields), bridging the weakly-coupled dots
(tunnel-split) regime and the strong-coupling (covalent)
one, as well as analogies between QDM’s and their natu-
ral counterpart as a function of interdot distance, coupling
strength, and magnetic field, is largely lacking.

Following the course of development for single QD’s,
first insights into the energetics and spectra of lateral
QDM’s may be gained from single-electron (SE) energy
levels calculated for harmonic confinements using a semi-
analytic two-center oscillator model (TCOM). Indeed, SE
spectra, particularly in conjunction with a constant inter-
action model (CIM) generalized to include electron spin
effects (Hund’s rule), have proven most useful in the in-
terpretation of transport measurements [addition energies
(AE)] on single QDs [5, 7]. In the absence of such de-
tailed data for QDM (particularly in the strong interdot
coupling regime), we use first, for magnetic-field-free sit-
uations, our LSD calculations, where electron-electron in-
teractions and spin effects are treated self-consistently, as
data for calibration of a SE-CIM spectrum and for as-
sessment of the role of electronic screening on the (ex-
ternal) harmonic confinement potential (see, however, our
discussion toward the end of this section, pertaining to
self-consistent treatments of interacting electrons in QD’s
and QDM’s).

In the TCOM, the single-particle levels associated with
the artificial molecule, at both the strong (close to the
united quantum dots, UQD) and weak coupling (close to
the separated quantum dots, SQD) regimes, are deter-
mined by the single-particle hamiltonian [31]

H = T+
1

2
m∗ω2

xix
2 +

1

2
m∗ω2

yiy
′2
i

+Vneck(y) +hi+
g∗µB

h̄
B ·S , (1)

where y′i = y−yi with i = 1 for y < 0 (left) and i= 2 for
y > 0 (right), and the hi’s control the relative well-depth,
thus allowing studies of hetero-QDM’s (in the following, we
limit ourselves to cases with h1 = h2 = 0). x denotes the co-
ordinate perpendicular to the interdot axis (y). T = (p−
eA/c)2/2m∗, with A = 0.5(−By,Bx, 0), and the last term
in (1) is the Zeeman interaction with g∗ being the effect-
ive g factor and µB the Bohr magneton. Here we limit
ourselves to systems with h̄ωx1 = h̄ωx2 = h̄ωx. The most
general shapes described by H are two semiellipses con-
nected by a smooth neck [Vneck(y)]. y1 < 0 and y2 > 0 are
the centers of these semiellipses, d= y2−y1 is the interdot
distance, and m∗ is the effective electron mass.

For the smooth neck, we use Vneck(y) = 1
2m
∗ω2

yi[ciy
′3
i +

diy
′4
i ]θ(|y|− |yi|), where θ(u) = 0 for u > 0 and θ(u) = 1

for u < 0. The four constants ci and di can be expressed
via two parameters, as follows: (−1)ici = (2−4εbi )/yi and
di = (1− 3εbi )/y

2
i , where the barrier-control parameters

εbi = (Vb−hi)/V0i are related to the actual (controlable)
height of the barrier (Vb) between the two QD’s, and
V0i =m∗ω2

yiy
2
i /2 (for h1 = h2, V01 = V02 = V0).

The single-particle levels of H, including an external
perpendicular magnetic field B, are obtained by numerical
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Fig. 3. SE spectra of QDM’s plotted versus the distance d
between two (identical) coupled QD’s with TCOM confine-
ment h̄ωy1 = h̄ωy2 = h̄ωx = 3 meV and h1 = h2 = 0. For all d’s

the barrier control parameters were taken as εb1 = εb2 = 0.5,
i.e., the barrier height (depicted by the dashed line) varies
as Vb(d) = V0(d)/2. MO’s correlating the united (Vb = 0) and
separated-dots limits are denoted along with the corresponding
(on the right) SQD states. Wavefunction cuts at x= 0 along the
y-axis at several distances d (see arrows) corresponding to the
lowest bonding and antibonding eigenvalues (solid and dashed
lines) are displayed at the top. Energies in meV and distances
in nm.

