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Electronic Entropy, Shell Structure, and Size-Evolutionary Patterns of Metal Clusters
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We show that electronic-entropy effects in the size-evolutionary patterns of relatively small (as small
as 20 atoms), simple-metal clusters already become prominent at moderate temperatures. Detailed
agreement between our finite-temperature—shell-correction-method calculations and experimental results
is obtained for certain temperatures. This agreement includes a size-dependent smearing out of
fine-structure features, accompanied by a measurable reduction of the heights of the steps marking
major-shell and subshell closings, thus allowing for a quantitative analysis of cluster temperatures.
[S0031-9007(97)02448-4]

PACS numbers: 36.40.—c

Since the discovery [1] of electronic-shell-structure fea-case of spherical neutral sodium clusters [22], and in a re-
tures in the abundance spectra of sodium clusters, similaxent report [23] on the thermodynamics of neutral sodium
features (the major ones corresponding to the degeneracielsisters with axially symmetric shapes. In contrast to
of a spherically symmetric mean-field potential [2,3]) haveour findings, these studies have suggested that electronic-
been routinely observed [4] in the size-evolutionary pat-entropy effects at moderate temperatures are not important
terns (SEP’s) associated with other single-particle properfor clusters with less than 100 atoms.
ties of both alkali- and noble-metal clusters. Specifically, The theoretical method used in this paper is a finite-
such patterns pertain to ionization potentials (IP’s) [5—7]temperature (FT) -SCM developed by us, which incor-
electron affinities (EA’s) [8,9], monomer separation ener-porates all three of the aforementioned aspects, namely,
gies (MSE’s) [10], and fission dissociation energies [11]. triaxial deformations, entropy of the electrons, and ther-

It was early realized [12] that the secondary features immal effects originating from shape fluctuations. Further-
the mass spectra required the consideration of deformedore, through a direct comparison with experimental
cluster shapes [5,12]. When triaxial (ellipsoidal) shapesneasurements, we demonstrate that this method can be
were considered in the framework of shell correctionemployed for determining cluster temperatures.
methods (SCM) [13-16], substantial overall systematic Since the number of delocalized valence electrons is
agreement was achieved [14,15] between theory anfixed for a given clusterMy, we need to use [24,25] the
experimental observations pertaining to the major and theanonicalensemble in calculating their thermodynamical
fine structure of the aforementioned SEP’s. properties. For determining the free ener@iy(,3, N, x)

While deformation effects have been extensively stud{8 = 1/T), which incorporates the electronic entropy, we
ied, an understanding of the physical origins of thermakeparate it, in analogy with the zero-temperature limit [14],
effects and their relation to the SEP’s is still lacking, eveninto a smooth, liquid-drop-model (LDM) parE; pvm, and
though the experiments are necessarily made with clustees Strutinsky-type [26] shell-correction term\F,,. The
at finite temperatures. Moreover, experimental determishell correction term is specified as the differendg;, =
nation of cluster temperatures remains a challenge, mothSp — I?sp, whereF,, is the canonical free energy of the
vating the development of theoretical methods capable ofalence electrons viewed as independent single particles
extracting such information. in their effective mean-field potential. For calculating the

While thermodynamic entropic contributions associated:anonicamp, we adopt a number-projection method [27],
with the ionic degrees of freedom can be obtained fromaccording to which

first-principles molecular-dynamics simulations [17,18], 1 7 dd
or from considerations of shape fluctuations in simpler Fy, = ——In(] — Zgc(B,Bu + id)
models [19-21], for sufficiently large simple-metal clus- B 2m

ters My with N > 20, the electronic entropy (which has % o~ (Buti®)N.
not as yet been included in such studies) dominates the € ’

thermal characteristics of the shell structure, even at quNhereNe is the number of electrons andis the chemical
erate temperatures. The prominent thermal effects assgotential of the equivalent grand-canonical ensemble. The
ciated with the electronic entropy are the focus of thisyrand-canonical partition functioge, is given by

