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Energetics and conductance in jellium-modeled nanowires are investigated using the local-density-functional-
based shell correction method. In analogy with studies of other finite-size fermion systems, e.g., simple
metal clusters or3He clusters, we find that the energetics of the wire as a function of its radius (transverse
reduced dimension) leads to formation of self-selecting magic wire configurations (MWCs, i.e., discrete
sequence of wire radii with enhanced stability), originating from quantization of the electronic spectrum,
namely formation of subbands that are the analogs of electronic shells in clusters. These variations in the
energy result in oscillations in the force required to affect a transition from one MWC of the nanowire to
another and are correlated directly with stepwise variations of the quantized conductance of the nanowire in
units of 2e2/h.

I. Introduction

Identification and understanding of the physical origins and
systematics underlying the variations of material properties with
size, form of aggregation, and dimensionality are some of the
main challenges in modern materials research, of ever increasing
importance in the face of the accelerated trend toward minia-
turization of electronic and mechanical devices. While for over
two decades studies of size-evolutionary patterns of materials
have focused on atomic and molecular clusters1-3 in beams or
embedded in inert matrices, more recent efforts concentrated
on preparation, characterization, and understanding of finite
solid-state structures. These include nanometer-scale metal and
semiconductor nanocrystals,4-6 surface-supported structures and
quantum dots,7 and nanoscale junctions or wires.8-27

Interestingly, it has emerged that concepts and methodologies
developed in the context of isolated gas-phase clusters and
atomic nuclei are often most useful for investigations of finite-
size solid-state structures. In particular, it has been shown most
recently25,27through first principles molecular dynamics simula-
tions that as metallic (sodium) nanowires are stretched to just
a few atoms in diameter, the reduced dimensions, increased
surface-to-volume ratio, and impoverished atomic environment
lead to formation of structures made of the metal atoms in the
neck, which can be described in terms of those observed in small
gas-phase sodium clusters; hence, they were termed supported
cluster-deriVed structures (cds). The above prediction of the
occurrence of “magic-number” cds in nanowires, due to
characteristics of electronic cohesion and atomic bonding in such
structures of reduced dimensions, are directly correlated with
the energetics of metal clusters, where magic-number sequences
of clusters sizes, shapes, and structural motifs due to electronic
and/or geometric shell effects have been long predicted and
observed.2,3,28

Furthermore, these results lead one directly to conclude that
other properties of nanowires, derived from their energetics, may
be described using methodologies developed previously in the
context of clusters. Indeed, in this paper, we show that certain
aspects of the mechanical response (i.e., elongation force) and
electronic transport (e.g., quantized conductance) in metallic
nanowires can be analyzed using the local-density-approxima-
tion (LDA)-based shell correction method (SCM), developed
and applied previously in studies of metal clusters.3,29 Specif-

ically, we show that in a jellium-modeled, volume-conserving
nanowire, variations of the total energy (particularly terms
associated with electronic subband corrections) upon elongation
of the wire lead toself-selectionof a sequence of stable “magic”
wire configurations (MWCs, specified in our model by a
sequence of the wire’s radii), with the force required to elongate
the wire from one configuration to the next exhibiting an
oscillatory behavior. Moreover, we show that due to the
quantized nature of electronic states in such wires, the electronic
conductance varies in a quantized stepwise manner (in units of
the conductance quantumg0 ) 2e2/h), correlated with the
transitions between MWCs and the above-mentioned force
oscillations.
Prior to introducing the model studied in this paper, it is

appropriate to briefly review certain previous theoretical and
experimental investigations, which form the background and
motivation for this study. Atomistic descriptions, based on
realistic interatomic interactions and/or first-principles modeling
and simulations, played an essential role in discovering the
formation of nanowires and in predicting and elucidating the
microscopic mechanisms underlying their mechanical, spectral,
electronic, and transport properties.
Formation and mechanical properties of interfacial junctions

(in the form of crystalline nanowires) have been predicted
through early molecular-dynamics simulations,8 where the
materials (gold) were modeled using semiempirical embedded-
atom potentials. In these studies it has been shown that
separation of the contact between materials leads to generation
of a connective junction that elongates and narrows through a
sequence of structural instabilities; at the early stages, elongation
of the junction involves multiple slip events, while at the later
stages, when the lateral dimension of the wire necks down to a
diameter of about 15 Å, further elongation involves a succession
of stress accumulation and fast relief stages associated with a
sequence of order-disorder structural transformations localized
to the neck region.8,22,23 These structural evolution patterns have
been shown through the simulations to be protrayed in oscil-
lations of the force required to elongate the wire, with a period
approximately equal to the interlayer spacing. In addition, the
“saw-toothed” character of the predicted force oscillations (see
Figure 3b in ref 8 and Figure 3 in ref 22) reflects the stress
accumulation and relief stages of the elongation mechanism.
Moreover, the critical resolved yield stress of gold nanowires
has been predicted8,22 to be∼4 GPa, which is over an order ofX Abstract published inAdVance ACS Abstracts,July 15, 1997.
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magnitude larger than that of the bulk, and is comparable to
the theoretical value for Au (1.5 GPa) in the absence of
dislocations.
These predictions, as well as anticipated electronic conduc-

