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The energetics of nickel clusters over a broad size range are explored within the context of the 
many-body potentials obtained via the embedded atom method. Unconstrained local minimum 
energy configurations are found for single crystal clusters consisting of various truncations of 
the cube or octahedron, with and without ( 110) faces, as well as some monotwinnings of these. 
We also examine multitwinned structures such as icosahedra and various truncations of the 
decahedron, such as those of Ino and Marks. These clusters range in size from 142 to over 
5000 atoms. As in most such previous studies, such as those on Lennard-Jones systems, we 
find that icosahedral clusters are favored for the smallest cluster sizes and that Marks’ 
decahedra are favored for intermediate sizes (all our atomic systems larger than about 2300 
atoms). Of course very large clusters will be single crystal face-centered-cubic (fee) polyhedra: 
the onset of optimally stable single-crystal nickel clusters is estimated to occur at 17 000 atoms. 
We find, via comparisons to results obtained via atomistic calculations, that simple 
macroscopic expressions using accurate surface, strain, and twinning energies can usefully 
predict energy differences between different structures even for clusters of much smaller size 
than expected. These expressions can be used to assess the relative energetic merits of various 
structural motifs and their dependence on cluster size. 

I. INTRODUCTION 

The structural, electronic, and chemical characteristics 
of materials depend on the state (phase) and degree (size) of 
aggregation. Clusters, i.e., finite aggregates of up to tens of 
thousands of atoms, exhibit unique physical and chemical 
properties and a systematic study of the dependence and evo- 
lution of these properties with size allows elucidation of the 
transition from the molecular to condensed matter re- 
gimes. ‘-4 Such investigations have become possible over the 
last two decades due to the development and proliferation of 
methods of preparation and characterization of clusters of 
various elemental materials and their compounds, as well as 
in differing charge states. 

A particularly complex and intriguing issue is the struc- 
ture of clusters and the dependence of structure on size. Dif- 
ficulties in investigating this question are found on both the 
experimental and theoretical fronts. On the experimental 
side, the problem is twofold. First, since cluster systems are 
larger than ordinary molecules, but too small to be dealt with 
as ordinary bulk materials, they are not well suited to explo- 
ration of their structure using the traditional approaches of 
spectroscopy and x-ray diffraction. As a result, structural 
studies using electron diffraction are the preferred method of 
investigation and have been applied with significant success 
in studies mainly of gas phase clusters of rare gaseP and 
molecular clusters.‘.” For metallic clusters, data obtained 
through electron diffraction experiments is scarce, but valu- 
able information has been obtained via high-resolution elec- 
tron microscopy for metal clusters from a few hundred to 
thousands of atoms condensed on substrates.“-26 In addi- 
tion, a scanning tunneling microscope probe has recently 
been used to examine silver and gold clusters supported on a 
graphite surface.27 Furthermore, metallic clusters support- 

ed on graphite surfaces have also been investigated using 
extended x-ray-absorption fine-structure (EXAFS) and re- 
lated x-ray techniques. “-” Analysis of this data is compli- 
cated, however, by the interaction between the deposited 
cluster and the substrate and the multitude of cluster sizes 
present on the surface.” 

In the case of structural studies of gas-phase clusters, 
analysis of the electron diffraction data is complicated by the 
clusters’ finite size: they do not fill all space and so need not 
possess translational symmetry. Consequently, the analysis 
relies to a large extent on comparisons between the measured 
diffraction patterns (i.e., diffraction functions which give 
the intensity of the scattered electron beam as a function of 
momentum transfer) with the results of model calculations 
which simulate the experimental data, using prescribed in- 
teratomic interactions and ambient conditions. The analysis 
of the gas phase data is further complicated by the depen- 
dence of the structural characteristics of the system on the 
generation process and ambient conditions. Furthermore, 
small clusters (below a few tens of atoms) may undergo a 
radical structural change by the addition of a single atom (or 
molecule), and for both small and large clusters, a distribu- 
tion (equilibrium or nonequilibrium depending on the prep- 
aration conditions) of structural isomers may be found for a 
given cluster size. 

The above considerations motivate systematic theoreti- 
cal studies of the structure and energetics of clusters as well 
as of modes of cluster growth, phase changes, and isomeriza- 
tion. A principal objective of such structural studies is the 
determination of size boundaries of energetic stability for 
various structural forms and the question of the transition 
from behavior characteristic of a finite system to that of a 
bulk system with increasing cluster size. Ideally, we would 
seek answers to the above questions for all cluster sizes and 
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for a range of temperatures. However, the plethora of possi- 
ble structures and the isomerizations between them make 
such studies rather prohibitive. Instead, as several research- 
ers previously have done, we limit ourselves in this study to 
consideration of a number of structures whose selection is 
motivated by energetic and morphological considerations, 
as well as guided by accumulated past experience. As a 
further simplification, the energetic optimization of the 
structures is performed at zero temperature and thus ne- 
glects entropic effects. Nevertheless, such studies are rel- 
evant for developing understanding and establishing a con- 
ceptual framework which could guide a rational approach to 
these complex structural issues, as well as aiding in the anal- 
ysis of experimental data. In addition, obtaining the struc- 
tural (and underlying energetic) trends, via minimization of 
the clusters’ energies using a conjugate gradient technique, 
permits us to assess critically the validity of formulas which 
we derive on the basis of macroscopic arguments for the 
energies of various structural motifs. Our results demon- 
strate the remarkable adequacy for many cluster types of 
such “macroscopic” expressions, provided the input ener- 
gies (such as crystal plane dependent surface energies, twin- 
ning energies, and strain energies associated with particular 
deformations) are known. 

The majority of experimental’-” and theoretica18*33-45 
investigations to date on the structure of clusters have been 
on rare-gas clusters produced in supersonic beams during 
gas expansion. In such experiments, clusters can obtain sta- 
ble structures (for each cluster size) since they are formed at 
high temperatures and thus may anneal effectively.46 Using 
electron diffraction data and analysis via molecular dynam- 
ics simulations employing Lennard-Jones (LJ) pair interac- 
tions, these studies have established the presence of icosahe- 
dral structures for small rare gas clusters (RGCs) 
containing 40-800 atoms. Much bigger argon clusters 
( 104-10’ atoms) exhibit a crystalline face-centered-cubic 
(fee) structure containing twin boundariesET4’ (which are 
detected by extra reflections in the diffraction patterns). 
However, the structural evolution of rare gas clusters in the 
intermediate regime is somewhat elusive. 

All theoretical studies of the energetics and structure of 
RGCs employed pair interactions (mostly LJ potentials). 
The most complete study of these systems is the recent one 
by Raoult et al.* These authors conclude on the basis of a 
relaxation method,48 and using LJ potentials, that for clus- 
ters with less than 1600 atoms, the most stable structures 
belong to the icosahedral sequence, while for larger clusters 
the decahedra1 sequence is energetically more stable. Addi- 
tionally, they found that although monotwinned fee models 
have a slightly lower energy than crystalline fee polyhedra, 
they are not expected to become the structurally stable form 
for RGCs containing less than - IO5 atoms. 

Theoretical investigations of the energetics and struc- 
ture of metal clusters are complicated by the complex nature 
of bonding and cohesion in metals. While for very small clus- 
ters (mainly of alkali metals and aluminum) rigorous quan- 
tum chemical calculations have provided valuable structural 
information,49v5o for larger clusters one must resort to ap- 
proximate descriptions of the interatomic interactions. Such 

atomistic studies employing various levels of approximation 
have been performed5’-55 for clusters containing up to - 100 
atoms. 

Another approach in the investigation of the structure 
of metal particles, which has been used for a rather long 
time , 22*5c6’ is founded on macroscopic concepts rather than 
atomistic structural optimization. This approach is based on 
the Wulff construction56’57 which determines the equilibri- 
um macroscopic morphology of the crystallite (see Sec. III) 
and on the theory of elasticity which allows estimates of the 
elastic strain energy for a given structure.58 The first system- 
atic study employing the above principles was that of InoS8 
who calculated the free energy of multiply twinned particles 
and compared it to that of an fee crystal of the same volume 
using as input to the calculation macroscopic quantities 
characteristic of the material, such as cohesive, surface, 
twin-boundary, and elastic strain energies. In addition, the 
adhesive energy of interaction between the metal particle 
and the substrate support was included. The sequence of 
structures obtained from Ino’s calculations is as follows: for 
metal particles smaller than a critical value ( - 100 w in di- 
ameter for gold), structures based on the icosahedron are the 
most stable. For larger clusters, the optimal structures are 
truncated octahedra (these are semiregular polyhedra of 14 
faces, sometimes called tetrakaidecahedra, or TKDs). In ad- 
dition, it was concluded that the decahedra, specifically 
those called Ino’s decahedra (see Sec. IV), are not structur- 
ally preferred at any size. 

A modified Wulff construction was introduced by 
Marks” to include twin boundaries. Motivated by experi- 
mental observations,” this modified construction allows for 
reentrant faces at the twin boundaries of the decahedron, 
thus decreasing its surface energy. Consequently, Marks 
predicts the evolution in cluster structure with increasing 
cluster size to progress from icosahedral to decahedra1 and 
finally to truncated octahedral structures. The energetics 
underlying the above progression results from a balance be- 
tween the relatively lower surface energies of the fivefold 
symmetric structures and the elastic strain energies inherent 
in them. Since the total surface energy of a cluster varies 
roughly as its surface area while its total elastic strain energy 
varies roughly as its volume, the latter must increase more 
rapidly with the cluster’s size. At a critical size, the decahe- 
dral sequence of clusters becomes energetically more favor- 
able than the icosahedral sequence since it is characterized 
by a smaller strain energy. It should be noted, however, that 
numerical estimates” failed to show stability of the decahe- 
dral structures in the intermediate cluster size regime. In this 
context, we remark that application of the modified Wulff 
construction requires, as input, quantities which are often 
difficult (or impossible) to obtain from experiments (such 
as elastic strain energies, surface and twinning energies). In 
this paper, we show how to calculate these quantities for a 
given model of the interaction potentials. 

Motivated by the above considerations and the increas- 
ing experimental efforts aimed at determinations of the 
structures of metal clusters and elucidation of correlations 
between the structure and physical and chemical properties, 
we embarked on a systematic study of the dependence of the 
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structure of metal clusters on cluster size. Our studies are 
based on unconstrained minimizations (relaxations) of the 
energies of a multitude of structural motifs, with the intera- 
tomic potentials described via the many-body embedded 
atom method (EAM)624 parametrized for nickel.65 

c p;(R,) ++- ,x, q$j(R,)], 
I 

(1) 

I( #i) J(#l) 

In our studies, both the macroscopic and microscopic, 
atomistic approaches are pursued, thus providing a test on 
the adequacy of the macroscopic concepts. We conclude that 
the macroscopic expressions which we develop, in conjunc- 
tion with accurately calculated values for the characteristic 
energies as input, provide a reliable framework for structural 
analysis. 