paper. o

Without the simultaneous consideration of shape fluc- Zoc(B.Bw) =[] + e Plem),

tuations, thermal effects pertaining to the electronic de- _ P B
grees of freedom and their relevance for the understandinghere &; are the single-particle levels of the modified
of mass abundance spectra have been considered in th@sson Hamiltonian pertaining to triaxial shapes [14].
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The temperature-dependent averdgg [28] is specified Our calculations (solid dots) for the IP's &y clus-
using the same expressions as fog, but with a set of ters for three temperatures, = 10, 300, and500 K, are
smooth levels [23] defined &s = E3<(i) — E°(i — 1), displayed in Fig. 1, and are compared with the experi-
Wheregg’gC(Ne) is the zero-temperature Strutinsky averaggnental measurements [S] (open squares; the experimen-

of the single-particle spectrum of an anisotropic, triaxialt@ uncertainties are 0.06 eV fof = 30 and0.03 eV for
oscillator (see Section I1.C. of Ref. [14]). N > 30). As was the case with our earligr= 0 K re-

sults [14], theT = 10 K theoretical results exhibit the

a volume, a surface, and a curvature term. Since V0|f_ollowmg f_tWO i:ha;acteélstncs. () apovﬁ/hznzll, a pro-h' o
ume conservation during deformation is assumed, wgounced fine structure between major-shell closures whic

need not consider the temperature dependence of tfia not present in the experimental measurements; (ii) steps

corresponding term when calculating observables, sucfit the major-shell closures which are much larger than the

as IP's and MSE's, associated with processes which dfXPerimental ones [35] (3 to 5 times far = 40, 58, and

not change the total number of atom$, The experi- 22 ?nd 2103 timezfoN = 8|$nd20). g , L
mental temperature dependence of the surface tension,T e agreement between theory and experiment is sig-

a(T) = co — ci(T — Tmp), is taken from standard tables nificantly improved atl’ = 300 K. Indeed, in compari-

[29] (Tmp are melting-point temperatures [30]), but nor- son with the Iow_er_—temperatur_e calculations, tie=
malized to yield theo(T = 0) value used in our earlier 300 K results exhibit the following remarkable changes:

calculations [14]. Since no experimental information is()) Above N = 21, the previously sharp fme-structure fea-
available regarding the curvature coefficient, we as- tures are smeared out, and as a res_ult, the theoreUcaI curve
sume the same relative temperature dependence as 'f&llows_closely the s_mooth modulations of the experimen-
o(T) normalized to thel' = 0 value used earlier [14]. tal pro_flle. In th? Size rang = 21-34, three rounded,
Finally, the expansion of the Wigner-Seitz radius due td1Umplike formations (ending to the right at the subshell

the temperature is determined according to the coefficierfloSures atv = 26, 30, and 34) survive in very good
of linear thermal expansion [30]. With these modifica-29réement with the experiment (the sizes of the drops at

tions, the remaining steps in the calculationfyfpy; fol- N = 26, 30, and34 are comparable to the experimental

low closely Section Il.A. of Ref. [14] (for simplicity, the ones [36])' (i Tr:je S|zde3 of the IIIP dr(:jpsl‘&it— 20, 40,
work functionW is assumed temperature independent). 58, and 92 are reduced drastically and are now compa-

According to the general theory of thermal fluctuatingrable to the experimental ones. In the size raNge: 20,
phenomena [31], the triaxial shapes of the clusters, speci-

The LDM term Frpm consists of three contributions;

fied by theBy andyy Hill-Wheeler parameters [32], will : T
explore [33] the free-energy surfacg(B, N, x; By, Yu), T=500K
with a probability, 1
P(Bu,yn) = Z~' exd—BF(B,N,x; Bu, yu)], ]
the quantityZ being the classical Boltzmann-type parti- O — ]
tion function, W}m% -
z = [ drexsi—BF(8.N.x: B, v, R LI
471 qi \?9/ WWWQWNW .
anddr = Byl sin3yy)ldBudyy the proper volume ele- 4 127
ment [34]. Thus, finally, the free energ{# (8, N, x)), - i ]
averaged over the shape fluctuations can be written as - J%%mlmg;*;n -
} f 1 1 t +— 2.3
FBN) = [ drF (8N, By yn) ok ]
X P(Bu,vH). : o
We will present results pertaining to IP’'s and MSE’s [ TR IP TPV
+ + . . . %@ W‘Jc H »
(My — My_, + M), which at finite temperatures are . | OemwmmmsmogonantReV 1
defined as 0 0 40 60 80 100
Iy =(F(B,N,x = +1)) = (F(B,N,x = 0)) N
and FIG. 1. IP's of Ky clusters at three temperatures,= 10,