tance properties,8,9 have been corroborated in a number of
experiments using scanning tunneling and force micros-
copy,8,10-12,14,19,24break junctions,13 and pin-plate techniques15,22

at ambient environments, as well as under ultrahigh vacuum
and/or cryogenic conditions. Particularly pertinent to our current
study are experimental observations of the oscillatory behavior
of the elongation forces and the correlations between the changes
in the conductance and the force oscillations; see especially the
simultaneous measurements of force and conductance in gold
nanowires in ref 19, where in addition the predicted “ideal”
value of the critical yield stress has also been measured (see
also ref 24).
The jellium-based model introduced in this paper, which by

construction is devoid of atomic crystallographic structure, does
not address issues pertaining to nanowire formation methods,
atomistic configurations, and mechanical response modes [e.g.,
plastic deformation mechanisms, interplanar slip, ordering and
disordering mechanisms (see detailed descriptions in refs 8, 22,
and 23 and a discussion of conductance dips in ref 12), defects,
mechanical reversibility,19,22 and roughening of the wire’s
morphology during elongation23], nor does it consider the effects
of the above on the electron spectrum, transport properties, and
dynamics.27 Nevertheless, as shown below, the model offers a
useful framework for linking investigations of solid-state
structures of reduced dimensions (e.g., nanowires) with meth-
odologies developed in cluster physics, as well as highlighting
certain nanowire phenomena of mesoscopic origins and their
analogies to clusters.

II. The Jellium Model for Metallic Nanowires:
Theoretical Method and Results

Consider a cylindrical jellium wire of lengthL, having a
positive background with a circular cross section of radiusR
, L. For simplicity, we restrict ourselves here to this symmetry
of the wire cross section. Variations in the shape of the
nanowire cross section serve to affect the degeneracies of the
electronic spectrum20,26 without affecting our general conclu-
sions. We also do not include here variations of the wire’s shape
along its axis. Adiabatic variation of the wire’s axial shape
introduces a certain amount of smearing of the conductance steps
through tunneling, depending on the axial radius of curvature
of the wire.20,21,26 Both the cross-sectional and axial shape of
the wire can be included in our model in a rather straightforward
manner.
The principal idea of the SCM is the separation of the total

LDA energyET(R) as3,29,30

where Ẽ(R) varies smoothly as a function of the system size
and ∆Esh(R) is an oscillatory term arising from the discrete
quantized nature of the electronic levels.∆Esh(R) is usually
called a shell correction in the nuclear30 and cluster3,29 literature;
we continue to use here the same terminology with the
understanding that the electronic levels in the nanowire form
subbands, which are the analog of electronic shells in clusters,
where furthermore the size of the system is usually given by
specifying the number of atomsN. The SCM method, which
has been shown to yield results in excellent agreement with
experiments3,31,32 and self-consistent LDA calculations3,29 for
a number of cluster systems, is equivalent to a Harris functional
(Eharris) approximation to the Kohn-Sham LDA with the input

density obtained through variational minimization of an extended
Thomas-Fermi (ETF) energy functional,EETF[F̃] (with the
kinetic energy,TETF[F̃], given to fourth order gradients and the
potential,VETF, including the Hartree repulsion and exchange-
correlation and positive-background attractions as in LDA). The
smooth contribution in eq 1 is identified withEETF[F̃]. The
optimized density33 F̃ at a given radiusR is obtained under
the normalization condition (charge neutrality) 2π∫F̃(r)r dr )
FL
(+)(R), where FL

(+)(R) ) 3R2/(4rs
3) is the linear positive

background density. Using the optimizedF̃, one solves for the
eigenvaluesε̃i of the HamiltonianH ) -(p2/2m)∇2 + VETF[F̃],
and the shell correction is given by

where the summation extends over occupied levels. Here the
dependence of all quantities on the pertinent size variable (i.e.,
the radius of the wireR) is not shown explicitly. Additionally,
the indexi can be both discrete and continuous, and in the latter
case the summation is replaced by an integral.
Following the above procedure with a uniform background

density of sodium (rs ) 4 au), a typical potentialVETF(r) for R
) 12.7 au, wherer is the radial coordinate in the transverse
plane, is shown in Figure 1, along with the transverse eigen-
valuesε̃nm and the Fermi level; to simplify the calculations of
the electronic spectrum, we have assumed (as noted above)R
, L, which allows us to express the subband electronic spectrum
as