We find that in the small cluster size regime (less than 
2300 atoms), icosahedral structures are energetically pre- 
ferred, while for somewhat larger clusters, the decahedra are 
more stable. Furthermore, the optimal single crystal polyhe- 
dron does not become more favorable than the best Marks’ 
decahedron of similar size for clusters smaller than - 17 000 
atoms. 

where@ is the spherically averaged atomic electron density, 
the function ~+4~ depends only on the species of atoms i and j, 
and R, is the distance between atoms i and j located at Ri and 
Ri. Thus the background density for each atom i is deter- 
mined as the superposition of electronic densities from other 
atoms, evaluated at the nucleus of the ith atom. As seen from 
Eq. ( 1)) the total cohesive energy of the material is expressed 
as a sum over all atoms in the system of atomic energy contri- 
butions. In the EAM, the functions F and 4 are determined 
by choosing for them functional forms which meet certain 
general requirements and fitting parameters in these func- 
tions to a number of bulk equilibrium properties of the solid 
such as lattice constant, heat of sublimation, elastic con- 
stants, vacancy formation energy, etc. From the several par- 
ametrization procedures which have been suggested, we 
have chosen the one described recently by Adams et a1.65 

In the next section, we briefly review the embedded 
atom method. In Sec. III, we describe the development of 
macroscopic expressions for the energetics of various struc- 
tural forms, as well as provide details of methods for calcula- 
tions of surface, strain, and twinning energies. Results ob- 
tained via atomistic energy minimization are presented in 
Sec. IV and compared to those derived from macroscopic 
estimates. Finally, we summarize our results in Sec. V. 

III. MACROSCOPIC CALCULATIONS 
A. Single crystals 

II. INTERACTION POTENTIALS 
As is well known, pair potentials are generally not ade- 

quate for a description of the energetics in metals due to the 
density dependence of the interactions which underlie the 
cohesion of these materials. Nevertheless, for simple metals 
(e.g., free-electron metals), formulations based on density- 
dependent expressions for the total energy6”69 (employing 
effective Hamiltonians within the context of pseudopoten- 
tial theory) have been used with some success. However, 
since the effective Hamiltonian formulations, based on sec- 
ond-order perturbation theory with respect to the electron 
ion interaction, are limited to free-electron (sp-bonded) 
metals, we have represented the energetics of the material 
under study (nickel) using the embedded atom method 
(EAM)62-64 which has been applied recently with signifi- 
cant success in studies of various transition-metal sys- 
tems. 62-65,7G72 

The EAM is a semiempirical method which provides a 

For a macroscopic single crystal cluster of a given size 
and shape which only has flat facets, it is simple to calculate 
the energy if we know the energy per atom in the bulk crystal 
and the surface energy (surface energy per unit area) for 
each type of crystal face that is exposed. The macroscopic 
character is invoked in the neglect of corrections to bulk 
energy other than surface energies, such as “edge” and “ver- 
tex” energies. 

Alternatively, if we are given surface energies for all the 
(possibly) relevant types of facets, we can ask what shape 
will minimize the energy under the constraint that its vol- 
ume remain constant. Wulff 56s7 has provided a simple con- 
struction that gives the answer. Proceed from the origin in 
any direction. This direction defines the normal to a crystal 
surface. At a distance from the origin numerically equal to 
the surface energy of that surface, erect a normal plane. Go 
back to the origin and repeat the process for all other direc- 
tions which may point to facets on the cluster. The smallest 
volume containing the origin inside all erected planes is simi- 
lar (in the geometrical sense) to the minimum energy shape 
for a cluster of given size. The construction is perfectly gen- 
eral and handles even unfaceted surfaces. 

convenient framework for atomistic calculations for metal- 
lic systems. In this method, the dominant contribution to the 
energy of the metal is viewed as the energy of embedding an 
atom into the local electron density provided by the other 
atoms of the system, represented by an embedding-energy 
function F. This dominant contribution is supplemented by 
short-range, two-body interactions due to a core-core repul- 
sion 4. The basic idea underlying this method is thus the 
same as that which motivated the development of the effec- 
tive-medium theory,73,74 and both find their roots in the den- 
sity-functional theory.75 

We will call the minimum energy shape for a material its 
Wulff polyhedron. Some researchers use this term to denote 
an Archimedian solid, the truncated octahedron, whose sur- 
face holds six square ( 100) faces and eight equilateral hexag- 
onal ( 111) faces. While this shape is indeed the minimum 
energy fee polyhedron for surface energies given by a simple 
bond-breaking calculation,76 it at best only resembles the 
minimum energy polyhedra for any realistic materials ex- 
cept by coincidence, so such a usage seems somewhat mis- 
leading. 

The cohesive energy Ecoh of the metal is given in EAM 
by the ansatz 

In order to apply such macroscopic methods, we need 
surface energies, and possibly bulk energies, for the material 
from which the cluster is made. These may be difficult to 
acquire experimentally. Often the best information available 
for surfaces is only an average surface energy, undifferentiat- 
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ed by crystal face. One of the problems in applying the mac- 
roscopic approach to small clusters is being unsure whether 
any deficiencies that may arise do so from the method’s fun- 
damental approximations or from poor values for material 
properties. Thus such methods are frequently applied only 
qualitatively. However, in cases such as ours where the 
atomic interactions are specified, the required energies are 
not difficult to obtain. This will permit us to test, in at least 
one case, how well the macroscopic approach works when 
applied to small clusters when the input energies are precise- 
ly known. 

The crystaline bulk system may be described as consist- 
ing of a basis of N atoms (where N is on the order of several 
hundred) within a parallelapiped computational cell defined 
by three fundamental translation vectors which describe the 
periodicity of the cell (i.e., the periodic boundary condi- 
tions). Furthermore, these vectors are treated as dynamic 
variables on the same level as atomic coordinates.77 In fact, 
the atomic coordinates are only described in terms of the 
prevailing periodicity of the bulk system. Consequently, if so 
desired, a uniform strain could be applied to the system by 
imposing suitable constraints on the three translation vec- 
tors that represent the corresponding periodicity of the sys- 
tem under the specified strain. 

To determine the bulk energy per atom and the density 
for our material (at 0 K), it is sufficient to m inimize the 
energy of the system by varying the vectors defining the unit 
ce11,77 which we accomplish by using the conjugate gradient 
method.” This provides us with the bulk (per atom) energy 
for our material and also determines the bulk density. Using 
the EAM potentials for nickel, the calculated bulk energy 
(per atom) is eg = - 4.450 008 08 eV and the volume per 
atom is 10.9 163 A3.79 

To determine the surface energy at 0 K for an unstrained 
surface, we remove a periodic boundary condition, creating 
two free surfaces,” while holding the computational cell 
fixed since it is determined by the bulk crystal. Subsequently, 
we relax the energy of the system by varying atomic coordi- 
nates using the conjugate gradient procedure. The surface 
energy is then simply the difference between our relaxed sys- 
tem’s energy and that of the relaxed bulk system divided by 
twice the area of one of the newly exposed surfaces. 

We have performed such calculations for the low M iller 
index surfaces [ ( 100)) ( 1 lo), and ( 111) ] which contribute 
to the Wulff polyhedron. In addition, we can also insert a 
single ( 111) twinning fault into a bulk system, and relax 
both the computational cell and atomic coordinates to ob- 
tain the twinning energy. The results of these calculations 
are shown in Table I. We remark that the atomic energies 
near the centers of the slabs were very close to the bulk ener- 

TABLE I. Interfacial energies for unstrained nickel slabs. 

gy given above, which serves as evidence that these slabs are 
bulklike in their m iddles. We also note that relaxation has 
very little effect on the surface energies in nickel, all of which 
turned out to be somewhat smaller than the experimental, 
facially averaged value” of 0.1485 eV/A2 (2.380 J mT2) 
(however, the experimental value may be questioned; see 
Ref. 62 for a discussion). 

Note that the twinning energy is negative. This suggests 
that the m inimum energy crystal structure for these interac- 
tions m ight be hexagonal close packed (hcp) instead of fee. 
If we construct an hcp bulk system and m inimize its energy, 
we find that the energy per atom is lower than that of the fee 
system by only 4.6 x 10 - 4 eV. This is of little if any conse- 
quence in the study presented here, since other energies are 
much more important for our clusters. 

With these energies, we are in a position to construct the 
Wulff polyhedron for nickel. Using the zero temperature 
surface energies” for Lennard-Jones 6-12 interactions, we 
can also do the same for that material (see also Ref. 5 1 for a 
more inclusive exploration of faceting for this and other M ie 
potentials, and Morse potentials, neglecting relaxation). 
These results are compared in Fig. 1. 

The Wulff polyhedron for nickel is markedly more simi- 
lar to the truncated octahedron than the one for Lennard- 
Jonesium. We will see that the differences between these po- 
lyhedra for nickel and Lennard-Jonesium exactly parallel 
differences we will observe in comparing our results for m i- 
croscopic nickel clusters with those of Raoult et al8 for Len- 
nardJonesium. 

More quantitatively, Table II compares the ratios 
among the ( 1 1 1 ), ( lOO), and ( 110) surface energies for 
nickel, Lennard-Jonesium, and an ideal material whose 
Wulff polyhedron is exactly the truncated octahedron. Both 
nickel and Lennard-Jonesium crystallites prefer to have 
their ( 100) faces somewhat nearer to their centers than does 
the truncated octahedron (i.e., the ratio yloo/y,, , for these 
materials is smaller than 2/d), increasing the relative area 
of those faces. Both also have ( 110) facets which the trun- 
cated octahedron lacks, but in nickel that facet is very nar- 
row (less than one nearest-neighbor distance in width for 
clusters up to about 15 000 atoms) and, unlike the Lennard- 
Jones case,’ these will never end up being advantageous for 
clusters as small as the ones we will examine later on an 
atomistic scale. 

Let us now calculate the energy E,(N) of a Wulff poly- 
hedron containing Natoms. Since ( 110) facets do not occur 
on clusters as small as the atomistic ones we will treat later, 
we will omit these faces in this calculation. Let us use a unit 
of length uN for our cluster such that the distance from the 
center of given Wulff cluster of N particles to a face with 

Interface Unrelaxed surface or twinning energy Relaxed surface or twinning energy 

(1ll)surface 0.094 14 eV A - 2 0.094 675 8 eV A-’ 
( 100) surface 0.103 41 eV A-* O.l034068eV&’ 
(110)surface 0.11244eVA-2 0.112341 2eV&* 
( 111) twinning plane -O.O000883eVA-* 
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FIG. 1. The Wulff polyhedra for (a) nickel and (b) LennardJonesium. 
Also shown for comparison is (c) the truncated octahedron. 

surface energy y is numerically equal to yuN. For a given N, 
the surface energies thus determine the distances from the 
center of the cluster to its faces and specify the geometry of 
the polyhedron so that we may calculate the areas of its faces 
AllI and Al, and its volume V. For nickel, we find (with 
energy in units of eV and lengths in units of A) that 

E,(N) = Eg(N) + 8y,,,A,,, + 6y,ooA,, 

= E,N + Cu”,, (2) 
where C = 0.014 970 96. Since the volume is given as 

F’ = 8Am Y,IIU,/~ + ~mo~m~d3 
= cl&./3 (3) 

and the volume per atom V/N = 10.9163, we can conclude 
that uN = 12.98 12N 1’3 and obtain for the Wulff polyhedron 
energy 

Ew(N) = EON+ 2.522 79N2’3. (4) 

6. Multitwinned particles 
1. lcosahedra 

An icosahedron (see Fig. 2) may be thought of as being 
composed of 20 distorted tetrahedral units all meeting at the 
center and each sharing three of its faces with neighboring 
units, leaving the last face to serve as one of the external 
icosahedral surface facets. Crystallographically, each face of 
the tetrahedron is an fee ( 111) face and the plane of atoms 
which two neighboring tetrahedra share is a twinning plane, 
or put in other words, the stacking sequence in the direction 
normal to this plane is mirrored in it, ignoring the distortion 
of the tetrahedron. 

Twenty perfect tetrahedral units, however, cannot be 
put together to make an icosahedron. If surface vertices of 

neighboring units are aligned, the units themselves will over- 
lap at the icosahedron’s center. To make a proper icosahe- 
dron, the tetrahedral units must be strained to make three of 
their sides, those meeting at the central vertex, about 5% 
shorter than the three which lay on the surface. This sort of 
strain is easy to accommodate within the Parrinello-Rah- 
man description” employed for extended systems, in order 
to obtain the bulk and surface energies required for calcula- 
tions of the cluster energies as described above. 