diagonalization in a (variable-with-separation) basis con-
sisting of the eigenstates of the auxiliary hamiltonian:

H0 =
p2

2m∗
+

1

2
m∗ω2

xx
2 +

1

2
m∗ω2

yiy
′2
i +hi . (2)

This eigenvalue problem is separable in x and y, i.e., the
wave functions are written as Φmν(x, y) = Xm(x)Yν(y).
The solutions for Xm(x) are those of a one-dimensional
oscillator, and for Yν(y) they can be expressed through
the parabolic cylinder functions [31] U [αi, (−1)iξi], where
ξi = y′i

√
2m∗ωyi/h̄, αi = (−Ey +hi)/(h̄ωyi), and Ey =

(ν+ 0.5)h̄ωy1 +h1 denotes the y-eigenvalues. The match-
ing conditions at y = 0 for the left and right domains yield
the y-eigenvalues and the eigenfunctions Yν(y) (m is inte-
ger and ν is in general real).

The TCOM single-particle spectrum for a QDM made
of two coupled (identical) QDs (with h̄ωx = h̄ωy1 = h̄ωy2 =
3 meV), plotted versus the distance, d, between the centers
of the two dots, is given in Fig. 3. In these calculations the
height of the barrier between the dots varies as a function
of d, thus simulating reduced coupling between them as
they are separated; we take the barrier control parameter

Fig. 4. (a) SE spectra of a QDM at d = 70 nm plotted versus
the barrier height Vb. (b) CIM for the electrochemical poten-
tial in the region marked in (a); the value for N = 4 is taken
as 0. With U = 2.85 meV and ∆ = 0.35 meV for the “charging”
and Hund’s exchange energies, and with the energy spacings
δ1 = 2.9 meV, δ′1 = 0.6 meV, and δ2 = 2.1 meV taken from the
SE spectrum in (a), the CIM AE spectrum (given by the sepa-
rations between the lines) and the associated spin polarization
pattern (N ↑ −N ↓, see boxes) agree rather well with the LSD
results [see the AE spectrum (4 ≤N ≤ 12) for the QDM with
V bare

b = 10 meV in Fig. 3].

εb1 = εb2 = 0.5. In all our calculations, we used GaAs values,
m∗ = 0.067me and a dielectric constant κ= 12.9; the scaled
units which we use are 2 Ry∗ = m∗e4/h̄2κ2 = 10.96 meV
and a∗B = h̄2κ/m∗e2 = 10.188 nm. For the SQD (large d)
and the UQD (d = 0) limits the spectra are the same, cor-
responding to that of a 2D harmonic oscillator (two of
them for the SQD) with a level degeneracy of 1, 2, 3, . . . .
In analogy with real molecules, the states in the interme-
diate region (d > 0) may be interpreted as molecular or-
bitals (MO’s) made of linear superpositions of the states
of the two dots comprising the QDM. This description is
intuitively appealing, though it is more appropriate for
the weaker coupling regime (large d); nevertheless we con-
tinue to use it for the whole range of coupling strength be-
tween the dots, including the strong coupling regime where
reference to the states of the individual dots is only ap-
proximate. Thus, for example, as the two dots approach
each other, the lowest levels (nx, ny) with nx = ny = 0
on the two dots may combine symmetrically (“bonding”)
or antisymmetrically (“antibonding”) to form [0,0;0] and
[0,0;1] MOs, with the third index denoting the total num-
ber of nodes of the MO along the interdot axis (y), that
is, 2ny + I, I = 0 or 1; for symmetric combinations (I = 0)
this index is even and for antisymmetric ones (I = 1) it is
odd. Between the SQD and UQD limits the degeneracies
of the individual dots’ states are lifted, and in correlating
these two limits the number of y-nodes is conserved; for
example the [0,0;1] MO converts in the UD limit into the
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Fig. 5. LSD addition energy spectra for a single QD (with bare
harmonic confinement parameters h̄ωx = h̄ωy = 5 meV, h̄ωz =
45 meV) and for three QDM’s at d= 70 nm with the same bare
confinement parameters as above and h̄ωy1 = h̄ωy2 = 5 meV,