300, and500 K. Solid dots: theoretical FT-SCM results. Open

+ _ _ _ _
Diy =(F(B,N — Lx = +1)) + (F(B,N = L,.x =0))  gquares: experimental measurements [5]. The uppermost curve

_ - (open circles) in the middle panel displays theoretical results
(F(B.N.x 1, when the electronic entropy is neglected. Thecale in this
respectively. instance is to the right.
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the modifications are not as dramatic. Indeed, one cathe theoretical results & = 300 K are in better agree-
clearly see that the pattern of odd-even alternations rement with the experimental ones due to an attenuation
mains well defined, but with a moderate attenuation inof the amplitude of the alternations (e.g., notice the fa-
amplitude, again in excellent agreement with the experivorable reduction in the size of the dropspt= 9, 15,
mental observation. and21). In spite of this amplitude attenuation, it is re-
For T = 500 K, the smearing out of the shell struc- markable that thel" = 300 K SCM results in this size
ture progresses even further, obliterating the agreememnénge preserve in detail the same relative pattern as the
between theory and experiment. Specifically, the steps & = 10 K ones (in particular, the well-defined odd-even
the subshell closures at = 26 and30, as well as at the oscillations in the rangev = 4—15 and the ascending
major-shell closures a¥ = 40, 58, and92, are rounded quartet atv = 16—19 followed by a dip atv = 20).
and smeared out over several clusters (an analogous be-As a last example, Fig. 3 displays for three tempera-
havior has been observed in the logarithmic abundanceires (10, 800, and 2000 K) our FT-SCM results for the
spectra of hot, singly cationic, copper, silver, and goldiP’s of Agy clusters, and compares them with available
clusters [37]). At the same time, however, the odd-everexperimental measurements [6,39]. Again, going from the
alternation remains well defined for = 8. We further T = 10 K to theT = 800 K results, we observe that an
notice that, while some residue of fine structure survivesttenuation of the amplitude of alternations brings theory
in the rangeN = 9-15, the odd-even alternations there and experiment into better agreement (e.g., in the latter
are essentially absent (certain experimental measuremertase, the sizes of the theoretical IP dropsvat 6, 8,
[38] of the IP’s of hot N& clusters appear to conform to 14, 20, 26, 30, and34 are comparable to the experimen-
this trend). tal ones). Finally, a" = 2000 K, both major and fine
To ascertain the relative weight of the two thermalstructures tend to vanish fof > 8.
processes incorporated in our FT-SCM, we display in In conclusion, we showed that the SEP’s of the single-
the middle panel of Fig. 1 (uppermost curve with openparticle properties of simple-metal clusters are governed
circles) the theoretical IP’s a' = 300 K in the case by the interplay of ellipsoidal deformations and ther-
when the electronic entropy is neglected. A compari-modynamics (entropy) of the electronic degrees of free-
son with the results (solid dots) when both electronicdom, while the entropic contribution of shape fluctuations
and shape-fluctuation entropic contributions are includeglays a smaller role [40]. We further demonstrated that
demonstrates the principal role of the electronic entropyelectronic-entropy effects are reflected in prominent ex-
in shaping the thermal effects of the SEP’s. perimental signatures already at moderate temperatures
Figure 2 displays for two temperatures (10 and 300 K)and for relatively small sizes. This behavior, which had
the FT-SCM results (solid dots) for the MSE’s associ-
ated with theK} clusters, along with the available ex-

perimental measurements [10] (open squares) in the size
rangeN = 4-23. Compared to th&’ = 10 K results, _ 1
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FIG. 2. MSE’'s of Ky clusters at two temperatured, = 0 40

10 and 300 K. Solid dots: Theoretical FT-SCM results.
Open squares: experimental measurements [10]. To facilitate
comparison, the SCM results at the higher temperature havelG. 3. IP’s of Agy clusters at three temperatures,= 10,
been shifted by 0.07 eV, so that the theoretical curves at botR00, and 2000 K. Solid dots: theoretical FT-SCM results.
temperatures refer to the same poinivat= 10. Open squares: experimental measurements [6].
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