For an unstrained system, each fundamental translation 
vector defining the periodically repeated cell could be taken 
as an integral multiple of one of the conventional primitive 
translation vectors for an fee material [each pair of which 
defines a ( 111) plane 1. This situation is represented in Fig. 
3. In this figure, all the distances OA, OB, OC, AB, BC, and 
AC are equal. In order to apply icosahedral strain, we need 
only change the translation vector c so that the distances OC, 
AC, and BC become 4.894...% smaller than they were ori- 
ginally. [For further discussion of this sort of description of 
icosahedral (and decahedral) materials, see Ref. 59.1 When 
minimizing the energy of a system with such a computa- 
tional cell, the only parameter which we may vary is the 
volume. Doing so, and comparing with the corresponding 
result for the unstrained bulk, gives a strain energy (per 
atom) for uniform icosahedral strain of E’, = 0.032 921 95 
eV and a volume per atom of 11.0124 A3, slightly greater 
than that for an unstrained system. 

It is instructive to use Ino’s5’ expression for the energy 
due to a uniform icosahedral strain, with the elastic con- 
stants C,, , C,, , and C, for our model of nickel, which are 
given in Ref. 65. The resulting value for the strain energy is 
0.0349 eV. The agreement between this value and that ob- 
tained here by direct minimization indicates that for our in- 
teractions, nickel under uniform icosahedral strain is within 
the region of linear elastic behavior. 

If we remove the periodic boundary condition associat- 
ed with translation vector c, we create two surfaces like the 
OADB plane in Fig. 3, which under the type of strain de- 
scribed above corresponds to the exposed face of a tetrahe- 
dral unit in an icosahedron. Fixing the shape of the computa- 
tional cell as before and relaxing atomic coordinates yields a 
surface energy of 0.0795 eV/A’, nearly 16% lower than the 
unstrained value. (Without relaxation, the icosahedral sur- 
face energy would have been 0.0894 eV/A’.) Notice that 
unlike the case of the unstrained crystal (cf. Table I), surface 
relaxation has a significant effect here. 

We may perform for the icosahedron an analogous cal- 
culation to that which gave us an expression [see Eq. (4) ] 
for E,(N) for the Wulff polyhedron. If we ignore the twin- 
ning energy, which will be very small, we obtain (in units of 
eV) 

TABLE II. Surfaceenergy ratios for nickel and Lennard-Jonesium, along with those needed to produce a Wulff 
polyhedron that is exactly the truncated octahedron. 

Nickel Truncated octahedron Lennard-Jonesium 

1.092 2/g/3(1.154...) 1.054 
1.187 >m( > 1.224...) 1.118 
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FIG. 2. The icosahedron and its relationship to the tetrahedral units of 
which it is composed. 

E,(N) = (eB +&IV+ 2.02709N2'3. (5) 
Comparing Eqs. (4) and (5), we can determine at what 
value of N the Wulff polyhedron becomes more energetically 
favorable than the icosahedron. We find the energies equal 
when N = 3413. In our microscopic atomistic calculations 
(see Sec. IV), we will find that the two energy curves for 
these two structural forms cross when N = 3540. 

However, the remarkable agreement between the mac- 
roscopic estimate and that obtained from microscopic calcu- 
lations is fortuitous in this case. If we compare the macrosco- 
pically calculated icosahedral energies with those obtained 
by atomistic minimizations of icosahedral clusters’ energies, 
we find that the “real” clusters (i.e., those obtained via 
atomistic minimization) act as if their strain energy is sub- 
stantially smaller than the value we have used here. In fact, 
relaxation of an icosahedral cluster from the “ideal” size and 
shape given by the macroscopic approach reduces the energy 
by a fraction almost an order of magnitude larger than that 

FIG. 3. An unstrained computational cell for fee crystals. The three vectors 
a, b, and c are translations under whose repeated application the computa- 
tional cell periodically fills all spAce. 

for decahedra and single crystals. In the icosahedron, strain 
can be relieved by letting the surface facets bow out in a 
nonplanar and nonuniform fashion at the expense of surface 
energy (see the discussion on icosahedra in Sec. IV). The 
two corrections nearly cancel for the range of cluster sizes 
where the energies of the icosahedra cross those of the Wulff 
polyhedra, so that the prediction made on the basis of the 
macroscopic calculation is deceptively good. 

However, we will see that in systems under lower strain, 
such as the single crystals and the decahedra (whose uni- 
form strain energy is 30 times smaller than the icosahe- 
dron’s) , lhe macroscopic calculations can indeed be used to 
produce quantitatively informative energy differences 
between cluster forms. 

2. Decahedra 

Figure 4 illustrates the kinds of “decahedra” we will be 
concerned with here. Of these, only the classic decahedron 
or pentagonal dipyramid actually has ten faces, the others 
being so called only because of their derivation from it. 

The classic decahedron is, like the icosahedron, com- 
posed of slightly distorted tetrahedral units, five of which are 
joined at a common edge and each of which shares two of its 
( 111) faces as twinning planes with neighboring units and 
contributes two other ( 111) faces to the surface of the deca- 
hedron. The faces on the classic decahedron are equilateral 
triangles. The principal advantage of the decahedron over 
the icosahedron lies in its lower strain energy. Part of this is 
due to the lower strain in the tetrahedral units of the classic 
decahedron and part is because in addition to being able to 
minimize strain energy by varying the volume of the units, 
we can also relax an additional degree of freedom corre- 
sponding to the length of the decahedron’s central axis, 
shown as a dashed line in Fig. 4(a). 

The relaxed classic decahedron shares with the icosahe- 
dron the advantage of only having ( 111) faces, but because 
of its much lower sphericity, its surface area is comparatively 
larger and energetically it is a poor competitor. Ino5* sug- 
gested truncating the tetrahedral units as shown in Fig. 

(a) 

FIG. 4. (a) The classic decahedron, (b) an example of Ino’s decahedron, 
and Cc) an example of Marks’ decahedron. 
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4(b), exposing ( 100) faces and making the structure more 
spherical. While this improves matters and also provides an- 
other parameter we may vary to m inimize the energy of the 
polyhedron, Ino’s decahedron is not the lowest energy struc- 
ture for any known material, since as the polyhedra become 
larger and larger, the single crystals become more favorable 
than either the icosahedron or Ino’s decahedron before the 
decahedron surpasses the icosahedron. 

In an attempt to m inimize the surface energy of the de- 
cahedron, however, we may give each of its single crystal 
tetrahedral units a surface like that of the single crystal 
Wulff polyhedron. This motivates Marks’ modified Wulff 
construction*’ for decahedra, resulting in a nonconvex poly- 
hedron like that in Fig. 4(c). In this construction, the dis- 
tances from the origin to each surface plane are again taken 
to be simply proportional to that crystal plane’s surface ener- 
gy, and in addition, new “faces” are added in the directions 
corresponding to the decahedra1 unit’s ( 111) twinning 
planes, ignoring strain. Since the interfacial energies of the 
twinning planes are very nearly zero, these planes almost 
pass through the origin and excise a wedge from the Wulff 
polyhedron that would otherwise have resulted. Thus the 
exposed surface of a unit in the decahedron, apart from being 
slightly stretched to fit, looks just like part of the surface of 
the Wulff polyhedron if the necessary strain does not signifi- 
cantly effect the surface energies. Figure 5 illustrates the re- 
lationship between the units of which Marks’ decahedron is 
composed and the single crystal Wulff polyhedron. 

do not occur]. Notice that in contrast to the icosahedral 
case, relaxation effects for surface energies are small. Com- 
parison with Table I shows that the change from the surface 
energies of an unstrained crystal are also small. The percen- 
tage change for the capping ( 111) face is - 0.26%, that for 
the reentrant ( 111) face is - 0.5 l%, and that for the ( 100) 
face is - 0.48%. The twinning plane energy, although 
slightly larger and with the opposite sign than the unstrained 
case, is still negligible. 

Given this information, we may seek an equation for the 
energy of the best Marks’ decahedron, for a given volume or 
number of particles, just as we did for the Wulff polyhedra. 
This evaluation is described in Appendix B where we obtain 
for the optimal Marks’ decahedron lacking ( 110) facets, the 
expression for the cluster’s energy as a function of the num- 
berofatomsinit,E,(N);seeEq. (Bl). 

For uniform decahedra1 strain, we may calculate the 
strain energy, and surface energies for the ( 100) face, the 
( 111) “capping” face which touches the axis of the decahe- 
dron, and the (111) “notch” (or reentrant) face which 
makes Marks’ decahedron nonconvex, as well as the twin- 
ning plane energy, by m inimizing the energy of systems with 
two- or three-dimensional periodic boundary conditions, in 
a manner similar to our treatment of icosahedral strain. The 
details of such calculations are much more involved than the 
icosahedral case and are given in Appendix A. The resulting 
uniform strain energy per atom is e = 1.124 426X 10 - 3 
eV. The volume per atom is 10.9186 A3, only 0.02% more 
than that of the perfect single crystal. Table III displays the 
results for the surface and twinning energies, with the ( 110) 
surface omitted for simplicity [for nickel clusters in the 
range of sizes we concentrate on in this paper, ( 110) facets 

If we compare ED (N) with the Wulff polyhedron’s en- 
ergy E,(N) from Eq. (4), we can estimate that the single 
crystal will become more favorable than a Marks’ decahe- 
dron when NZ 17 000. Clearly, clusters of this size may have 
( 110) facets-in fact their width would be about one near- 
est-neighbor distance. Our neglect of them, however, occurs 
on both the Wulff polyhedron and the decahedron. They will 
effect the energies of both kinds of shapes similarly and that 
effect will be small since they are much smaller than the 
other faces. For nickel, at least, we do not feel that our esti- 
mation would be improved enough to warrant the increase in 
the complexity of the derivation given in Appendix B. As we 
will see from comparing energy differences between m icro- 
scopic atomistic clusters of less than about 5000 atoms with 
corresponding macroscopic ones, the macroscopic treat- 
ment of clusters can be expected to be quantitatively quite 
good for clusters much smaller than 17 000 atoms. 

IV. MICROSCOPIC CALCULATIONS 
A. Single crystals and icosahedra 

Prior to describing our m icroscopic, atomistic treat- 
ment, it is appropriate to discuss the nomenclature that we 
will use for different structural models of single crystal clus- 
ters. In general, it is not possible to fit an arbitrary number of 
atoms together in the shape of any given polyhedron, espe- 
cially one like the Wulff polyhedron for nickel, the lengths of 
whose edges have nonsimple ratios. In addition, we examine 
clusters which depart from the ideal shape, not only because 
no clusters of m icroscopic dimensions exist for that precise 
shape, but also since we do not know apriori how reliable the 
macroscopic calculations are for such small clusters. Some 
of the cluster shapes which we examine already have conven- 
tional names, such as the cuboctahedron, the truncated octa- 
hedron, and the icosahedron. Others have no names outside 
the community of scientists studying small clusters and 
therefore need to be introduced for clarity. 

FIG. 5. The “tetrahedral” units of Marks’ decahedron (left) and their rela- 
tion to the Wulff polyhedron (right). 

The most extensive m icroscopic study to date is that of 
Raoult et aZ.* who studied the structure of Lennard-Jones 
m icroclusters and who have named many cluster models for 
the first time. Since there are no precedents, we will adopt 
much of their terminology in this paper. 

All the fee single crystal shapes which we will consider 
may be thought of as originating from a cube whose center is 
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TABLE III. Interfacial energies for nickel decahedra. 

