School of Physics

 

 

 

Latest News

The College of Sciences launched its Young Alumni Board, a volunteer-based leadership group that is tasked with deepening the relationship between recent Yellow Jacket graduates and the College. The inaugural Board consists of 13 members who obtained an undergraduate degree from the College within the last 20 years or a master’s or Ph.D. degree from the College within the last 10 years. 

The School of Physics will launch the new B.S. in Astrophysics program in summer 2025. This new major is the latest addition to the College of Sciences’ academic offerings and responds to increased student demand for courses and research opportunities in astrophysics. A minor in astrophysics will also be offered starting next summer.

On Monday, November 18, Geri Richmond visited Georgia Tech with Chief of Staff in the Office of the Under Secretary for Science and Innovation Ariel Marshall (Ph.D. CHEM '14) to meet with students and faculty — and discuss future opportunities for collaboration.  

The Student and Alumni Leadership Dinner provided a platform for students and alumni to network and share career insights. The event also honored BrandSafway with the inaugural Internship Employer of the Year award, highlighting the company's commitment to offering valuable learning experiences to interns.

Events

Jan 27

School of Physics Faculty Search Colloquium Series- Dr. Blake Bordelon

Blake Bordelon (Harvard) The Physics of Neural Networks: Mean-field Theory of Deep Learning Dynamics

Jan 29

CMO / AMO Seminar - Speaker Carolyn Zhang

CMO / AMO Seminar - Thermalization rates and anomalous relaxation from operator hydrodynamics - Speaker Dr. Carolyn Zhang form Harvard University

Jan 30

School of Physics CRA Seminar - Dr. Emrah Kalemci

CRA Seminar | Dr. Emrah Kalemci | Sabanci University, Istanbul, Turkey | Host: Dr. Matthew Liska

Jan 31

Fossil Friday

Come join the Spatial Ecology and Paleontology Lab every Friday for Fossil Fridays! Become a fossil hunter and help discover how vertebrate communities have changed through time.

Feb 03

School of Physics Faculty Search Colloquium Series- Dr. Sam Hedges

Sam Hedges (LLNL) Measuring Neutrino-Nucleus Scattering with a “Supernova Neutrino Simulator”

Feb 05

School of Physics Faculty Search Colloquium Series- Dr. Leonid Olifer

Dr. Leonid Olifer(Univ. of Alberta) Quantifying extreme space weather hazards: space radiation and its impact on our planet

 

Experts in the News

Georgia Tech researchers from the School of Chemistry and Biochemistry, the School of Earth and Atmospheric Sciences, and the School of Physics including Regents' Professor Thomas Orlando, Assistant Professor Karl Lang, and post-doctoral researcher Micah Schaible are among the authors of a paper recently published in Scientific Reports.

Researchers from the University of Georgia and Georgia Tech demonstrated that space weathering alterations of the surface of lunar samples at the nanoscale may provide a mechanism to distinguish lunar samples of variable surface exposure age.

Nature Scientific Reports 2025-01-02T00:00:00-05:00

Despite the fact that Antarctica is extraordinarily difficult to get to, astronomers love it and have chosen it as the location for the IceCube Neutrino Observatory. What could possibly make such a remote location so desirable for space science that it’s worth all that trouble? 

In this article, scientists including Georgia Tech's Brandon Pries from the School of Physics explain why the South Pole is such a hotspot for astronomers. The answer? At the South Pole, you can best view neutrons and neutrinos in space. 

Pries compares the benefits of the South Pole to the North Pole. “The North Pole is more difficult because ice coverage there fluctuates,” explains Pries. “There is a foundation of bedrock underneath Antarctica that serves as a solid base for the IceCube instruments.” This bedrock is also why Antarctica is home to the South Pole Telescope, a radio observatory that helped take the first ever photo of a black hole.

Popular Science 2024-09-05T00:00:00-04:00

Georgia Tech researchers from the School of Physics including fifth-year PhD student Mengqi Huang and Assistant Professor Chunhui Rita Du are among the authors of a paper recently published in Nature Physics. Researchers from six universities and Oak Ridge National Laboratory showed that strong quantum fluctuations can stabilize an unconventional magnetic phase after destroying a more conventional one.

Nature Physics 2024-08-26T00:00:00-04:00

Scientists have produced an image of the Milky Way not based on electromagnetic radiation - light - but on ghostly subatomic particles called neutrinos. They detected high-energy neutrinos in pristine ice deep below Antarctica's surface, then traced their source back to locations in the Milky Way - the first time these particles have been observed arising from our galaxy.

The neutrinos were detected over a span of a decade at the IceCube Neutrino Observatory at a U.S. scientific research station at the South Pole, using more than 5,000 sensors covering an area the size of a small mountain.

School of Physics Professor Ignacio Taboada is the spokesperson for the IceCube Neutrino Observatory and provides a brief commentary on this new research:

"This observation is ground-breaking. It established the galaxy as a neutrino source. Every future work will refer to this observation," says Taboada.

Reuters 2024-07-29T00:00:00-04:00

Groundbreaking research is shedding new light on how biofilms grow — using physics and mathematical models. Biofilms grow everywhere — from plaque on teeth, to medical devices, to the open ocean. But until now, it’s been difficult to study just what controls their growth. In a new study published in Nature Physics, researchers from the Yunker Lab in the School of Physics, including Lead Researcher Aawaz Pokhrel and Associate Professor Peter Yunker, leveraged physics to show that a biofilm’s geometry is the single most important factor in determining growth rate — more important than even the rate at which cells can reproduce. Since some research shows that 80% of infections in human bodies are caused by the bacteria in biofilms, understanding how colonies grow has important human health implications, potentially to help reduce their impact in medical settings or industrial processes. (This also appeared in Phys.org and Dental Review News.)

Nature Physics 2024-07-09T00:00:00-04:00

Every few seconds, somewhere in the observable Universe, a massive star collapses and unleashes a supernova explosion. Physicists say Japan’s Super-Kamiokande (Super-K) observatory might now be collecting a steady trickle of neutrinos from those cataclysms — amounting to a few detections a year.

In an article published in Nature, School of Physics Professor Ignacio Taboada provides a brief commentary on this new research: "The data from Super-K are still too weak to claim a discovery, but the prospect of detecting the diffuse neutrinos is extremely exciting”, says Tabaoda, who is also the spokesperson for the IceCube neutrino observatory at the South Pole. “Neutrinos would provide an independent measurement on the history of star formation in the Universe.”

Nature 2024-07-09T00:00:00-04:00