for differing interdot barriers V bare
b = 0, 10, and 30 meV. The

spin polarizations N ↑ −N ↓ are denoted on the curves. In the
QDM’s with V bare

b = 0, 10 and 30 meV, for N = 2, the singlet
states (0) correspond to electrons localized in the left and right
wells of the QDM’s (see also [28]). For both the circular sin-
gle QD and the QDM’s (particularly with V bare

b = 30 meV), we
find several deviations from Hund’s rule. For example, for the
single QD, the ground-state with N = 16 exhibits no spin po-
larization and corresponds to a spin-density wave [29(c)]. Left
inset: the bare (V bare) and screened (V eff, given for both up
and down electrons) potentials for the QDM (d = 70 nm and
V bare

b = 10 meV) with N = 8. Right inset: KS-LSD eigenvalues
for N = 6, 7, and 8 for the QDM (d= 70 nm, V bare

b = 10 meV);
for each N , both the up and down spin manifolds are shown.

(0,1) state of a single QD, the [0,1;2] MO into the (0,2)
state, and the [1,0;1] MO into the (1,1) state (see Fig. 3).
Note that MOs of different symmetries may cross while
they do not if they are of the same symmetry. The evo-
lution of the d = 70 nm QDM spectrum as a function of
Vb displayed in Fig. 4 (a), shows that the level spectrum
with Vb = 0, corresponding to a large non-circular dot, con-
verges as the coupling is decreased (i.e., increasing Vb) into
that of two separated dots; note however that even for large
Vb the 2D harmonic oscillator spectrum is not recovered
because of the unharmonicity introduced by the interdot
barrier.

Effects due to electron-electron interactions (includ-
ing exchange-correlation) are revealed via our LSD cal-
culations. The Kohn–Sham (KS)-LSD equations were
solved [32] for 3D external (bare) harmonic confining po-

tentials, with the frequencies h̄ωx = h̄ωy1 = h̄ωy2 = 5 meV
(in the plane of the dots) and h̄ωz = 45 meV in the direc-
tion normal to the xy plane. The choice of these frequencies
for the bare confinement was guided by previous studies
[29(a,b)] which showed that one of the effects of interelec-
tron interactions is to screen the bare-confinement poten-
tials, and that the value of h̄ωz (45 meV) is sufficiently large
to assure that for fillings of a single QD with at least up to
20 electrons they occupy only the lowest subband corres-
ponding to the perpendicular (z) confinement [29(b)].

Significant screening of the bare confining potentials
and a significant reduction of the bare barrier height
(V bare

b ) are observed for the QDM. This effect is partic-
ularly strong for dots with N > 4 (see inset in Fig. 5 for
V bare

b = 10 meV, N = 8); using for the d = 70 nm QDM
a bare barrier height of 10 meV (with this value chosen
in order to obtain inter-level spacings of 3–4 meV in the
QDM LSD calculations) yields self-consistent effective bar-
riers (V eff

b ) of 11.68 meV, 10.26 meV, 8.06 meV, 6.16 meV,
5.17 meV and 4.77 meV for N = 1− 6, respectively, and
V eff

b ∼ 4.5 meV for N > 6.
Results of our calculations for the addition energies

∆ε= µ(N +1)−µ(N), where µ(N) is the electro-chemical
potential [that is the total energy difference µ(N) =
ET(N)−ET(N −1)], for a single QD, and for the QDM
at d = 70 nm with V bare