Interface Unrelaxed surface or twinning energy Relaxed surface or twinning energy 

( 111) surface (capping) 
( ill) surface (notch) 
( 100) surface 
Twinning plane 

0.094 60eV A;-’ 
0.094 80 eVA-’ 
O.l0306eVA-’ 

0.094423 3 eVA-’ 
O.O941898eVA--2 
O.l029129eVA-* 
0.0001663eVA-2 

the origin and whose eight vertices point in the ( 111) direc- 
tions. A cube, along with some other Platonic and Archime- 
dean solids, is shown in Fig. 6. 

There are two fundamental families of such cubes- 
those with an atom at the origin and those with an fee octa- 
hedral site there. *’ We will generally discuss only atom-cen- 
tered clusters in this section, because the octahedral-site- 
centered clusters have little new to offer after the 
atom-centered ones have been examined. Apart from the de- 
cahedra, if the number of atoms in a single-crystal cluster is 
odd, the cluster is atom centered; if even, octahedral site 
centered. 

Other polyhedra can be produced by “shaving off lay- 
ers of atoms corresponding to crystal planes we want to ex- 
pose on the surface. When shaving off any face of atoms, we 
also remove all other similar ones, since we want to keep the 
shapes we consider as symmetric, and therefore as small in 
number, as possible. Repeatedly shaving ( 111) faces from a 
cube allows us to successively produce, at least approximate- 
ly, a sequence of shapes like the Archimedean solids in Fig. 
6. It also enables us to produce many other intermediate 
shapes as well. However, we cannot produce clusters of arbi- 
trary shape, as we could macroscopically, since atoms must 
be removed as discrete units. 

This aspect of atomicity is revealed explicitly in the way 
the choice of a particular geometric shape for a cluster re- 

FIG. 6. A sequence of Platonic and Archimedian solids demonstrating the 
duality of the octahedron and the cube. Shown are (a) the cube; (b) the 
truncated cube; (c) the cuboctahedron; (d) the truncated octahedron; and 
(e) the octahedron. 

stricts the number of atoms which it can contain. If we want 
to construct an icosahedron or cuboctahedron, we must use 
a number of atoms in the set {13,55, 147, 309,561, . ..I. or to 
construct a truncated octahedron, we must choose from {38, 
201, 1289, 4033, . ..}. etc. 

This poses the question of which models we should con- 
sider? The truncated octahedron [Fig. 6 (d) ] is an obvious 
choice since of all the named shapes, it is closest to the Wulff 
polyhedron. We also consider local variations from this 
shape since it occurs sparsely and we want to examine simi- 
lar shapes to fill the gaps in cluster size, as well as explore its 
local neighborhood in configuration space. Many of the 
models which we have considered are less than encouraging. 
In this paper, we concentrate on the more energetically fa- 
vorable models and a posteriori explain the principles that 
m ight have led us to such models from the outset. 

Let us construct our clusters from cuboctahedra [Fig. 
6(c) ] which have the convenient property that removing 
one atomic layer from each of its faces produces the next 
smaller cuboctahedron. (A similar observation holds for the 
icosahedra.) This causes the difference in the number of 
atoms between a cuboctahedron and the next one in size to 
be as small as possible. Taking the sequence of cuboctahe- 
dra,84 we find that only for every fourth one can a truncated 
octahedron be produced by shaving off ( 111) planes of 
atoms. Nevertheless, Raoult et al.’ have defined a sequence 
of clusters (named “model C”) which closely resemble trun- 
cated octahedra and which can be made from every cubocta- 
hedron. Accordingly, a cluster belongs to model C if its 
( 111) faces are just further from the center than would be 
the case for the truncated octahedron and consequently are 
slightly smaller in comparison with the ( 100) faces. In this 
context, we remark that the Wulff polyhedron also has its 
( 111) faces slightly further from its center than the truncat- 
ed octahedron does. For any cuboctahedron, we have merely 
to shave off ( 111) planes until we come to the last one 
further from the origin than the ideal truncated octahedral 
distance. Thus we have four model C clusters for every trun- 
cated octahedron.85 

Another sequence of clusters may be obtained by expos- 
ing ( 110) facets. Given any model C cluster, we can simply 
strip off the line of atoms at the edge where two ( 111) faces 
meet. This produces a small (110) face consisting of two 
parallel lines of atoms. Following Raoult et al., we call these 
HKI clusters.86 

The last sequence of single-crystal clusters which we 
consider are cuboctahedra. Many previous researchers have 
studied them, even though the shape is not very optimal, 
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because of the special relationship, alluded to earlier, that 
the cubocthedron has with the icosahedron. Not only do the 
two sequences contain clusters with the same numbers of 
atoms, but any cuboctahedral cluster can convert to an ico- 
sahedral one, and vice versa, by means of a simple twinning 
transformation.” Thus the competition between icosahedra 
and cuboctahedra is more direct and physical than that in- 
volving other single-crystal clusters, which generally cannot 
convert to other high symmetry clusters without gaining or 
losing atoms or at least undergoing substantial atomic rear- 
rangement. 

Finally, we will also include in our m icroscopic calcula- 
tions the icosahedra, which are expected to be energetically 
optimal for the smallest clusters, and since we wish to inves- 
tigate as a function of cluster size the transition from icosa- 
hedra to other structural forms, such as single crystals and 
cuboctahedra. 

In Table IV some of the geometric properties of these 
clusters are collected. Here and elsewhere, m denotes the 
number of atoms on an edge joining a ( 111) face and a ( 100) 
face; n denotes the number of atoms on an edge between a 
( 111) face and any non-( 100) face-either ( 111) or ( 110) 
for our clusters. The number of atoms on an edge between a 
( 100) face and a ( 110) face on an HKI cluster is always two. 

First we will plot ,vs N “’ the energies (obtained by ener- 
gy m inimization using the EAM potentials) of these clusters 
less the bulk energy of the same number of atoms 
EB (N) = l BN divided by LV”~. Using macroscopic consid- 
erations as a guide, we expect that the total energy of a given 
cluster shape, with N atoms and surface area S, could be 
expressed in the form5’ 

E(N) = E&v + E&v + ep, (6) 
where eB is the bulk energy per atom, 6, is the uniform strain 
energy per atom (zero for the single-crystal clusters), and cy 
is an average surface energy per unit area for that cluster 
shape. Denoting by a a geometric factor suitable for that 
shape, we may write 

[E(N) -ESN]/N2'3~=E,N1'3+aEY. (7) 

Equation (7) is an approximate equality because quite large 
clusters may be necessary before the surface area can be well 
approximated by aN 2’3 for a given cluster shape. 

Thus a simple macroscopic approach would lead us to 
expect that plotting the energies of m icroscopic single-crys- 
tal clusters in this way will produce horizontal lines ranked 
according to how well they m inimize surface energy, while 
the icosahedral curve will be a straight line with a positive 
slope caused by its internal strain. 

In the upper panel of Fig. 7, we display the results of 
energy m inimization for m icroscopic single-crystal clusters 
and the above expectations are born out. We also find that 
icosahedral clusters are most favorable for clusters contain- 
ing less than 3540 atoms, at which point the truncated octa- 
hedra and model C clusters are very competitive with each 
other, as expected since their shapes bracket that of the 
Wulff polyhedron. As expected, we also find the ( 110) facet- 
ing of HKI clusters to be energetically unfavorable for 
smaller clusters and to become more attractive as cluster 
sizes increase, although we do not explore clusters large 
enough for it to become the optimal structural form. The 
cuboctahedron does not compete at all with the other clus- 
ters in this size range. However, extrapolation” of the cu- 
boctahedral and icosahedral energies enables us to estimate 
that the cuboctahedrals are favored over the icosahedrals for 
clusters larger than about 14 000 atoms. 

At this point we wish to compare the results obtained via 
the atomistic energy m inimization with those of macroscop- 
ic calculations. To perform macroscopic calculations for an 
unrelaxed atomic cluster, we must be able to associate a po- 
lyhedron with it; i.e., we must take the cluster and find its set 
of surface planes. This defines the polyhedron and allows us 
to calculate its volume and various surface areas, which are 
used in a macroscopic calculation of the cluster’s energy. We 
note that since we are dealing with rather small, atomic clus- 

TABLE IV. Single crystal atom-centered clusters and icosahedra: number of atoms N, number of atoms on an edge between a ( 111) and a ( 100) face m, 
number ofatoms on an edge between a ( 111) face and a non-( 100) face n. Each truncated octahedron can be produced from the cuboctahedron in the same 
row by removing one or more sets of eight ( 111) planes, and ifone fewer set of ( 111) planes is removed from each truncated octahedron, the model C cluster 
in the same row is produced. 

Icosahedra/cuboctahedra” Truncated octahedra Model C HKI 

N m n N m ” N m n N m  n 

147 o/4 4/l 
309 O/5 5/l 201 3 3 
561 O/6 6/l 405 4 3 369 2 4 
923 O/7 7/l 711 5 3 675 3 4 

1415 O/8 8/l 1139 6 3 1103 4 4 
2057 o/9 9/l 1289 5 5 1709 7 3 1673 5 4 
2869 o/10 10/l 1925 6 5 1865 4 6 
3871 o/11 1 l/l 2735 7 5 2675 5 6 
5083 o/12 12/l 3739 8 5 3679 6 6 
6525b o/13 13/l 4033 7 7 4957 9 5 4897 7 6 

5341 8 7 5257 6 8 

“Form and n, the left-hand value is for icosahedra; the right is for cuboctahedra. 
‘Not studied here. 
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FIG. 7. In the upper panel of this figure, the minimized energies of micro- 
scopic single clusters are represented relative to the bulk, together with 
those of the icosahedra. In the lower panel, also relative to the bulk, are 
shown the energies resulting from macroscopic calculations for unrelaxed 
versions of the same clusters, along with the same icosahedral curve. In 
these macroscopic calculations, surface planes were taken to fall between 
atomic layers. 

ters, it may make a substantial difference where we define 
those surface planes to fall. We m ight choose for one to cut 
through the atoms in the surface layer of its facet. Alterna- 
tively, we m ight choose for the surface plane to fall outside 
that plane by a distance equal to one-half the layer spacing 
for that crystal face. Each choice produces a different energy 
for every cluster we examine. 

First, let us take a surface plane to lie above the surface 
atoms by one-half a layer spacing. Results of macroscopic 
calculations with this convention are shown in the lower 
panel of Fig. 7. The overall energies are are in adequate 
agreement with the corresponding m icroscopic ones, shown 
in the upper panel of Fig. 7, with the scaled energy differ- 
ences in the figure too low by 0.03 eV for large clusters and 
worse for smaller ones. However, the relative ordering of the 
clusters in energy, particularly the truncated octahedron, 
model C, and HKI clusters, is poorly articulated and fre- 
quently wrong, even for larger ones. 

Let us explore a different convention for positioning the 
surface planes in the macroscopic calculation and move 
these planes so that they pass through the cluster’s surface 
atoms. If we were to plot the results in the usual way, we 

would initially be discouraged. All the single crystal clusters 
would have scaled energy differences substantially lower 
than any of the icosahedra, and for smaller clusters the defi- 
ciency would be much worse. However, upon closer exami- 
nation, we observed that the relative ordering in energy of 
the clusters of similar size had been remarkably improved. 

