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A theoretical analysis of the Peltier effect in two-dimensional quantum
point contacts, in field-free conditions and under the influence of applied
magnetic fields, is presented. It is shown that in the nonlinear regime (finite
applied voltage) new peaks in the Peltier coefficient appear leading to
violation of Onsager’s relation. Oscillations of the Peltier coefficient in a
magnetic field are demonstrated.q 1998 Published by Elsevier Science
Ltd. All rights reserved
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Ballistic constrictions (point contacts) connecting bulk
reservoirs exhibit new properties when their sizes
become comparable to the Fermi wavelength of the
electrons. In particular, electronic transport in such
systems is of quantum (discrete) character, portrayed
by conductance quantization (varying in steps of 2e2/h,
or multiples of the conductance quantum, as a function
of the gate voltage, or equivalently the width of the
constriction) [1–3] and by the appearance of a peak-like
(oscillating) structure of the thermopower coefficient
[4–6]. In this paper we study the Peltier effect in such
systems, focusing mainly on its nonlinear (finite
applied voltage) aspects and its behavior in a magnetic
field. We demonstrate the appearance of new peaks in
the Peltier coefficient in the nonlinear voltage regime,
resulting in violation of Onsager’s principle of the
symmetry of kinetic coefficients, as well as demonstrate
the influence of applied magnetic fields on the Peltier
effect.

We consider ballistic electric and thermal transport
through a two-dimensional (2D) quantum point contact
connecting two bulk reservoirs. A bias voltageV is
applied between the reservoirs which are kept at different
temperaturesT1 and T2. The existence of electrons
with different temperatures in the system prevents the
establishment of thermal equilibrium.

The thermal transport through the point contact
may be described in the entropy current formalism [7]
modified in [8] for the Landauer scheme [9]. In this
description the electric current,I, and the entropy flow,
I s, [10] are expressed in terms of the equilibrium Fermi
functions,f0, of the bulk reservoirs and have the forms
(we assume the contact to be symmetric about the middle
[11])
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Here the chemical potentialsmi ¼ mðTiÞ, i ¼ 1 or 2, are
determined by the temperatures of the reservoirsTi and
kB is the Boltzmann constant;Tnn9 is the transmission
probability for the incident channeln into the conducting
channeln9, and the functionn0 in equation (2) is the
entropy density

n0ðxÞ ¼ f0ðxÞ ln f0ðxÞ þ ð1¹ f0ðxÞÞ lnð1¹ f0ðxÞÞ: (3)
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The sums in equations (1) and (2) run over all incident
and transmitted channels.

In large (Sharvin’s type [12]) point contacts, i.e.
for kFd @ 1, wherekF is the Fermi wave vector andd
is the narrowest size of the contact, the sums in
equations (1) and (2) may be approximated bykd/p
and we obtain the following expressions for the electric
current [13]

I ¼ ¹ GVp þ KðT2
2 ¹ T2

1Þ; (4)

and the entropy flow

Is ¼ ¹ KðT1 þ T2ÞV
p þ

p2k2
B

3e2 GðT2 ¹ T1Þ: (5)

Here Vp ¼ V þ ðm1 ¹m2Þ=e is the difference between
the electrochemical potentials,G ¼ ð2e2=hÞkFd=p is the
conductance of the 2D contact (Sharvin’s conductance)
andK ¼ ðk2

BemdÞ=ð6É3kFÞ is the thermoelectric coefficient
with m being the electronic mass. The fact that the
expressions forI andI s involve the same thermoelectric
coefficientK follows from the Onsager principle. Note
that relations (4) and (5) were obtained here beyond
the standard formulation of nonequilibrium thermo-
dynamics, since the differenceT2 ¹ T1 was not assumed
to be small. The thermoelectric power,eT, appearing in the

contact can be obtained by settingI ¼ 0 in equation (4),

eT ¼
p2k2

B

12eeF
ðT2

2 ¹ T2
1Þ; (6)

(where eF is the Fermi energy), which in the linear
regime (with respect to temperature difference) leads to
the following expression for the thermopower coefficient
[13]

S¼
p2k2

BT
6eeF

: (7)

Note the decrease by a factor of 2 compared with the
thermopower coefficient of a three-dimensional
point contact [7]. The Peltier coefficient is given by
P ¼ ST.

In the quantum limit, i.e. when the Fermi wave length
is of the order of the contact size, one needs to calculate
the transmissions coefficientsTnn9 in equations (1)
and (2). To this aim we will model the contact by a
saddle-shaped potential (the Bu¨ttiker model) [14]

V ¼ V0 ¹ 1
2mq2

xx2 þ 1
2mq2

yy2; (8)

where V0 is the potential at the saddle point, and the
frequenciesqx andqy characterize the constriction shape

Fig. 1. The Peltier coefficient (P, in units of kBT/e) of a 2D contact plotted vs the dimensionless parameter
y ¼ 2ðE¹ V0Þ=Éqy for H ¼ 0, kBT=Éqy ¼ 0:05 andqy=qx ¼ 7. The different curves correspond to the three marked
values of the applied voltage (V in units of Éqy/e). In the linear regime (V → 0) the Peltier coefficient (solid line)
coincides with the thermopower coefficient according to the Onsager relationP ¼ ST.
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and the lateral confinement. When a magnetic field is
applied in the direction perpendicular to the contact
plane, the transmission probabilities have a form [15]

Tnn9 ¼ dnn9{1 þexp½¹2pðE¹V0¹Éqþðnþ 1
2ÞÞ=Éq¹ÿ}¹ 1;

(9)

where

q6 ¼
1���
2

p ½ðQ4 þ 4q2
xq

2
yÞ

1=2 6 Q2ÿ1=2; (10)

Q2 ¼ q2
c þ q2

y ¹ q2
x; (11)

andqc ¼ eH=mc is the cyclotron frequency.