b = 0, 10, and 30 meV, are shown
in Fig. 5. In all cases clear signatures of electronic shell ef-
fects (termed also “magic numbers” in nuclear and atomic
cluster physics) are evident [33] (see sequence of peaks
in Fig. 5), with certain differences in the ∆ε patterns be-
tween the various cases (note e.g., peaks at N = 7−8 and
N = 15 for the V bare

b = 10 meV QDM, and the odd-even
alternation for V bare

b = 0). Particularly noted are differ-
ences in the spin-polarizations (∆s=N↑−N↓, denoted
on the curves in Fig. 5), which reflect the influence of ex-
change interactions (Hund’s rule). These trends in the
QDM spectrum can be understood from inspection of the
corresponding KS-LSD level schemes (see inset in Fig. 5)
and the SE spectra (Fig. 3). For example for the QDM
(d = 70 nm, V bare

b = 10 meV) with N = 1− 4, V eff
b varies

between 11.68 meV and 6.16 meV. For this range of bar-
rier heights the bonding and antibonding MO made of
the (0,0) QD states are nearly degenerate and well sep-
arated from the other MOs (also see Fig. 4), and thus
Hund’s rule for N = 1− 4 gives, respectively, the follow-
ing filling pattern: [0,0;0]1, [0,0;0]1[0,0;1]1, [0,0;0]2[0,0;1],
and [0,0;0]2[0,0;1]2 (with the upper index outside the
bracket denoting the occupancy). On the other hand for
N > 4 V eff

b is smaller (varying from 5.17 for N = 6 to
4.01 meV for N = 10) and in this range of barrier heights
the higher set of MOs [made out of the (1,0) and (0,1)
QD states] are close to each other (with the [0,1;3] some-
what split-off, see Figs. 3 and 5, which correlates with
the local maximum in ∆ε for N = 7, see Fig. 5) and they
are separated from the higher MOs. Again, Hund’s rule
yields the filling pattern (“4” denotes the N = 4 “core”):
“4”[1,0;0]1, “4”[1,0;0]1[0,1;2]1, “4”[1,0;0]1[0,1;2]1[1,0;1]1,
“4”[1,0;0]1[0,1;2]1[1,0;1]1[0,1;2]1, and “4”[1,0;0]2[0,1;2]1

[1,0;1]1[0,1;3]1 for N = 5−9, with ∆s = 1, 2, 3, 4, 3,
respectively.
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Fig. 6. Adiition energy spectra for a “clean” QD (bottom)
and for two “dirty” dots with a hydrogenic impurity located
at the center of the dot (CI-QD) and off-center (OCI-CD) at
a distance of 17.5 a∗b from the middle of the dot. The num-
bers above the points on the curves give the spin polarization
∆s=N ↑ −N ↓. In the right inset, the bottom solid line corres-
ponds to the bare potential with the impurity (V bare

i ), the long
dashed line gives the bare harmonic confinement, the upper
solid line corresponds to the LSD calculated effective potential
(V eff), and the dotted line gives the electronic density (ρ) along
a line passing through the middle of the CI-QD with N = 12
electrons. The integrated [n(R)] and differential [n′(R)] elec-
tronic densities for the CI-QD with N = 12 are displayed in the
left inset.

Aided by the LSD calculations we construct a CIM
[see e.g., Fig. 4(b)] corresponding to the SE spectrum
shown in Fig. 4(a). Such SE-CIM diagrams (calibrated by
corresponding LSD calculations) constructed for various
QDM configurations, provide an adequate description of
the spectral characteristics of QDM’s [e.g., AE spectra,
compare Fig. 4(b) with the corresponding LSD result for
V bare

b = 10 meV shown in Fig. 5], and they may be used to
guide experimental observations.