Results in which the energetics of various structural 
models are compared may be presented in various ways. In 
particular, we may use as our reference not E&V, but the 
energies of the members of a standard reference family of 
clusters, such as the cuboctahedra, somewhat as van de 
Waa140 does. The advantage of this approach over using the 
bulk energy as reference is that it subtracts cluster surface 
energies as well. While this is unimportant when presenting 
energies obtained via atomistic m inimization, it is advanta- 
geous when displaying energies from macroscopic calcula- 
tions for small clusters, since such a subtraction can largely 
correct for systematic errors, such as may be connected with 
the positioning of the surface planes. We will use the cuboc- 
tahedron as our reference cluster since it has no strain ener- 
gy, it occurs at frequent intervals for better interpolation, 
and it will not be greatly m issed from the figures since it is 
such a poor competitor. 

Results obtained by atomistic energy m inimization and 
via macroscopic calculations which take surface planes to 
pass through surface atoms are shown in Fig. 8. At the top, 
the m icroscopic results, using an interpolation88 formula 
based on m icroscopic cuboctahedra are displayed. At the 
bottom, we show the results for macroscopic single-crystal 
polyhedra, using an interpolation formula based on macro- 
scopic cuboctahedra. The icosahedral curve in both figures 
is the one obtained from our m icroscopic calculations since 
the macroscopic approach fails to provide an accurate esti- 
mate for this structure, as discussed in Sec. III. The overall 
agreement between the results obtained by the two ap- 
proaches is remarkable. Note, however, the overestimation 
of the energies of the HKI clusters by the macroscopic calcu- 
lations. Nevertheless, this discrepancy decreases as clusters 
become larger and the m icroscopic HKI clusters become 
more competitive energetically. 

The use of cuboctahedral reference energies instead of 
bulk ones does not affect the relative energetic ordering of 
clusters of similar size, regardless of which convention is 
employed for positioning the surface planes with respect to 
atomic ones. The advantage of using cuboctahedral refer- 
ence energies lies in being able to change the conventional 
location of the surface planes in order to improve the relative 
energetic ordering of clusters of similar size, since only clus- 
ters of similar size can energetically compete with one an- 
other.89 

B. lcosahedra 
There is substantial interest in the characteristics of re- 

laxed icosahedral clusters. As we pointed out in Sec. III, 
systems under uniform icosahedral strain have a relatively 
large strain energy. Nonetheless, m icroscopically relaxed 
icosahedral clusters are energetically favored over other 
types even for clusters of several thousand atoms. It is worth- 
while to examine the nature of the relaxation of icosahedral 
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FIG. 8. In the top graph, the minimized energies of microscopic clusters are 
represented, relative to an interpolated cuboctahedral energy. In the bottom 
graph, equivalent macroscopic quantities are displayed, with the exception 
of the curve for icosahedra, which is the same as in the upper graph. 

clusters which enables them to compete energetically as well 
as they do. 

As mentioned above, we may analyze the energy of a 
cluster atom by atom. In Fig. 9 we display how the energies 
of atoms on the fivefold axes change as we move from the 
inside of a cluster to its outside. We observe a great regularity 
with overall cluster size if we compare the outermost layer of 
each cluster and then successively proceed inwards. Our 
overall observation is that the energies of atoms in the outer 
shells of these clusters are very similar, but that as the interi- 
or of the cluster is penetrated, energies increase. The further 
one penetrates, the greater is the increase in atomic energy 
with a particular concentration of energy at the center of the 
cluster. Since a large part of the cohesive energy in metals 
derives from the embedding of the metal ions in the elec- 
tronic charge density of the medium, atoms will seek to oc- 
cupy positions which optimize that embedding energy. Con- 
sequently, atoms on the outer shells of the cluster attempt to 
compensate for the m issing of neighbors which would have 
been present in the bulk by displacing inward toward regions 
of higher electronic density. (The optimal structure is of 
course a balance between the cohesive embedding energy 
and the core-core repulsions.) The atoms that experience 
the greatest loss of electronic embedding density are the ones 
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FIG. 9. The energies of vertex atoms on successive shells of icosahedra of 
various sizes. Lines connect energies corresponding to atoms in different 
shells in the same icosahedron. Results for icosahedra comprising three, 
five, seven, nine, and eleven shells are shown. The 55-atom, two shell icosa- 
hedron is also shown, but with a dashed line. 

at the outside vertices of the cluster. Under the geometry of 
the icosahedron, these atoms can only move to a region of 
higher electronic density by pressing directly on atoms at the 
vertices of the shell below theirs. Because the vertex atoms 
form a linear chain from the outside of the cluster to its 
center, and since the stress on these atoms is radial, stress 
accumulates along the fivefold axes and especially at the 
clusters’ centers. It is not surprising that the energy of an 
atom at a cluster’s center is still increasing almost as strongly 
with the cluster’s radius when the cluster has ten or 11 shells 
as when it had two or three. (We suspect this behavior to be 
largely independent of the interatomic interaction for poten- 
tials that favor close-packed structures, since the geometry 
of the icosahedron almost forces such a concentration of 
stress.) 

Similar analysis to that leading to the results shown in 
Fig. 9 could also be made for atoms on the edges adjoining 
faces on shells within the icosahedra or atoms on the faces 
themselves. By way of definition, let us say that aside from 
the vertex atoms on an icosahedral shell, we also have edge 
atoms, which adjoin two faces, but do not include the vertex 
atoms, and face atoms, which include every atom that is 
neither a vertex or an edge atom. It is worth pointing out that 
although unrelaxed clusters show a considerable variation in 
atomic energies for the edge atoms in a shell, or for the face 
atoms in a shell, the edge energies are remarkably uniform 
within a given shell of a cluster after relaxation, as are those 
of the face atoms. For example, in the 1 l-shell, 5083 atom 
icosahedron, the standard deviation of energies of edge 
atoms is greatest for the tenth shell, where it is 0.003 27 eV, 
as compared with an edge average for that shell of - 4.4 183 
eV. For the same cluster, the standard deviation of energies 
of face atoms is greatest for the 11 th shell, where it is 
0.005 02 eV, as compared to a facial average for that shell of 
- 3.939 29 eV. Within a given shell of an icosahedron, the 

energy difference between a pair of atoms chosen from two 
different categories (vertex, edge, or face) is much greater 
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than the energy difference between any pair of atoms within 
any single category. 

Farges et aL9 consider similar issues for clusters whose 
atoms interact through a Lennard-Jones 6-12 potential. 
They show how the spacing between pairs of adjacent atoms 
lying on one of the fivefold axes of an icosahedral cluster 
changes in moving from the inside of a cluster out, and for a 
given distance from the center, how it changes with cluster 
size. We call this spacing the radial nearest-neighbor dis- 
tance. Furthermore, they examine the nearest-neighbor dis- 
tance between atoms near the center of a face for each of the 
shells of which an icosahedral cluster is composed. We take 
this to mean the distance between those two atoms in the 
shell nearest the center of a face, whether one of the atoms is 
exactly in the center or not, and call it the tangential nearest- 
neighbor distance for that shell. In Fig. 10, we show the 
results for the icosahedral clusters that we have studied, 
which are qualitatively similar to the results of Farges et al. 
although somewhat larger in degree. We note that both the 
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FIG. 10. In the top graph, the distances between adjacent atoms on a five- 
fold axis ofan icoshedral cluster are shown. The curves connect distances in 
different clusters between atoms in the same two shells and are marked by 
the pair of shell numbers involved. In the bottom graph, the distance be- 
tween the two atoms in a shell closest to the center of one of its faces is 
shown, marked by the number of the shell. Note that the numbering of 
shells is such that shell zero has one atom, shell one has 12, etc. 

radial and tangential distances between atoms decrease non- 
uniformly as we move from the outside toward the inside of 
the cluster. Furthermore, as we consider larger and larger 
clusters, the distances at the surface of the clusters increase 
and the distances near its center decrease. For the icosahe- 
dral clusters we have examined, the radial nearest-neighbor 
distance is always less that the nearest-neighbor distance in a 
perfect bulk crystal, while the tangential nearest-neighbor 
distance is larger than that distance for a cluster’s outer lay- 
ers and smaller for its inner ones. 

Farges et a1.9 also provide information about the con- 
vexity of faces on the 923-atom, six-shell icosahedral Len- 
nardJones cluster and suggest that the convexity is more or 
less uniform from shell to shell for any given icosahedral 
cluster. Following their suggestion, we take a radial unit vec- 
tor through the center of a face and project onto it two vec- 
tors pointing from the center of the cluster, with one point- 
ing to a vertex atom on that face and the other pointing to the 
atom closest to the face’s center. We define the layer position 
of the face to be the mean of these projected distances and the 
layer distortion to be their difference. We find for the six- 
shell icosahedral cluster that the ratio of the distortion for 
the outermost shell to the difference between the layer posi- 
tion of the two outermost shells is about 13%. Farges et al., 
obtain 9% for an apparently similar quantity for their Len- 
nardJones material. They observe that this ratio increases in 
a nearly linear manner with shell number if it is also calculat- 
ed for the interior shells of the cluster, suggesting a unifor- 
mity of convexity throughout the shells of the cluster. We 
also observe a roughly linear relation between shell number 
and this ratio. Moreover we note that this ratio, for a given 
shell number within a containing icosahedral cluster, is re- 
markably independent of the size of the cluster containing it. 

An alternative measure of the convexity of a surface 
may be obtained in the following manner: Let us define two 
spheres. One is chosen so that its center is at the center of the 
icosahedral cluster and its surface passes through the vertex 
atoms on a given shell of the cluster. The other is chosen so 
that its surface passes through the vertex atoms of a particu- 
lar face and also through the atom closest to the center of 
that face (or rather through the projection of that atom’s 
position onto the radial unit vector through the center of the 
face). As the mean curvature C of the face, we take the reci- 
procal of the radius of the second sphere, although the face 
will tend to be flatter in its center than at its edges. To nor- 
malize this curvature in a way that should be independent of 
which of the shells we are examining if they are all similar, 
we multiply it by the radius R, of the first sphere. Thus if the 
faces were completely Rat, the product would be zero, while 
if the cluster had relaxed to a perfect sphere, it would be 
unity. Results are shown in Fig. 11. We find that as expected, 
this relative curvature uniformly decreases as we move to 
larger and larger clusters, since it ultimately must conform 
to the macroscopic limit. 

C. Decahedra 

The principle difficulty in studying the energies of 
Marks’ decahedra is the richness of the parameter space [see 
Figs. 4(c) and 51. As a simplification, we ignore ( 110) faces 

J. Chem. Phys., Vol. 94, No. 11,l June 1991 Downloaded 09 Feb 2004 to 130.207.165.29. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



C. L. Cleveland and U. Landman: Structure of nickel clusters 7388 

8 d 

8 d 

$8 
vo 

;: 6 

8 
6 

-7 
-a 

B---+-49 
w 10 

$ II 
I I I I I 

2.0 4.0 6.0 a.0 10.0 
Total Number of Shells in lcosahedron 

FIG. 11. The relative curvature of faces on shells within icosahedra of var- 
ious sizes. 

since in the range of cluster sizes which we study, such faces 
do not appear to be favorable. Even so, we have two inequi- 
valent kinds of ( 111) faces, which we have called capping 
faces and notch faces. Thus while we can specify one of our 
single-crystal polyhedra without ( 110) faces just by listing 
the number of atoms on the edge joining ( 100) and ( 111) 
faces m and the number of atoms on the edge joining two 
( 111) faces n, we will find an additional parameter is needed 
for decahedra. For decahedra, we will use m to denote the 
number of atoms on an edge joining a ( 100) face and a cap- 
ping ( 111) face, n to denote the number of atoms on the 
other kind of edge on a (100) face, which connects it with 
either a notching ( 111) face or if no notching has occurred 
with a neighboring (100) face, andp to denote the number 
on an edge joining the two kinds of ( 111) face. This notation 
is the same as that used by Raoult et al* Instead ofp, how- 
ever, we shall usually refer to s = p - 1, the number of ( 111) 
notching planes which have been removed from the sides of 
each decahedra1 unit to produce the desired Marks’ decahe- 
dron. We choose to do this since our scheme for organizing 
the plethora of Marks’ decahedra refers each back to the 
Ino’s decahedron from which it could be made by notching, 
and which is simply a Marks’ decahedron with s = 0 [see 
Figs. 4(b) and 4(c) 1. An Ino’s decahedron and any Marks’ 
decahedron that can be obtained from it by notching all be- 
long to the same “family.” Two Ino’s decahedra belong to 
the same family if for them m - n, which measures the 
“squareness” of the ( 100) face, has the same value. Thus in 
Fig. 12, both the Ino’s decahedron and the Marks’ decahe- 
dron belong to family m - n = 2. The Ino’s decahedron has 
m = 7, n = 5, s = 0 (andp = l), while the Marks’ decahe- 
dronhasm=S,n=5,s=l (andp=2). 