ET(R) ) Ẽ(R) + ∆Esh(R) (1)

Figure 1. (Lower)VETF(r) potential for a sodium wire with a uniform
jellium background of radiusR) 12.7 au, plotted versus the transverse
radial distance from the center of the wire, along with the locations of
the bottoms of the subbands (namely the transverse eigenvaluesε̃nm; n
is the number of nodes in the radial direction plus one, andm is the
azimuthal quantum number of the angular momentum). The Fermi
level is denoted by a dashed line. (Top) Jellium background volume
density (dashed line) and the electronic volume densityF̃(r) (solid line,
exhibiting a characteristic spillout) normalized to bulk values.

∆Esht Eharris[F̃] - EETF[F̃]

) ∑
i)1

occ

ε̃i -∫ F̃(r ) VETF[F̃(r )] dr - TETF[F̃] (2)

ε̃nm(kz;R) ) ε̃nm(R) +
p2kz

2

2m
(3)
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wherekz is the electron wavenumber along the axis of the wire
(z).
As indicated earlier, taking the wire to be charge neutral, the

electronic linear density,FL
(-)(R), must equal the linear positive

background density,FL(+)(R). The chemical potential (atT )
0 the Fermi energyεF) for a wire of radiusR is determined by
setting the expression for the electronic linear density derived
from the subband spectra equal toFL

(+)(R), i.e.

where the factor of 2 on the left is due to the spin degeneracy.
The summand defines the Fermi wave vector for each subband,
kF,nm. The resulting variation ofεF(R) versusR is displayed in
Figure 2a, showing cusps for values of the radius where a new
subband drops below the Fermi level asR increases (or
conversely as a subband moves above the Fermi level asR
decreases upon elongation of the wire). Using the Landauer
expression for the conductanceG in the limit of no mode mixing
and assuming unit transmission coefficients,G(R) ) g0 ∑n,m

Θ[εF(R) - ε̃nm(R)], whereΘ is the Heaviside step function.
The conductance of the nanowire, shown in Figure 2b, exhibits
quantized stepwise behavior, with the step rises coinciding with
the locations of the cusps inεF(R), and the height sequence of
the steps is 1g0, 2g0, 2g0, 1g0, ..., reflecting the circular symmetry
of the cylindrical wires’ cross sections,9 as observed for sodium
nanowires.13 Solving for εF(R) (see eq 4), the expression for
the sum on the right-hand-side of eq 2 can be written as

which allows one to evaluate∆Esh (eq 2) for each wire radius
R. Since the expression in eq 5 gives the energy per unit length,
we also calculateEETF, TETF, and the volume integral in the
second line of eq 2 for cylindrical volumes of unit height. To
convert to energies per unit volume [denoted asεT(R), ε̃(R),
and∆εsh(R)], all energies are further divided by the wire’s cross-

sectional area,πR2. The smooth contribution and the shell
correction to the wire’s energy are shown respectively in parts
a and b of Figure 3. The smooth contribution decreases slowly
toward the bulk value (-2.25 eV per atom29). On the other
hand, the shell corrections are much smaller in magnitude and
exhibit an oscillatory behavior. This oscillatory behavior
remains visible in the total energy (Figure 3c) with the local
energy minima occurring for valuesRmin corresponding to
conductance plateaus. The sequence ofRmin values defines the
MWCs, that is, a sequence of wire configurations of enhanced
stability.
From the expressions for the total energy of the wire [i.e.,

ΩεT(R), whereΩ ) πR2L is the volume of the wire] and the
smooth and shell (subband) contributions to it, we can calculate
the “elongation force” (EF)

Using the volume conservation, i.e., d(πR2L) ) 0, these
forces can be written asFT(R) ) (πR3/2)dεT(R)/dR, F̃(R) )
(πR3/2)dε̃(R)/dR, and∆Fsh(R) ) (πR3/2)d[∆εsh(R)]/dR. F̃(R)
andFT(R) are shown in Figure 3d,e. The oscillations in the
force resulting from the shell-correction contributions dominate.

Figure 2. Variation of the Fermi energyεF [shown in (a)] and of the
conductanceG [shown in (b) in units ofg0 ) 2e2/h], plotted versus the
radiusR, for a sodium nanowire. Note the coincidence of the cusps in
εF with the step rises of the conductance. The heights of the steps in
G reflect the subband degeneracies due to the circular shape of the
wire’s cross section.