Next, we discuss briefly a generalization of the con-
cept of quantum dots to include impurities (“dirty artificial
atoms”). Addition energy spectra for the “clean” QD and
for “dirty” QD’s, with a hydrogenic impurity located either
at the center of the dot (CI-QD) and off-center (OCI-QD)
at a distance of 17.5 a∗B from the middle, are shown in
Fig. 6; in these LSD calculations we used the same bare
harmonic confining frequencies as above, with the add-
ition of the hydrogenic impurity described via a local pseu-
dopotential [19] of core-radius 0.95 a∗B (yielding for the
ionization energy of the isolated impurity a value of 0.96
Ry∗). The effect of the impurity on the effective poten-
tial for a 12-electron CI-QD is shown in the right inset
to Fig. 6 along with the electron density on a line pass-
ing through the center of the dot. In the left inset to
Fig. 6, we display for the N = 12 CI-QD the integrated
electron density n(R) = 4π

∫∞
−∞ dz

∫ R
0
r2ρ(r, z)dr, where r

is in the plane of the dot, and the differential electron dens-
ity n′(R) = 4πR2

∫∞
−∞ ρ(R, z)dz, showing that the (posi-

Fig. 7. SE spectrum of the d = 70 nm (h̄ωy1 = h̄ωy2 = h̄ωx =
3 meV, Vb = 2.43 meV, ∆h = 0) QDM versus B (in T). The
h̄Ωc/2 and 3h̄Ωc/2 Landau levels are given by the dashed
lines. The electron densities (shown as insets) for the lowest
bonding (bottom) and antibonding (top) states at B = 0 and
B = 4 T illustrate the contraction of the orbitals caused by the
magnetic field, which underlines the field-induced decoupling of
the dots (“QDM dissociation”). Contour values are in units of
3.571×10−4 nm−2.

tively charged) hydrogenic impurity is (over) screened by
two electrons which “localize” at the central region (R .
15 nm) about the impurity forming an “H−-defect”.

Inspection of the AE spectra in Fig. 6 reveals clear sig-
natures of shell closures at N = 2, 6, 12, and 20, which are
the expected ones for harmonically confined free-electrons,
indicating that the shell-structure maintains in the pres-
ence of electron-electron interactions and that it is rather
robust to the effect of a hydrogenic impurity. We note,
however, certain differences between the AE spectra of the
various dots, including obliteration of the peak at N = 2
for the OCI-QD and the relatively less pronounced peak at
N = 6 for the CI-QD, and significant variations in the spin-
polarization patterns influenced by the hydrogenic impu-
rity and its location in the dot.

To explore the poperties of QDM’s in a magnetic field,
we start first with a simple generalization of the non-
interacting electrons’s Darwin–Fock model [26]. The SE
spectra for the QDM (d= 70 nm, Vb = 2.43 meV) in a mag-
netic field (B) are shown in Fig. 7 (here we neglect the
Zeeman interaction which is small for our range ofB values
with g∗ =−0.44 for GaAs). The main features are: (i) the
multiple crossings (and avoided crossings) as B increases,
(ii) the decrease of the energy gap between levels, occur-
ring in pairs (such as the lowest bonding-antibonding pair),
portraying an effective reduced coupling between the QD’s
comprising the QDM as B increases, (see the electron den-
sities for B = 0 and B = 4 T in Fig. 7). and (iii) the “con-
densation” of the spectrum into the sequence of Landau
levels (NL+ 1/2)h̄Ωc, NL = 0, 1, 2, ... , similar to the be-
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Fig. 8. sS-UHF results for a 12e QDM (d = 70 nm, Vb =
10 meV, h̄ω0 = 5 meV), without [in (a)] and with a magnetic
field B = 3 T [in (b)]. For both cases, the bottom and mid-
dle panels correspond to the up-spin and down-spin electron
distributions, respectively, and the top ones correspond to
the difference between them (spin density). Lengths (x and y
axes) in nm, density distributions (vertical axes) in 10−3 nm−2.
x-axes, y-axes, and vertical-axes scales in (b) are the same as
in (a).

havior of the SE Darwin–Fock spectrum for harmonically
confined electrons in a circular QD [5] (note however that
the geometry of the QDM is non-circular and deviates from
a simple harmonic confinement).