If we take any Ino’s decahedron and begin notching it at 
the twinning planes, we find that, relative either to bulk ener- 
gies or cuboctahedral energies, a sharp minimum exists. In 
Fig. 13 we show the results for family four, i.e., the set of 
decahedra arising from notching an Ino’s decahedron with 
m---=4. 

Similar calculations were performed for members of 

FIG. 12. An Ino’s decahedron with m = 7 and n = 5 is shown on the left. 
On the right is shown the resulting Marks’ decahedron if theoutermost line 
of atoms on each twinning plane is removed. This decahedron has s = 1 and 
p = 2 as well as m = 5 and n = 5. 

families two, six, and eight. The geometries of the decahedra1 
clusters which we investigated are given in Table V. We ob- 
served that as one moves to larger and larger clusters, the 
number of the energetically optimal family increases and the 
degree of notching of the optimal member of that family 
increases as well. The results of these calculations are sum- 
marized in Fig. 14, where we display the energies for those 
decahedra1 clusters with energies lower than any other deca- 
hedron of similar size, along with the curve of microscopic 
icosahedral energies which we have seen in so many of the 
other figures. We conclude that icosahedra become unstable 
with respect to Marks’ decahedra for clusters larger than 
about 2300 atoms. 

In examining Fig. 14, we note that minimum energy 
decahedra tend to have square ( 100) faces and that the size 
of those faces and the depth of the notch embracing them 
increases with increasing cluster size just as we would expect 
from macroscopic considerations. To make the comparison 
with macroscopic expectations more quantitative, we show 

ii.0 A.0 Ii.0 Ii.0 Ii.0 
Nm 

‘LO 

FIG. 13. The energies of the decahedra1 family four relative to the bulk 
energy of the same number of atoms. The solid lines connect members with 
the same degree of notching, while the dashed lines connect each cluster 
with that one produced from it by further notching and with its parent clus- 
ter from which it was similarly produced. Thes value for each solid curve is 
used to denote it, while each cluster is marked by its m and n values. 
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TABLE V. Decahedra1 clusters: numbers ofatoms N, number ofatoms on an edge between acapping ( 111) and a ( 100) face m, number ofatoms on the other 
type of edge on a ( 100) face n, and the depth of the notch s, for the decahedra1 families 2,4,6, and 8, corresponding to decahedra that may be produced by 
various degrees of notching from Ino’s decahedra with m - n = 2,4, 6, and 8, respectively. 

Family 2 Family 4 Family 6 Family 8 

N m n s N m n s N m n s N m n s 

207 5 3 0 
409 6 4 0 
711 7 5 0 

1133 8 6 0 
1695 9 7 0 
2417 10 8 0 
3319 11 9 0 
4421 12 10 0 

192 3 3 1 
389 4 4 1 
686 5 5 1 

1103 6 6 1 
1660 7 7 1 
2377 8 8 1 
3274 9 9 1 
4371 10 10 1 

142 1 3 2 
324 2 4 2 
606 3 5 2 

1008 4 6 2 
1550 5 7 2 
2252 6 8 2 
3134 7 9 2 
4216 8 10 2 

461 1 5 3 
838 2 6 3 

1355 3 7 3 
2032 4 8 3 
2889 5 9 3 
3946 6 10 3 

499 7 3 0 
851 8 4 0 

1333 9 5 0 
1965 10 6 0 
2767 11 7 0 
3759 12 8 0 
4961 13 9 0 

484 5 3 1 
831 6 4 1 

1308 7 5 1 
1935 8 6 1 
2732 9 7 1 
3719 10 8 1 

434 3 3 2 
766 4 4 2 

1228 5 5 2 
1840 6 6 2 
2622 7 7 2 
3594 8 8 2 

339 1 3 3 
646 2 4 3 

1083 3 5 3 
1670 4 6 3 
2427 5 7 3 
3314 6 8 3 

971 9 3 0 3397 13 5 0 
1513 10 4 0 4569 14 6 0 
2215 11 5 0 5911 15 7 0 
3097 12 6 0 
4179 13 7 0 
5481 14 8 0 
1493 8 4 1 
2190 9 5 1 
3067 10 6 1 
4144 11 7 1 
1428 6 4 2 
2110 7 5 2 
2972 8 6 2 
4034 9 7 2 
1308 4 4 3 
1965 5 5 3 
2802 6 6 3 
3839 7 7 3 
1745 3 5 4 
2547 4 6 4 
3549 5 7 4 

results for family four in Fig. 15, where in the macroscopic 
calculations the surface planes are taken to cut through sur- 
face atoms. In the upper panel energies obtained via micro- 
scopic, atomistic energy minimizations are shown relative to 

27 c.4 . %I0 
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FIG. 14. Those decahedra1 sequences we have studied which have some- 
where an energy lower than any other decahedra1 sequence of correspond- 
ing size. Each curve is marked with its degree of notching s and each decahe- 
dron’s point is marked with its m and n values. The icosahedral curve, 
obtained from microscopic energy minimization, is included for compari- 
son. 

cuboctahedral energies, and in the lower panel, the corre- 
sponding macroscopic results are displayed. For reference, 
the microscopic icosahedral energies are shown in the upper 
graph. We find excellent agreement between the ordering 
provided by the macroscopic calculations and the micro- 
scopic results. In evaluating the quality of the decahedra1 
results, it should be borne in mind that the decahedra used in 
the macroscopic calculation are made from unrelaxed, clas- 
sic decahedra and not macroscopic decahedra whose geome- 
tries are consistent with the bulk system whose energy we 
minimized under decahedra1 strain. Using the latter geome- 
tries instead results in an overall lowering of the macroscopic 
energies, reducing the overall energy shift between the two 
panels of Fig. 15. 

D. Other clusters 
In addition to the above structures, other model struc- 

tures of atomic clusters have been examined in order to 
check that we have indeed considered most of the structural 
motifs relevant to our study of the energetics of nickel clus- 
ters. Thus, e.g., we have studied “model B” of Raoult et a&* 
which is a shift from the truncated octahedron in the oppo- 
site direction to that taken by model C, so that it has smaller 
( 100) faces. As expected, this is energetically quite unfavor- 
able. Furthermore, unlike the Lennard-Jonesium clusters of 
Raoult eta1.,8 removing the 12 vertex atoms on the icosahe- 
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FIG. 15. In the upper graph the minimized microscopic energies for family 
four are represented relative to the cuboctahedral energy. In the lower fig- 
ure, the corresponding macroscopic results are shown, where we have taken 
each surface’s plane to pass through its atoms. The microscopic results for 
the icosahedron (squares) are shown in the upper graph as well. 

dral clusters makes them worse competitors energetically. 
This type of variation never seems to be advantageous for 
any cluster types and we have not systematically explored it. 
We have also created monotwins of some of the single crys- 
tals, which invariably lowered the cluster’s energy, but to a 
degree so small compared to other energy differences as to be 
uninteresting. For example, the untwinned HKI cluster with 
3679 atoms has a total energy of - 15 766.341 eV. The cor- 
responding twinned cluster has a total energy only 0.086 eV, 
or 0.28 K lower. 

There is another large group of clusters that we have not 
extensively studied simply because they are too numerous: 
those with broken symmetry, i.e., clusters with incomplete 
shells, or those hybridized from pieces of several clusters of 
the more symmetric type which we have considered. Such 
clusters may be abundant under experimental conditions. 
For example, for clusters produced via a laser-vaporization 
cluster source, where at low helium pressures the principal 
mechanism of cluster growth is by monomer addition, the 
odds that the number of atoms in a cluster turns out to be one 
of the values for which an energetically optimum, symmetric 
shape can be made are small. Similarly, for clusters which 
evolve from molten droplets, evaporation of excess atoms 

will essentially cease prior to any solidification because of 
the large binding energy for surface atoms ( - 3.5 eV). 

The systematic trends revealed from our study of the 
more symmetric structural forms guide us as to which struc- 
tures may develop when the number of atoms in a cluster 
does not correspond to one of the symmetric structures 
which we have considered. The easiest way to interpolate 
numbers of atoms is by breaking the symmetry of the clus- 
ters. One could use model C type faces on part of a cluster’s 
surface and those from a truncated octahedron elsewhere. If 
somewhat fewer atoms are required, some vertex atoms 
m ight be removed, or if the cluster is big enough, some ( 110) 
faces applied. In the decahedra, there may be variation 
among the five tetrahedral units. In general, the surface of 
each single crystal piece will attempt to resemble a piece 
from the Wulff polyhedron even for clusters that are quite 
small. Exceptions are the icosahedra, where we expect that 
the best clusters of lower symmetry will have an icosahedral 
core with a partial outer shell whose atoms are as compactly 
arranged as possible. To avoid energetically expensive sharp 
atomic steps on a cluster’s surface, the simplest procedure is 
to take a larger cluster in the family in question and remove 
whole atomic planes at a time. It is worth pointing out that 
the truncated octahedra, model C’s, and HKI are all single- 
crystal clusters related to each other by just such operative 
transformations and, except for the HKI clusters of small 
sizes, all have similar energies. This indicates that interpola- 
tion between similar high-symmetry configurations may 
provide some information about energies of clusters of inter- 
mediate sizes. 

In order to illustrate these ideas, we have considered 
clusters with 201 atoms. Of the high-symmetry structures 
which we have studied so far, only a truncated octahedron 
can have exactly this many atoms. On the other hand, as we 
see from the upper half of Fig. 7, the icosahedra have a much 
lower scaled energy than the truncated octahedra in this size 
range (N “3 -6). The question naturally arises as to 
whether some less symmetric icosahedrally based cluster 
with 201 atoms m ight be lower in energy than the highly 
symmetric truncated octahedron. 

A cluster with the desired number of atoms may be con- 
structed by adding extra atoms to a 147-atom icosahedron or 
removing excess atoms from a 309-atom icosahedron. For 
the purpose of our illustration, we have chosen the second 
construction, attempting to remove whole planes ofatoms at 
a time. Accordingly, starting from a 309-atom icosahedron, 
we pick a vertex and remove all five surface planes that meet 
at it, exposing part of the 147-atom core. We continue this 
process by removing planes of atoms on facets adjacent to 
the area we have already cleared until we have 201 or less 
atoms left. In fact, following this procedure results in our 
case in a cluster containing 200 atoms to which one atom is 
replaced at the edge of the partial shell which caps the 147- 
atom icosahedral core. Direct m inimization of the energy of 
that cluster yields a total energy E(N) = - 807.076 eV 
which is slightly below that of the corresponding 201-atom 
truncated octahedron ( - 807.003 eV). The resulting clus- 
ter is shown, front and back, in Fig. 16, where atoms belong- 
ing to the 147-atom icosahedral core are light gray and those 
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I 

FIG. 16. Front and back views ofa low symmetry 201-atom cluster with an 
icosahedral core of 147 atoms (light gray) and a capping partial shell of 54 
atoms (dark gray) constructed as detailed in the text. 

of the capping partial shell are dark gray (the extra 201st 
atom is the dark gray one nearest the center of the left im- 
age). It is of interest to note that the effect of this extra atom 
is rather large. The energy of the corresponding 200-atom 
icosahedrally based cluster is - 803.353 eV, while that of 
the 201-atom truncated octahedron with one of its vertex 
atoms removed is - 802.589 eV, markedly increasing the 
energetic advantage of the icosahedrally based cluster as 
compared with the 201-atom case. 