We examine first the differential Peltier coefficient of
the quantum contact,P, defined as

P ¼ T
]Is

]I

�����
T2¼T1¼T

; (12)

in a zero magnetic field (qc ¼ 0 in equations (10) and
(11)). The Peltier coefficient exhibits a peak-like structure
with the positions of the peaks coinciding with the
positions of the differential conductance steps calculated
at the same values of the applied voltages [11]. The
variation of the Peltier coefficient as a function of the
dimensionless parametery ¼ 2ðE¹ V0Þ=Éqy is shown in

Fig. 2. (a) The Peltier coefficient (P, in units of kBT/e) of a 2D contact plotted vs the dimensionless cyclotron
frequencyqc/qy with qy=qx ¼ 7 and y ¼ 7 (corresponding to four conducting channels forH ¼ 0 and V → 0).
Different curves correspond to the marked values of the applied voltage (V in units of Éqy /e) and in each
case for two different temperatures (T, in units ofÉqy /kB). (b) The Peltier coefficient of the contact plotted vsqc /
qy andeV/ Éqy for kBT= Éqy ¼ 0:05.
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Fig. 1 for kBT ¼ 0:05Éqy, qy=qx ¼ 7 and for several
values of the applied voltageV. In Fig. 1 the Peltier
coefficient (in units ofkBT/e) plotted for V → 0 (solid
lines in the top and bottom curves) coincides with
the thermopower coefficient (the Seebeck coefficient
calculated for a similar model in [5]),S, in accordance
with the Onsager relationP ¼ ST. Increase of the
applied voltage leads to the appearance of new peaks
in the Peltier coefficient (dash-dotted line in the top and
dashed line in the bottom curves, corresponding to the
voltageseV equal to 0.2Éqy and 0.4Éqy, respectively)
and a consequent violation of the Onsager relation. Note
that the origin of the appearance of the new peaks in the
Peltier coefficient is that a finite voltage differentiates
right- and left-moving electrons leading to the existence

of different effective chemical potentials for opposite
moving electrons (see equations (1) and (2)). We note
here that the nonlinearity of the Peltier coefficient
in quantum contacts appears on aneV-scale of the
order of the level spacing between electronic states in
the constriction, unlike the case of classical contacts
where the parameter characterizing the nonlinearity is
eV/eF.

In a magnetic field the transverse energy levels of
the electrons equal toÉqþðn þ 1=2Þ. The magnetic
field shifts the transverse energy levels resulting in the
appearance of an oscillating structure of the Peltier
coefficient, similar to oscillations of the thermopower
coefficient discussed in [5]. In Figs 2(a) and 3(a) we
display, for several values ofV and the temperatureT, the

Fig. 3. Same as Fig. 2, but for a 2D contact withy ¼ 3:4 (corresponding to two conducting channels forH ¼ 0 and
V → 0).

854 NONLINEAR PELTIER EFFECT IN QUANTUM POINT CONTACTS Vol. 108, No. 11



dependence of the Peltier coefficient on the dimension-
less cyclotron frequencyqc /qy, for a contact with
qy=qx ¼ 7 andy ¼ 7 and 3.4, corresponding respectively
to four and two conducting channels atH ¼ 0 andV → 0.
At V → 0 the magnetic field dependencies of the Peltier
and thermopower coefficients are the same (bottom
curve). Increase of the voltage leads to differences in the
behavior of the Peltier (upper curves) and thermopower
coefficients. The behavior of the Peltier coefficient can
be influenced either by an applied magnetic field, an
applied voltage or combinations of the two as shown in
Figs 2(b) and 3(b) forkBT ¼ 0:05Éqy.

The above analysis shows that the Peltier effect in
two-dimensional quantum contacts may be influenced
and controlled by external parameters such as an applied
voltage and a magnetic field. We have demonstrated
here theoretically a nonlinear Peltier effect in quantum
contacts, exhibited by the appearance of new peaks at
finite voltages (deviation from the Onsager relation,
Fig. 1), as well as magnetic field induced oscillations
of the Peltier coefficient at finite voltages (Figs 2 and 3).
Such a behavior of the Peltier coefficient in quantum
contacts is due to the influence of the external fields on
the spectrum of electronic states in the microconstric-
tions, allowing one to change and control the number of
conducting channels. These effects might be experi-
mentally observed under magnetic fields and applied
voltages, such thatÉqc and eV are of the order of the
spacing between the lateral electronic energy levelsÉqy.
In contacts created in a 2D electron gas in GaAs/AlGaAs
heterostructures, with a typical value of the subband
energy level spacings of 2 meV and an effective mass
mp ¼ 0:067m0 [16] (wherem0 is the free electron mass),
magnetic fields of several tesla at helium temperatures
should allow observation of the predicted effects.
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