To investigate the spectra of QDM’s in a magnetic field,
beyond the SE treatment, we used the spin-and-Space
UHF (sS-UHF) approach [28, 34, 35]. Here the starting
many-body hamiltonian is given by summing the single-
paticle hamiltonian given in (1) over all N electrons and
adding the term

∑
n<m e

2/κ|rn− rm|, where κ is the di-
electric constant (for GaAs, κ = 12.9), corresponding to
the interelectron Coulomb repulsion (see [28]). Before ex-
amining the magnetic-field effects on the QDM’s, we recal-
culated their spectra, as well as those of single QD’s, using
the sS-UHF method, for the field-free case. On first sight,
the AE’s from the sS-UHF show [28] similar patterns as
a function of the number of electrons (N) as those calcu-
lated by us for the same single QD’s and QDM’s using the
LSD method (see Fig. 5). However, the spin polarizations

calculated through the two methods are generally different.
Furthermore, inspection of the spatial distributions of the
electronic densities reveals that for the parameters used
in this study the sS-UHF yielded in most cases solutions
exhibiting symmetry breaking (SB) [36], i.e., solutions of
lower symmetry than the symmetry of the confining poten-
tials of the single QD’s and QDM’s.

An example of such broken symmetry is shown in
Fig. 8(a) for the d = 70 nm, Vb = 10 meV QDM (GaAs)
with h̄ωx = h̄ωy1 = h̄ωy2 = h̄ω0 = 5 meV and N = 12. As
evident, the electronic distributions exhibit “Wigner crys-
tallization” (WC) [37] portrayed by 6 well-resolved humps
(3 in each well) for both the up (↑) and down (↓) spins,
and by 6 humps and 6 troughs for the spin density (↑ − ↓);
note that the density peaks for the two spin directions do
not overlap. Formation of such “Wigner supermolecules”
(WSM’s) in QDM’s is analogous to that of “Wigner
molecules” (WM’s) [38] in single QD’s. The mean distance
between neighboring density maxima inside each of the
coupled dots equals r̄ ≈ 20 nm, i.e., roughly twice larger
than the effective Bohr radius a∗B(κ= 12.9) = 10.188 nm.
Inspection of the wave functions shows that this case
corresponds to an intermediate electron-density regime,
where spatial localization of individual electrons emerges,
but with finite-amplitude contributions of each of the wave
functions to several of the density peaks (i.e., “weak” WM,
see below); full localization into a “classical” WC requires
even lower densities.

The finding of such WC is a consequence of the
relatively high ratio RW ≡Q/h̄ω0 (1.48 for the case in
Fig. 8) between the Coulomb interaction strength Q and
the parabolic confinement h̄ω0. The Coulomb interaction
strength is estimated by Q= e2/κl0, where κ is the dielec-
tric constant and l0 = (h̄/m∗ω0)1/2 is the spatial extension
of the lowest state’s wave function in a parabolic confine-
ment (here ω0 denotes ωx used in the above). A weakening
of Q (originating from the finite thickness of the artificial
QD’s, which may be simulated by increasing κ), or a de-
crease of h̄ω0 with increasingN (originating from Coulomb
screening by the leads and gates), will affect the value
of RW . For smaller values of RW , normal (non-crystalline)
electronic spatial distributions may be recovered, while for
larger values enhanced crystallization (full electron local-
ization) toward the classical limit may be expected [28].
The failure of LSD calculations to yield such WC (both
for single QD’s and for QDM’s [39]) is related to the
self-interaction inherent to the method, i.e., while certain
symmetry breaking can be obtained via LSD (e.g., “spin-
density waves” [29(c)]), spatial localization of the electrons
cannot be found and will require self-interaction correc-
tions (SIC-LSD) [40].