We would like to note that other construction methods 
that we have attempted, including some which involved mo- 
lecular dynamics simulated annealing, resulted in clusters of 
substantially higher energy than the one which we have dem- 
onstrated here. While we have undoubtedly not exhausted 
all the possible construction schemes, our result indicates 
that it is possible to achieve energetically competitive low- 
symmetry clusters by starting from judiciously chosen high- 
symmetry structures and removing whole atomic planes at a 
time, as discussed above. Our general conclusion is that in 
attempting to build low-symmetry clusters whose number of 
atoms is incompatible with high-symmetry structures, the 
energy differences between the latter (such as displayed in 
Fig. 8) provide guidance in choosing the high-symmetry 
structural motif on which to base the construction of the 
low-symmetry clusters. 

V. SUMMARY 
In this paper we have investigated using both a macro- 

scopic approach and atomistic energy minimizations, the 
size dependence of the evolution of structures in metal (nick- 
el) crystallites ranging in size from small clusters containing 
tens of atoms to rather large ones made of thousands of 
atoms. In our studies we have used many-body interaction 
potentials obtained via the embedded atom method (see Sec. 
II), which include as a dominant contribution to the cohe- 
sive energy of the metal the embedding energy of the metal 
ions in the local electron density provided by the other atoms 
in the system. In addition, we compare our results to those 
obtained previously, employing simple pair-potential mod- 
els. 

One of the aims of our study is to test and assess the 
adequacy of macroscopic concepts based on the Wulff con- 
struction and variants thereof [i.e., considerations of elastic 

energies and the modified Wulff construction due to 
Marks” (see Sec. III) 1. Based on comparisons between the 
results of atomistic energy minimization and the macroscop- 
ic formulas which we developed [see Eqs. (4), (5)) and 
(Bl ) 1, we conclude that these formulas, in conjunction with 
accurately calculated, or experimentally measured, cohe- 
sive, surface, and strain energies [which in our studies were 
obtained using the EAM potentials (see Sets. II and III, and 
the Appendices] allow a rather reliable framework for struc- 
tural analysis. The macroscopic approach is particularly 
useful in assessing the relative energetic merits of various 
structural motifs (see the comparisons between the results of 
microscopic and macroscopic calculations in Sec. IV) and 
thus aids in the analysis of experimental data. 

The evolution with size of the optimal structures of 
nickel, as well as Lennard-Jonesium (after the results of Ref. 
8) clusters is summarized in Fig. 17. As seen from Fig. 
17 (a), our microscopic, atomistic calculations based on the 
EAM many-body interactions predict that the optimal 
structures of nickel clusters containing less than -2300 
atoms belong to the icosahedral sequence. Larger clusters 
are predicted to optimally assume Marks’ decahedra1 geo- 
metries, while for clusters containing more than - 17 000 
atoms, single crystal structures and their monotwins are en- 
ergetically favored. Observe that we predict, on a macro- 
scopic basis, that the evolution of optimal structures from 
the decahedra1 sequence to the single crystal sequence hap- 
pens for much smaller cluster sizes for nickel that has been 
predicted* for Lennard-Jonesium, where on the order of 10’ 
atoms are expected to be necessary. The transition for ener- 
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FIG. 17. Diagrams, summarizing the evolution of optimal structural mo- 
tifs, vs the number of atoms in nickel clusters (obtained in this study) and in 
Lennard-Jonesium (after the results of Ref. 8). The results in (a) corre- 
spond to calculations including in the set of possible structures those of 
Marks’ decahedra. The results in (b) were obtained without the inclusion of 
Marks’ decahedra in the set of possible structures. Solid lines divide struc- 
tures which belong to different internal structural forms (icosahedra, de- 
noted by IC; Mark’s decahedra; and the single crystals and their mon- 
otwins, denoted by TO for truncated octahedra, model C, HKI, or W for 
other Wulff-type structures). Dashed lines divide structures which have the 
same internal form, but differ in their surface configuration (these are all 
single crystals and their monotwins). 
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getically favored structures between the icosahedral se- 
quence and the Marks’ decahedra1 sequence is predicted to 
occur for somewhat larger clusters in nickel than for Len- 
nardJonesium (2300 vs 1600 atomsac’ ). In this context, we 
remind the reader that the HKI, model C, and truncated 
octahedron are all single crystal clusters (see Sec. IV A) and 
they all serve as approximations, forced by the discrete na- 
ture of matter, of the Wulff shape. As clusters become larger 
and larger, it becomes less and less useful to distinguish be- 
tween clusters that only differ between one another by the 
addition or removal of a single plane or row of atoms, and we 
may just as well speak of the Wulff sequence, or that set of 
cluster structures that are good approximations to the Wulff 
polyhedron. On the other hand, Marks’ decahedra, which 
are based on fivefold symmetrical structures, do not belong 
either to the single crystal structures, or the icosahedral 
structures. 

The diagrams for nickel and Lennard-Jonesium in Fig. 
17(b) summarize the structural evolution vs size when 
Marks’ decahedra are not considered. As seen, such calcula- 
tions predict the emergence of single crystal structural mo- 
tifs (i.e., truncated octahedra, model C, and HKI) as opti- 
mal clusters for much smaller sizes than when Marks’ 
decahedra are included, while the cluster size for the icosa- 
hedral to single crystal transition in nickel (3600 atoms) is 
substantially greater than that for Lennard-Jonesium (2 100 
atoms” ) . 

For the case of icosahedral structures, we find that the 
effect of relaxation (obtained by atomistic minimization) of 
these clusters from the “ideal” structure given by the macro- 
scopic approach is much larger than is the case for decahe- 
dral and single crystal structures. These relaxations of icosa- 
hedral clusters lead to relief of strain by nonuniform 
relaxations of atoms in the cluster, resulting in curved (i.e., 
nonflat) facets. Furthermore, the convexity of the structure 
propagates into the interior of the cluster (see Sec. IV B). 

While in this study we focus on structural motifs of high 
symmetry, we also demonstrate that the results which we 
obtained can guide the construction of energetically com- 
petitive low-symmetry clusters. 

In closing, we reiterate that the results presented in this 
paper do not include thermal (and entropic) effects, which 
can lead to isomerizations between accessible structural 
forms and thus to a distribution of structures for a given size 
cluster. While a more comprehensive account of the behav- 
ior of nickel clusters at finite temperatures will be given else- 
where, it is instructive, within the context of this study, to 
comment on the stability of these clusters at finite tempera- 
tures. As seen by molecular dynamics simulations which we 
have performed, almost all the types of clusters which we 
have considered here are stable up to the temperature at 
which their surface atoms begin to diffuse and the clusters 
can start to isomerize, generally - 1000 K depending on 
cluster size. 

The exceptions are clusters which can convert to an- 
other of lower energy via a cooperative, nondiffusive trans- 
formation, i.e., the one which connects cuboctahedra and 
icosahedra. We have observed that on heating, cuboctahedra 
undergo the multitwinning transformation well before any 

atomic diffusion occurs, resulting in icosahedra. 
As the temperature is successively increased further, 

more outer layers melt and wet a structurally unchanged 
solid core (i.e., states of coexistence between liquid, or quasi- 
liquid, and solid phases occur). Finally, if enough energy is 
added, the cluster will melt completely. 
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APPENDIX A: UNIFORM DECAHEDRAL STRAIN 

In this appendix, we will show how the surface, twin- 
ning, and strain energies needed for a macroscopic calcula- 
tion of the energy of one of Marks’ decahedra were obtained. 
In Fig. 18, we display an unstrained unit cell with the tetra- 
hedral unit embedded in it. The periodic repetition of this 
cell under the three translation vectors a, b, and c will fill all 
space. Each of these three vectors points in a (100) direc- 
tion. In order to change this unit cell into one containing a 
tetrahedral unit that will fit into a decahedron, we must 
change these three vectors, so that they satisfy certain con- 
straints. 

We will choose to proceed so that the (100) surface 
created by removing the periodic boundary condition in the 
c direction corresponds to the ( 100) surfaces that occur on 
Ino’s or Marks’ decahedra. Then the line AB on the tetrahe- 
dron will correspond to the decahedra1 axis. Our first con- 
straints come from the requirement that the lengths of AC, 
BC, AD, and BD must all be the same. In terms of the transla- 
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FIG. 18. An unstrained computational cell for fee crystals. The three vec- 
tors a, b, and c are translations under whose repeated application the com- 
putational cell periodically fills all space. They are currently pointing in 
( 100) directions. We will apply decahedra1 strain by changing these three 
vectors to ones consistent with decahedra1 symmetry. 
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tion vectors, this implies that 
a=b t-41) 

and 
c-a = cob = 0. t-42) 

We conclude that without loss of generality we can choose c 
to lie in the + z direction and a and b to line in the x-y plane. 
Further, since we can rotate the resulting setup about the z 
axis without changing the system’s energy, we can further 
take one of either a,, or b, zero. If, as is usual, we write the 
three translation vectors as column vectors and take them as 
the columns of an overall translation matrix H, 

I-I = M-w), 
we could so far choose to write H as 

(A3) 

a, d(O,a: -b:) + 
I-I== ,/(O,b: -a:) + bY 

0 0 
(A4) 

where (a,/Z,y,...) + is the supremum of a, fi, y ,... . This 
expression could be simplified by simply asserting that a lies 
along the x axis so that av = 0, corresponding to the case 
where a,>b,,, but the conjugate gradient procedure will 
treat a, and b,, as the two independent quantities in H, and 
we cannot be sure that it may not try to make b, larger than 
a, during minimization and must allow for that possibility. 

The last constraint is of course the requirement that the 
dihedral angle between the ABC and the ABD planes be 72”. 
In terms of the translation vectors, this requirement may be 
written as 

[c - (a + b)/2l*[c + (a + b)/2] 
I[c-- (a+b)/2]jI[c+ (a+b)/2]1 =cos(720)* 

(A5) 

Equations (A4) and (A5) allow us to determine c, in terms 
of a, and 6,. We find 

c, = Y a,+ (O,az--bz)+]*+ by+ (O,b:-aaL:)+]*, (Ah) 

where 

Y = 0.5,/ [ 1 + cos(72”)]/[ 1 - cos(72”)j = 0.6882... . 
(A7) 

That we have only two degrees of freedom left is exactly 
as expected. We can volumetrically expand or contract a 
decahedron or change the length of its axis and we will still 
have a decahedron. Other kinds of changes to the tetrahedral 
units will either prevent them from joining together or create 
mismatches between their edges and vertices. 

We can now fill this computational cell with an “fee” 
lattice of 500 nickel atoms arranged so that there are five 
conventional unit cells in the a direction, five in the b direc- 
tion, and five in the c direction, and then minimize the ener- 
gy by allowing a, and b,, to vary with the other components 
of H then being determined as in Eqs. (A4) and (A6). Com- 
paring the resulting energy with the bulk energy of the same 
number of atoms in a perfect, unstrained fee crystal gives us 
the strain energy. 