2

π
∑
n,m

occx2m

p2
[εF(R) - ε̃nm(R)] ) FL

(+)(R) (4)

∑
i

occ

ε̃i )
2

π
∑
n,m

occ∫0kF,nmdkzε̃nm(kz; R) )

2

3π
∑
n,m

occ

[εF(R) + 2ε̃nm (R)]x2m

p2
[εF(R) - ε̃nm(R)] (5)

Figure 3. (a-c) Smooth (a) and shell-correction (b) contributions to
the total energy (c) per unit volume of the jellium-modeled sodium
nanowire (in units ofu t 10-4 eV/au3), plotted versus the radius of
the wire (in au). Note the smaller magnitude of the shell corrections
relative to the smooth contribution. (d, e) Smooth contribution (d) to
the total force and the total force (e), plotted in units of nN versus the
wire’s radius. In (e), the zeroes of the force to the left of the force
maxima occur at radii corresponding to the local minima of the energy
of the wire (c). In (f), we reproduce the conductance of the wire (in
units of g0 ) 2e2/h), plotted versusR. Interestingly, calculations of
the conductance for the MWCs (i.e., the wire radii corresponding to
the locations of the step rises) through the Sharvin-Weyl formula,18,26

corrected for the finite height of the confining potential18 (see lower
panel of Figure 1), namelyG ) g0(πS/λF

2 - RP/λF), whereSandP are
the area and perimeter of the wire’s cross section andλF is the Fermi
wavelength (λF ) 12.91 au for Na) withR ) 0.1 (see ref 18), yield
results that approximate well the conductance values (i.e., the values
at the bottom of the step rises) shown in (f).

FT(R) ) -
d[ΩεT(R)]

dL
) -Ω{dε̃(R)dL

+
d[∆εsh(R)]

dL }
t F̃(R) + ∆Fsh(R) (6)
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In all cases, the radii corresponding to zeroes of the force
situated on the left of the force maxima coincide with the
minima in the potential energy curve of the wire, corresponding
to the MWCs. Consequently, these forces may be interpreted
as guiding the self-evolution of the wire toward the MWCs.
Also, all the local maxima in the force occur at the locations of
step rises in the conductance (reproduced in Figure 3f),
signifying the sequential decrease in the number of subbands
below the Fermi level (conducting channels) as the wire narrows
(i.e., as it is being elongated). Finally the magnitude of the
total forces is comparable to the measured ones (i.e., in the
nanonewton range).

III. Conclusions and Discussion

We investigated energetics, conductance, and mesoscopic
forces in a jellium modeled nanowire (sodium) using the local-
density-functional-based shell correction method. The results
shown above, particularly the oscillations in the total energy of
the wire as a function of its radius (and consequently the
oscillations in the EF), the corresponding discrete sequence of
magic wire configurations, and the direct correlation between
these oscillations and the stepwise quantized conductance of
the nanowires, originate from quantization of the electronic
states (i.e., formation of subbands) due to the reduced lateral
(transverse) dimension of the nanowires. In fact such oscillatory
behavior and the appearance of “magic numbers” and “magic
configurations” of enhanced stability are general characteristics
of finite-size fermionic systems and are in direct analogy with
those found in simple metal clusters (as well as in3He clusters32

and atomic nuclei30), where electronic shell effects on the
energetics2,3,29,31(and most recently shape dynamics34 of jellium-
modeled clusters driven by forces obtained from shell-corrected
energetics) have been studied for over a decade.
While these calculations provide a useful and instructive

framework, we remark that they are not a substitute for theories
where the atomistic nature and specific atomic arrangements
are included8,22,23,25,27 in evaluation of the energetics (and
dynamics) of these systems (see in particular refs 25 and 27,
where first-principles molecular-dynamics simulations of elec-
tronic spectra, geometrical structure, atomic dynamics, electronic
transport, and fluctuations in sodium nanowires have been
discussed).
Indeed, the atomistic structural characteristics of nanowires

(including the occurrence of cluster-derived structures of
particular geometries25,27), which may be observed through the
use of high-resolution microscopy,35 influence the electronic
spectrum and transport characteristics, as well as the energetics
of nanowires and their mechanical properties and response
mechanisms. In particular, the mechanical response of materials
involves structural changes through displacement and discrete
rearrangement of the atoms. The mechanisms, pathways, and
rates of such structural transformations are dependent on the
arrangements and coordinations of atoms, the magnitude of
structural transformation barriers, and the local shape of the wire,
as well as possible dependency on the history of the material
and the conditions of the experiment (i.e., fast versus slow
extensions). Further evidence for the discrete atomistic nature
of the structural transformations is provided by the shape of
the force variations (compare the calculated Figure 3b in ref 8
and Figure 3 in ref 22 with the measurements shown in Figures
1 and 2 in ref 19) and the interlayer spacing period of the force
oscillations when the wire narrows. While such issues are not
addressed by our model, the mesoscopic (in a sense universal)
phenomena described by it are of interest and may guide further
research in the area of finite-size systems in the nanoscale
regime.
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