Under the influence of an applied magnetic field, the
electronic orbitals in the QDM are compressed, and the
consequent increase in Coulomb repulsion drives promo-
tion of electrons to higher orbitals of larger spatial exten-
sion. Such a process is accompanied by an increase in the
spin polarization (spin flip) resulting in optimization of
exchange-energy gain (such a process is analogous to that
found in single QD’s leading at high fields to a maximum
density droplet (MDD) [6]). An example of this scenario
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is shown for the QDM in Fig. 8(b) for B = 3 T (the ef-
fective g∗ factor was taken as g∗ =−0.44). Here we ob-
serve that two of the down-spin electrons flipped, resulting
in 8 up-spin and 4 down-spin electrons. We also observe
a reduced Wigner crystallinity (partial “melting”) of the
WSM, portrayed by the less pronounced peaks in the elec-
tron densities [compare Fig. 8(b) with Fig. 8(a)]. Analysis
of the electron densities shows enhancement in the inter-
dot region of the QDM. Further details pertaining to the
sS-UHF and the spontaneous symmetry breaking in single
and molecular QD’s can be found elsewhere [28]. Further
studies of such broken symmetries may include: mapping of
“phase-boundaries” through variations of materials depen-
dent (e.g., dielectric constant) and externally controlled
(e.g., gate voltages, interdot distances and barrier heights,
and magnetic fields) parameters, and probing of excita-
tions and spin polarizations [41].
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34. Y.G. Smeyers: in R. Carbó, M. Klobukowski (Eds.): Self-
Consistent Field: Theory and Applications (Elsevier, Am-
sterdam 1990) p. 80

35. Our sS-UHF employs N (mean-field) effective potentials
and differs from the usual (restricted) HF in two ways:
(i) it employs different orbitals for different spin directions
(DODS), and (ii) it relaxes the requirement that the elec-



104 The European Physical Journal D

tron wave functions be constrained by the symmetry of
the external confining field. Earlier HF studies of single
QD’s did not incorporate the spin-and-Space unrestric-
tions simultaneously. For example, Wigner molecules (at
B = 0 and/or finite B) were not found by D. Pfannkuche
et al.: [Phys. Rev. B 47, 2244 (1993)] and M. Fujito
et al.: [Phys. Rev. B 53, 9952 (1996)]. Indeed, using
symmetry-restricted variational wave functions, we have
reproduced the results of these studies, while with the
sS-UHF, with no such restrictions, broken-symmetry solu-
tions with lower energy were obtained as described here.
We further note here that employing a Space-UHF, but
only for fully polarized single QD’s (i.e., under high mag-
netic fields where the spin unrestriction is not at play),
Wigner crystallization has been investigated [38(b)]. LSD
calculations [29, 39] where there are only two effective po-
tentials (associated with the two spin directions) cannot
yield in general crystallized solutions (except for N = 2
in a deformed single QD and in a QDM [39]). While
certain symmetry breaking can be obtained with LSD
(e.g., pure spin density waves [29(c)]), spatial localiza-
tion may require self-interaction corrections (SIC-LSD,
see [40])

36. (a) J. Paldus in [34], p. 1; For a general discussion of SB and
the associated emergence of highly degenerate manifolds
of excitations (Goldstone modes) see: (b) P.W. Anderson,

Basic Notions of Condensed Matter Physics (Benjamin,
Menlo Park, CA 1984), and (c) P. Ring, P. Schuck: The
Nuclear Many-Body Problem (Springer, New York 1980),
in the context of SB in finite systems and restoration of
broken symmetries (Ch. 11); (d) D.J. Thouless: Nucl. Phys.
21, 225 (1960)

37. E. Wigner: Phys. Rev. 46, 1002 (1934)
38. (a) P.A. Maksym: Physica B 184, 385 (1993); (b) H.-M.

Müller, S.E. Koonin: Phys. Rev. B 54, 14532 (1996); (c)
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