The Parrinello-Rahman method” returns the deriva- 
tive of the potential energy with respect to each of the nine 
components of H disregarding any constraints on them. It is 
a small detail that we must use the chain rule to determine 
from these derivatives the derivatives with respect to a, and 
b,, with constraints in place. For a, we have 

(A81 

Parrinello-Rahman methods give us the first partial deriva- 
tive in the sum and Eqs. (A4) and (A6) give us the second. 
by is of course treated in the same way. 

We may remove the periodic boundary condition in the 
c direction and minimize the energy of the resulting slab by 

varying atomic positions within a fixed computational cell, 
obtaining the ( 100) surface energy under decahedra1 strain. 

Unfortunately, the system as described is not well suited 
to determining the ( 111) surface energies or twinning ener- 
gies, since it is not easy to create the appropriate interfaces. It 
might appear that we need to go to a different kind of compu- 
tational cell for which ( 111) surfaces can be easily made, 
such as the one in Fig. 3, reexamine the consequences of the 
constraints needed for decahedra1 symmetry, and remini- 
mize the bulk energy under those constraints, but we do not. 

Any translationally periodic system may have its peri- 
odicity represented through any three noncollinear periodic 
translation vectors. Imagine that the computational cell in 
Fig. 18 corresponds to the one that was produced by the 
minimization procedur~the changes are very small and do 
not justify a second figure. Instead of describing the period- 
icity of this bulk system by using a, b, and c, we could just as 
well have used 

a’ = c - a, 

b’ = c + b, 
c’ = b - a. 

(A9) 

In terms of Fig. 18, a’ points from A to C, b’ points from A to 
D, and c’ points from A to B. This is a right-hand coordinate 
system analogous to the one in Fig. 3 and is suited for a 
calculation of the (111) surface energy. Just as there the 
three vectors define a tetrahedron, here they define ABCD. 
The new parallelepiped unit cell has a volume that is twice 
that of the old one, so it is unsurprising that when we periodi- 
cally replicate the atomic positions in the old one to see 
which copies fall in the new one we find that 1000 copies do. 
At this point on it is probably better to refer to Fig. 3, where 
a, b, and c can play the role of a’, b’, and c’. 
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These 1000 atoms are arranged as ten ( 111) layers par- 
allel to the sides of the computational cell, whether we scan 
through the system along the a’, the b’, or the c’ direction. 
Unfortunately, the stacking sequence for ( 111) layers in an 
fee crystal only repeats every third layer, which means the 
new system will contain serious stacking faults if periodical- 
ly repeated. Fortunately this is easily repaired. We simply 
reduce the three new translation vectors by 10% and only 
keep the copies of atoms which fall in this newer, smaller 
cell. We find that 93 do. Replicating these 729 remaining 
atoms in this newest unit cell with its periodic translation 
vectors produces exactly the same atomic coordinates as rep- 
licating the original 500 atoms with the original, relaxed 
translation vectors: they are equivalent periodic systems. 
Thus we have constructed a system with decahedra1 strain 
with periodic translation vectors suitable for determining 
energies involving ( 111) planes. 

different sizes. Because the bulk strain energy is so small, this 
can make a very large difference in our estimate of the size 
these clusters must be before single crystal clusters or mon- 
otwins of the same size are energetically preferable. 

We will neglect ( 110) faceting, for reasons discussed in 
the section on macroscopic calculations. All distances in this 
section will be in units of UN, introduced in that same section. 

In terms of Fig. 3, the two planes OACand OBCmeet at 
the line OC with a dihedral angle of 72”. Thus these two 
planes have the proper orientation for either a twinning 
plane or a notching ( 111) face. The other two faces of the 
tetrahedron OAB and ABC have the orientation of capping 
( 111) faces. Thus by removing the periodic boundary condi- 
tion in the c’ direction, we can determine the surface energy 
of the capping ( 111) faces by minimizing the energy of the 
resulting slab while holding the computational cell fixed and 
comparing the resulting energy with that of the bulk slab 
under decahedralstrain. Similarly, by removing the periodic 
boundary condition in the b’ direction, we can determine the 
surface energy of the notching ( 111) face. Leaving both pe- 
riodic boundary conditions in place, we can introduce two 
twinning planes in the original bulk system. Look at the sys- 
tem as a set of nine atomic ( 111) planes parallel to the a’-c’ 
plane. These have a stacking sequence abcabcabc, counting 
away from the al-c’ plane. Let us take the last four of these 
and rotate them 180” about their normals and put them back 
so that stacking sequence is abcabcbacabc..., where we have 
periodically extended the sequence and indicated the twin- 
ning planes with capital letters for clarity. These two twin- 
ning planes are quite close together, but the twinning energy 
will turn out to be so small that there is little point in being 
more careful. We can now reminimize the bulk energy in the 
presence of these twinning planes, and by comparing the 
resulting minimum energy with the energy of the bulk sys- 
tem under decahedra1 strain we can determine the twinning 
energy appropriate to the decahedron. 

From the computational cell which gave the lowest bulk 
energy for the given constraints, we know the normals to the 
( 100) plane, as well as the ( 111) capping plane and the 
( 111) twinning and notching planes. From the surface ener- 
gies we found, we know how far each surface plane should be 
from the origin. Thus if n is the unit vector normal to a 
surface whose surface energy is y, a point r can be on the 
plane if it satisfies n-r = y. If we have another plane adjoined 
to this one at an edge, the equations of the edge follow from 
the requirement that the equations of both planes must be 
simultaneously satisfied, and a vertex where two edges meet 
is at a point where the two sets of equations describing the 
edges hold simultaneously. Thus the determination of all the 
coordinates of all the vertices is a straightforward exercise. 
In the case of the decahedron, we only have three different 
vertices to find: a vertex of the ( 100) face; the vertex where 
the capping faces meet; and where a twinning plane, notch- 
ing face, and capping face all meet. 

Let us take a coordinate system with the origin at the 
center of the polyhedron and where the z axis runs along 
what will be the axis of the decahedron (we simply take the 
twinning energy to be zero for the purposes of performing 
the modified Wulff construction). We take the x axis to be in 
the ( 100) direction and thus passing through the center of a 
( 100) face. We place the y axis so that a right-handed or- 
thogonal coordinate system is created. 

Looking at the (100) face whose outward normal is in 
the +x direction, we find that one of its vertices is at 
(0.1029, 0.0417, 0.0421), the other four being given by 
changing the sign on one or both of they and z components. 
Notice that the height of the (100) face exceeds its width. 
This is not much affected by the very small energy differ- 
ences between the capping and notching ( 111) faces, but 
arises because the notching planes are more parallel to the 
( 100) plane under decahedra1 strain than the capping planes 
are and therefore cut more deeply into it. It is interesting that 
stretching the crystal out laterally to make it fit the decahe- 
dron makes its (100) face narrower rather than wider. 

The numerical results for nickel, obtained by the above 
method, may be found in Table III. 

The vertex where the (upper) capping faces meet is 
found at (0, 0, 0.1165). The lower capping faces meet at a 
point just like the upper one with the sign on the z coordinate 
changed. 

APPENDIX B: ENERGY OF IDEAL DECAHEDRA 
In this section, we will walk through a calculation using 

the modified Wulff construction of the energy of a Marks’ 
decahedron given the energy results of the previous appen- 
dix. However, instead of carrying out the construction for an 
unstrained single crystal, it is appropriate to carry it out for a 
crystal under uniform decahedra1 strain. Thus the normals 
to the surfaces will not quite point in the same directions as 
they would were no strain applied, and the faces will be of 

A vertex at the top of the notch, where capping, twin- 
ning, and notching ( 111) planes all intersect, is at (0.0801, 
0.5821, 0.0586). Others of its kind may be generated by re- 
versing one or both of the signs on they and z coordinates. 
And of course, for each vertex on the decahedron, there is 
another that can be found by rotating the decahedron about 
the z axis by a 72” angle. 

With explicit coordinates for all the vertices, we can cer- 
tainly calculate the areas of each type of face with a little 
plane geometry, as well as the volume of the decahedron. On 
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the way we discover that the width and height of the ( 100) 
face are 0.0833 and 0.0842, respectively, while the height of 
the notch at its center is 0.1172 and the width of one of the 
notch’s faces is 0.0282. The width of the capping face at its 
widest point is 0.1164, slightly smaller that the height of the 
notch as we should expect by now, and the length of the 
decahedron’s axis is 0.2330. While the notching plane nor- 
mal makes an angle with the ( 100) plane normal of 54” as it 
must, the capping plane normal makes an angle of 54.13” 
with it. For reference, in the unstrained crystal, both of these 
angles would be 54.74”, and in an unrelaxed classic decahe- 
dron, the capping plane’s angle with the (100) direction 
would be 52.62”. 

Equating the known bulk density under strain and 
equating it to A’, the number of particles that may be in the 
decahedron, divided by the decahedron’s volume in units of 
u,,, cubed, allows us once more to find a connection between 
uN and N, specifically uN = 13.1607N I” A. 

The area in units of U; of a single notch face is 
0.002 837, so in all, the notch surface area is 0.028 37. The 
area of a single capping face is 0.008 564, so all the capping 
faces have a combined area of 0.085 64. The area of a ( 100) 
face is 0.007 0 18 for a combined total ( 100) area of 0.03 5 09 
and the area of a twinning plane is 0.017 34 for a total twin- 
ning plane surface area of 0.1 734.92 

Combining the bulk energy for N particles, including 
strain energy, together with the surface areas and energies of 
the ten capping faces, ten notching faces, ten twinning 
planes, and five ( 100) faces, we finally find the energy of a 
decahedron of N particles in electron volts. 

E,(N) = (cB + t$‘)N + 2.493 87N2”, (Bl) 

where the uniform strain energy per atom of the decahedron 
<= 1.124426x10-‘eV. 
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nearest clusters of that shape, two smaller and two larger, are used to 
determine the four coefficients of a cubic equation for energy used in the 
region between the two nearest such clusters. If we want to extrapolate 

energies, we simply use the cubic equation in the closest region for which 
one could be obtained. This method can be tested by omitting a data point, 
eitherinsideourdatarangeorat itsends,and thencheckinghow wellinter- 
polation or extrapolation can reproduce it. Accuracy is better than 1 meV. 
The use of a cubic equation for interpolation is deliberate. If the surface 
planes are taken through surface atoms, the shell number of a cuboctahe- 
dron or icosahedron is exactly proportional to any ofits linear dimensions, 
includingits”radius”r. Itisveryreasonabletoexpecttheenergyofacuboc- 
tahedron or icosahedron to have terms varying as r ‘, r ‘, and r. 

a91t remains unclear why taking surface planes between atomic layers in- 
stead of through them should do better when estimating the overall ener- 
gies of the clusters examined in this study, and worse when examining 
relative energetic ordering between clusters. If we focus on relative energy 
differences between clusters of similar size and for that reason take our 
energies relative to cuboctahedra, it would appear for the clusters of this 
study that the best location for a surface plane is just a little outside the 
plane that passes through its surface’s atoms. 

gOThe value of 1600 atoms is given in Ref. 8 for the transition to decahedral 
structures from icosahedra with all vertex atoms removed. No transition 
size is given for full icosahedra. 

9’ The value of 2 100 atoms is given in Ref. 8 for the transition, with decahe- 
dra disallowed, to single crystal structures and their monotwins from full 
icosahedra. For icosahedra missing their vertex atoms, which we have not 
considered here, the value reported in that reference is 2400 atoms. 

92 In the modified Wulff construction, the twinning energy of a twinning 
plane is divided between the two decahedra that meet at it. Thus the deca- 
hedron is treated as containing ten twinning planes, two per tetrahedral 
unit. 
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